MUC-NOTE-COOL_THEORY-238 1

The COSY 8th Order Runge Kutta Integrator

K. Makino
Department of Physics
University of Illinois at Urbana-Champaign
Urbana, IL 61801-3080

March 14, 2002

Abstract
We studied simple example problems to compare the performance of
the COSY 8th order Runge Kutta integrator RK, and two of fourth or-
der Runge Kutta integrators; RK4 with fixed step size, and RK4S with
automatic step size control. The resulting low accuracy by the fourth or-
der integrators convinces us to urge to use high accuracy integrators for
modern computational needs.

1 The COSY Eighth Order Runge Kutta Inte-
grator

The COSY 8th order Runge Kutta integrator RK was originally written in For-
tran77 by Ingolf Kiibler in 1986 [1]. The code was translated to the COSY
language by Martin Berz in 1990 to be easily accessed in COSY Infinity [2].
It was particularly important that the integration can be carried out not only
for real numbers but also for Differential Algebraic vectors to support the full
power of the Differential Algebraic technique in COSY Infinity for various beam
physics computations, including Taylor transfer maps and efficient 3D field com-
putations. For this special need, a very accurate and robust integrator was
demanded. The current COSY integrator RK has been used for more than
ten years for numerous beam physics computations with excellent accuracy and
robustness.

So often, fourth order Runge Kutta integrators are used widely for various
numerical problems. When the error is controlled with the combination of auto-
matic step size, the accuracy can be improved. However, a blind usage of fourth
order Runge Kutta integrators would lead to a false answer for complicated
systems.

In this note, we study a few simple example problems to assess the accuracy
of the COSY 8th order integrator RK and two fourth order integrators RK4
and RK4S. RK4 keeps a fixed step size, and RK4S has automatic step size
control. It is not surprising that the COSY integrator RK has much higher

MUC-NOTE-COOL_THEORY-238 2

accuracy. More importantly, the results show clearly that the widely spread
fourth order Runge Kutta integrators are not accurate enough for many modern
computational needs. To assist researchers in the beam physics community, the
COSY integrator RK is now directly translated from the COSY language written
code to Fortran so that the routines can be imported to any Fortran code easily.
The test programs are added in the package “testRK” as well as the codes for
RK4 and RK4S.

2 Fourth Order Runge Kutta Integrators

We use the standard fourth order Runge Kutta algorithm for the integrator
RK4 and RKA4S [3, 4].

1 1 1 1
Yn+1 = Yn + 6k1 + §k2 + §k3 + 6k4
ki = hf(-’l:nayn)

1 1
k2 = hf(.’l:n + ih, Yn + §k1)

1 1
k3 = hf(.’l:n + ih, Yn + §k2)
k4 :hf(xn+hayn+k3)'

RK4 follows the algorithm with fixed step size. RK4S combines the idea of
adaptive step size control discussed in [4] with the current step size control
algorithm in the COSY integrator RK.

At each time step in RK4S, we make two estimates y() and y(®, where
y() is an estimate by one step of the size 2k, and y(® is an estimate by two
steps of the size h. Because the error of the fourth order algorithm is O(h®), the
difference A = y® —) provides a fifth order estimate for the solution as

A
y(z +2h) =y + T o)

[4]. Instead of using the exact step size control algorithm in [4], we use the
current step size control algorithm in the COSY integrator RK. Since we don’t
carry any higher order information in RK4S, we utilize A for the error estimate.
The behavior of the step size change is one interesting issue to study for
numerical integration, and all the successful computations have a similarity in
the pattern of step size change. Since RK4S adopts the same step size control
algorithm of RK, those two integrators have a similar step size development.

3 Numerical Examples

We applied the three Runge Kutta integrators to simple examples with differ-
ent dimensionality and properties. The first one is a one dimensional integral,

MUC-NOTE-COOL_THEORY-238 3

the solution of which is precisely known. The second one is a two dimensional
problem with a closed orbit solution. The last one is a three dimensional prob-
lem known to have chaotic behavior, and is thus challenging for any numerical
integrator.

3.1 One Dimensional Integral with Known Answer

The first example problem is the integral

1
4/ V1 —t2dt,
0

where the solution is 7 ~ 3.14159265358979... The computational results are
summarized in Table 1. The COSY integrator RK performs well as the 8th
order method, but both RK4 and RK4S give somewhat shocking results for this
simple one dimensional problem.

Numerical Answer | Error Estimate
RK4 3.14143024919 Unavailable
RKA4S | 3.14455379964 2.7778011E-3
RK 3.14159262801 5.9354652E-7

Table 1: One dimensional integral 4 fol V1 —t3dt = 7.

3.2 The Volterra Equations

The next example is a system of two dimensional ordinary differential equations.
We study the Volterra equations, which describe two conflicting populations,
and the solution trajectories are known to form closed orbits if the values of ini-
tial condition are positive. We use the following equations and initial conditions

dx
d—tl = 21,'1(1 bt 1»'2)
dx
d_t2 = —.’L'Q(]. bt .’L'l)

1 (0) = 1, .’L'Q(O) =3.
The solution trajectory follows the constraint
z125e "1 72%2 = Constant = 0.008206937689990645,

and the cycle is about T' = 5.488138468035.
We carried the integration using RK4, RK4S and RK from t =0 to t = T.
Table 2 summarizes the results, showing the final positions z1(T") and z2(T),

MUC-NOTE-COOL_THEORY-238 4

the computed error estimates, and the values of z1z2e %1722 at t = T to show
how close the numerical results are to the true solution. The accuracy of the
COSY integrator RK again shows significant superiority compared to the fourth
order integrators.

z1(T) z2(T) Error T1Tie 17282 at T
RK4 | 0.99965947825 | 2.99983170872 | Unavailable 0.0082087789360943
RKA4S | 1.00000424005 | 3.00000143890 | 5.0705462E-4 | 0.0082069219446463
RK 1.00000000014 | 2.99999999987 | 8.3244496E-9 | 0.0082069376914314

Table 2: Integration of the Volterra equations for about one cycle T

3.3 The Lorenz System

The last example is a system of three dimensional ordinary differential equations,
the Lorenz system, which describes a model of unpredictable turbulent flows in
fluid dynamics. The system is very sensitive to the initial condition, and more
specifically its behavior is known to be chaotic, hence it presents a challenge to
any numerical integrator. We use the following equations and initial conditions

dx

d_tl = 10(.’152 - .’L'l)

dx

d—t2 :$1(28—$3) — X9
d.’L’Q

——xx—§x
dr D12~ 3%

21(0) = 15, z(0) = 15, z3(0) = 36.

We carried the integration using RK4, RK4S and RK from t =0tot =T =
20. Table 3 summarizes the results, showing the final positions z1(T"), z2(T)
and z3(T"), and the computed error estimates, which are not validated. The
final positions differ so much between the three integrators, and even the error
estimates seem to not make much sense. For this problem, some illustrations
are helpful to analyze the performance.

z1(T) z9(T) z3(T) Error
RK4 | 2.20560898813 | 1.03043280578 | 22.2823992447 | Unavailable
RKA4S | -3.38810890144 | 0.796427735778 | 27.5820328868 | 1.2784637E-2
RK 14.3095004639 | 9.59194363188 | 39.0397302363 | 1.2144947E-7

Table 3: Integration of the Lorenz system from £ =0 to ¢ =T = 20.

Figure 1 monitors the z; position along time ¢. Until £ ~ 10, all the integra-
tors keep essentially the same z; position, then RK4 deviates, and at ¢ ~ 15,

MUC-NOTE-COOL_THEORY-238 5

RKA4S also deviates. The z2 and z3 positions behave similarly. Once a deviation
happens, it develops to very different positions. Figure 2 shows the trajectories
computed by RK, RK4 and RK4S.

Runge-Kutta Integration - Position

-20

Time

Figure 1: The position z; of the Lorenz system computed by RK, RK4S and
RKA4.

Of course, it is important to estimate the necessary computational expense.
Table 4 lists a CPU time comparison. The numbers are normalized to the CPU
time for RK. The result shows that the fourth order algorithms don’t have any
advantage besides their obvious simplicity in implementation.

CPU time
RK4 0.689
RK4S 0.904
RK 1.000

Table 4: CPU time for the integration of the Lorenz system. The numbers are
normalized to the CPU time for RK.

MUC-NOTE-COOL_THEORY-238 6

Runge-Kutta Integration - Trajectory

Figure 2: The trajectories of the Lorenz system computed by RK, RK4S and
RKA4.

4 Conclusion

We provided a performance comparison between the COSY 8th order Runge
Kutta integrator RK and two fourth order Runge Kutta integrators RK4 and
RK4S. RK4 is a naive fixed step size integrator, and RK4S has automatic step
size control. For two simple example problems, for which we know the solutions,
the fourth order Runge Kutta integrators gave surprisingly poor results. We also
studied a chaotic system described by the Lorenz model, and the results by RK4
and RK4S show large deviations from the result by RK from a surprisingly early
time.

For beam physics computations, there are many cases when we require high
accuracy in numerical integration. There are various sources of inaccuracy for
such computations. For example, we have to worry about the field precision, but
widely spread fourth order Runge Kutta numerical integrators would produce
much larger numerical inaccuracy.

The code of the COSY 8th order Runge Kutta integrator RK is not overly
complicated even when compared to the fourth order Runge Kutta integrator
RK4S that has an adaptive step size control. The CPU time consumption

MUC-NOTE-COOL_THEORY-238 7

for RK and RK4S shows almost no difference. Thus it seems advantageous for
anybody using fourth order Runge Kutta integrators to use the COSY 8th order
integrator RK instead.

A Arguments of the Subroutine RK

The Fortran coded RK is written to be compatible to the COSY language writ-
ten RK program supplied in the file cosy.fox in the system of COSY Infinity
[2]. Users have to supply the ordinary differential equations through a subrou-
tine, and several arguments have to be passed to the main subroutine of the
integrator, RK.

SUBROUTINE RK(N,X0,X1,Y0, HO,HS,H1, EPS,BS, Z,Y1,ERREST)

The input arguments are the following. N is the dimensionality, i.e. the
number of ordinary differential equations. X0, X1 are numbers for the starting
and ending times. Y0 is an array for the values of initial condition. HO, HS,
H1 are used for the step size control. HS is the suggested starting step size,
and HO and H1 are the minimum and maximum allowed step sizes. EPS and
BS are used for the error control. EPS is the desired local error size and should
be larger than 10712, and BS is the backstep bounds and should be larger than
EPS. For higher accuracy requirements, it is necessary to port the integrator to
a quadruple precision environment.

The output arguments are the solution array Y1 and the estimated accumu-
lated error ERREST. Z is an array for the internal use, and it should have the
size of at least N x16.

For the example computations, we used ESP=10"1°, and BS=20x10"19,
The step sizes are set as follows.

HS | HO H1
1D integral 0.01 | 0.001 | 0.1
Volterra, eqs. 0.1 |0.02 |05
Lorenz system | 0.02 | 0.003 | 0.3

References

(1] Ingolf Kiibler. Master’s thesis, Justus Liebig Universitdt GieBen, 6300
GieBen, West Germany, 1987.

[2] M. Berz. COSY INFINITY Version 8.1 - user’s guide and reference manual.
Technical Report MSUCL-1195, National Superconducting Cyclotron Lab-
oratory, Michigan State University, East Lansing, MI 48824, 2001. see also
http://cosy.nscl.msu.edu.

MUC-NOTE-COOL_THEORY-238 8

[3] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Func-
tions. Dover, New York, 1965, 1972. Originally published by National Bu-
reau of Standards in 1964.

[4] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes. Cambridge University Press, Cambridge, MA, 1989.

