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Long term simulations of Hamiltonian dynamical systems benefit from enforcing the symplectic sym-
metry. One of the several available methods to perform this symplectification is provided by the recently
developed theory of extended generating functions. The theory offers an infinite supply of generator
types that can be used for symplectification. Using Hofer’s metric, a condition for optimal symplectifi-
cation is given. In the weakly nonlinear case, the condition provides a generator type that, based on the
limited information available on the system, in general gives optimal results.
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Among many systems of practical interest, hadron col-
liders in the single particle approximation can be modeled
as Hamiltonian systems. It is well known that flows of
Hamiltonian systems are characterized by their symplectic-
ity [1]. One of the fundamental quantities in Hamiltonian
dynamics in general and accelerator physics in particular
is the dynamic aperture (DA), which, roughly, is the re-
gion of space containing stable particle orbits over long
times. Since usually the systems are so complex that an
exact solution is not within reach, simulations are needed
to estimate the DA [2,3]. This can be achieved by iteration
of the so-called one-turn map, i.e., Poincaré section map, of
the system. Unfortunately, only some approximation of
the one-turn map, as, for example, the order n truncation
of its Taylor series, is available [4]. While the Taylor map
preserves the symplecticity up to order n terms in the
expansion, in general it fails to be exactly symplectic. Nu-
merical simulations show that the truncation often gener-
ates inaccurate results [5]. Therefore, restoration of the
exact symplecticity of the one-turn map is desirable [6].

There are several symplectification methods [5,7,8]. In
beam physics, symplectic tracking to order three was first
implemented in the code MARYLIE [9], and to arbitrary or-
der it was first implemented in COSY INFINITY [4]. While
every method produces exactly symplectic maps, the re-
sults are not equivalent. The symplectified maps depend
on the specifics of the methods. Several examples are pre-
sented in [5] using the formalism of generating functions
of canonical transformations. For some generators, the re-
sults are not satisfactory. Therefore, it is not only impor-
tant to symplectify, but also to symplectify the right way.
The purpose of this Letter is to give a precise meaning for
how to symplectify “the right way.”

As with any approximation method, a criterion for close-
ness is needed; mathematically speaking, a suitable metric
is necessary. In our case, the metric should provide a way
to measure distances between Hamiltonian symplectic
maps, and should have some desirable properties, namely,
(1) the symplectification should work well for every
particle in a given Poincaré section, (2) the outcome of
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the symplectification should not depend on the specific
Poincaré section used, (3) the symplectification should
work just as well after any N . 1 turns as after one
turn, and (4) based on the previous three conditions,
the assessment of the optimality of the symplectification
should be unambiguous.

These conditions can be captured by the requirement
that if a symplectification method yields the best result, say
M , with respect to the metric, then the same symplecti-
fication gives the same result for the map A ± M ± A21,
the map M subjected to any symplectic similarity trans-
form A. Thus, we desire coordinate independence of the
metric. It is hoped that such special purpose metrics would
better capture the details of the dynamics than general pur-
pose metrics (as, for example, the well-known C0 met-
ric), and would give an as unambiguous as possible way
to measure distances. Therefore, mathematically speak-
ing, we would like to have a bi-invariant metric for Ham-
iltonian symplectic maps. The importance of bi-invariant
metrics has been pointed out also in [10]. The question is
whether such a metric exists at all. Indeed, existence of
such a metric is highly nontrivial over an infinite dimen-
sional noncompact Lie group, similar to the Lie group of
symplectic maps. A negative example from the field of
motion planning for robotic systems is provided by [11],
where it is shown that over the relevant Lie group, i.e.,
SE�3�, no such “natural and univocal concept of distance”
exists. Hence the results are task or designer biased.

Fortunately, there exists an outstanding metric that
satisfies our needs. It has been introduced by Hofer [12],
and has been applied in the fields of symplectic geometry
and topology [13,14]. Hofer’s metric is an essentially
unique intrinsic bi-invariant Finsler metric for compactly
supported Hamiltonian symplectic maps. Let us formalize
the definition of this metric. A symplectic map is called
Hamiltonian if it is the time one map of the flow of some
function defined on phase space. A map is said to be
compactly supported if it is the identity outside a compact
subset. Denote the space of compactly supported Hamilto-
nian symplectic maps of �2n with its standard symplectic
© 2001 The American Physical Society 114302-1
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structure by Hamc��2n�. Then for any two u,c [
Hamc��2n�, the Hofer distance between them is defined as

r�u, c� � inf
f0�u,f1�c

Z 1

0
kHtkdt . (1)

Here the infimum is taken over all smooth paths �ft�,
t [ �0, 1�, in Hamc��2n� from u to c. The norm
kHtk � supHt�z� 2 infHt�z�, z [ �2n is called the
oscillation norm, and the functions Ht are the, possibly
time-dependent, Hamiltonians generating the paths �ft�.
It is a deep and remarkable result [12] that Hofer’s metric
is a genuine bi-invariant metric, i.e., it satisfies the positive
definiteness, separation and symmetry axioms, the triangle
inequality, and for all f,u, c [ Hamc��2n� the following
holds:

r�f ± u, f ± c� � r�u, c� � r�u ± f, c ± f� . (2)

Thus it satisfies all the conditions that we wanted to obey
and can be used for our purposes.

Therefore, optimal symplectification can be character-
ized as a symplectification method that minimizes the dis-
tance in Hofer’s metric between the exact map and the
symplectified maps. That is, if the set of all possible sym-
plectification methods is denoted by S, the best result is
achieved by any symplectic map Nopt which satisfies

r�M ,Nopt� � inf
i[S

r�M ,Ni� . (3)

While being very general, there is a problem with this
formulation of the optimal symplectification, because it
is not very useful for practical computations. The reason
is that in general it is not known yet how to compute the
Hofer distance between two arbitrary maps in Hamc��2n�.
The difficulty lies in the necessity of consideration of all
the Hamiltonians generating the two maps, or equivalently,
the paths in Hamc��2n� from M to Ni. However, by the
nature of our optimality condition, we are interested only
in the maps Ni that are already close to M in some sense.
Obviously, this necessary condition can be achieved by
sufficiently increasing the degree n of the Taylor poly-
nomials Mn with which the exact maps are initially
approximated. Thus it would be sufficient if a suitable
neighborhood of M can be parametrized in such a way
that (3) becomes computable.

Indeed, this is possible in the C1 topology, utilizing the
theory of generating functions of canonical transforma-
tions, here used synonymously with symplectic transfor-
mations, symplectic maps, and symplectomorphisms. The
first results in this direction have been obtained in [15] for
Hamiltonian maps C1 close to identity and Poincaré’s gen-
erating function, and then it was extended to Hamiltonian
maps C1 close to identity and all compactly supported gen-
erating functions in [16] and [13]. While the approach of
[16] is more general, as it holds on any symplectic mani-
fold, we are interested only in �2n, and the method of [15]
lends itself more easily to generalizations. The main idea is
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to replace the Hamiltonian maps by their generating func-
tions and try to express Hofer’s metric between two maps
as some norm of the difference of their generating func-
tions. In [15] this was proven to be possible. However,
in the recently developed extended theory of generating
functions [5,17] it was shown that in fact there exist un-
countably many generator types for any symplectic map.
To give a precise definition, we need to introduce some no-
tations. Denote the unit matrix of appropriate dimension
by I, the identity map by I , and the matrix of the standard
symplectic form by

J �

µ
0 I

2I 0

∂
. (4)

A scalar function F is called the generating function of
type a of a given symplectic map M if

�=F�T �

∑
a1 ±

µ
M

I

∂∏
±

∑
a2 ±

µ
M

I

∂∏21

, (5)

where a � �a1, a2�T satisfies

���Jac�a����T

µ
0 I

2I 0

∂
���Jac�a���� � m

µ
J 0
0 2J

∂
, (6)

and m is some nonzero real constant. It can be shown
[5] that if (5) is solved for M , any arbitrary sufficiently
smooth F yields a symplectic map. Furthermore, it also
can be shown that the time evolution of each generator
type is given by the following generalized Hamilton-Jacobi
equation [17,18]:

≠

≠t
Ft ± a2 ±

µ
Mt

I

∂
� mHt ±Mt . (7)

Finally, using the main result of [19], and introducing a
map Fa that sends a symplectic map into its generating
function F of type a, we proved that Fa is an isometry.
That is,

r�M ,N � �
1
jmj

kFa�M � 2 Fa�N �k

�
1
jmj

kF 2 Gk , (8)

for any type a, as long as the generating function of type
a exists for both symplectic maps [17]. This is a local
statement in the sense that, although global generators
exist for any symplectic map, the same type of generators
exists for symplectic maps that are close enough to each
other [17].

Now we are ready to transfer the problem of solving (3)
to solving

r�M ,Nopt� � inf
i[S

1
jmj

kFa�M � 2 Fa�Ni�k . (9)

Denote Fa�M� � Fa. Unfortunately, Fa is unknown,
and to minimize the right-hand side of (9), a good approxi-
mation of Fa is needed. All the information about the
system that is available in practice is contained in Mn.
This entails that, with some a priori fixed a, the best
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approximation for Fa is obtained by solving as accurately
as possible (5). The necessary operations of truncated map
computation, map composition and order m inversion, and
integration are readily available in the code COSY INFINITY

[4], and, as a consequence, the order m Taylor expansion
of Fa , Fa

m, can be easily obtained. Then, it follows that
the best result is achieved by the symplectic map Nopt

which satisfies

r�M ,Nopt� � inf
a[S

1
jmj

kFa 2 Fa
mk , (10)

where Fa�Ni� � Fa
m . Apparently, minimization of the

right-hand side of (10) is equivalent to the choice of the
generating function type that achieves this minimization. It
is worthwhile to note that, due to the one-to-one correspon-
dence between generating functions of a fixed type and
symplectic maps, r�M ,Nopt� . 0 always, which means
that the true solution can never be recovered by symplec-
tification. Therefore, the differences among symplectifica-
tion methods are caused by the truncation of the generating
functions. However, Fa

m is the most that can be computed
in practice. The remaining question is that, based on this
limited information, which generator type will give the best
results in general? To answer this question we need to
pick a generator type, or equivalently an a, that minimizes
kFa 2 Fa

mk�m. Again, for an arbitrary M this turns out
to be a difficult problem, because in general nonlinear a’s
would be required, and it is difficult to construct nonlinear
maps that satisfy (6). For weakly nonlinear systems, such
as accelerator physics applications, this turns out to not be
a problem since the maps of interest are in general weakly
nonlinear maps around equilibrium points. For these types
of maps linear choices of a are sufficient, which simplifies
the construction of generating functions. Also, in principle
any nonlinear Hamiltonian map can be split into a compo-
sition of Hamiltonian maps which are only weakly nonlin-
ear. Therefore, the final step is to find the linear a, such
that kFa 2 Fa

mk�m is minimized in general.
One of the main results of [5] is that the set of lin-

ear maps satisfying (6) can be organized into equivalence
classes, meaning that for symplectification purposes the
following are the only independent generator types:

a �

µ
2JM21 J

1
2 �I 1 JS�M21 1

2 �I 2 JS�

∂
, (11)

where M is the linear part of M , and S represent arbi-
trary symmetric matrices. For a given M with linear part
M, the classes characterized by some symmetric matrix S
is denoted by �S�. We note that M is know from Mn,
and m � 1 for every a from (11). Thus optimal sym-
plectification is map dependent; that is, there is a different
optimal symplectification for every symplectic map hav-
ing a different linear part. Then, which class �S� gives the
optimal symplectification for symplectic maps having the
same linear part? To answer the question, it is observed
that for the requirement of minimization of kFa 2 Fa

mk,
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minimization of kFak is sufficient. Indeed, if we require
Fa to be small, it follows that the tail Fa 2 Fa

m will also
be small, because otherwise there must be cancellation of
large terms in the Taylor expansion of Fa . However, as
will be shown now, this cannot happen due to the fact that
C0 smallness implies C1 smallness.

To this end, notice that, with the notations ẑ � M�z�
and w � a2�ẑ, z�, (5) can be expressed as

=wFa�w� � a1�ẑ, z� . (12)

Integration, which can be along an arbitrary path according
to Stokes’ theorem, gives

Fa�w� �
Z w

0
a1�ẑ, z� ? dw 0. (13)

Taking norms on both sides of the equation the following
estimate is obtained:

kFa k # max
z[�2n

ja1�ẑ, z�j ? max
z[�2n

ja2�ẑ, z�j

�

Ü
a1 ±

µ
M

I

∂ Ü
?

Ü
a2 ±

µ
M

I

∂ Ü
. (14)

It is rather straightforward to check from (5) and (11) that

a1�ẑ, z� � 0 1 O �z2� , (15)

a2�ẑ, z� � I ? z 1
1
2

�I 1 JS� ? O �z2� . (16)

From these equations it can be inferred that indeed C0

smallness implies C1 smallness.
Therefore, a1�ẑ, z� is already small if M is weakly non-

linear, and its norm does not depend on the type of gen-
erating function. Hence, minimization of kFak in the end
is equivalent to minimization of I 1 �I 1 JS��2 ? O �z2�.
The only free parameter is the symmetric matrix S. Be-
cause the O �z2� comes from the nonlinear part of the sym-
plectic map M , a simple calculation shows that S � 0
is the best choice if M is allowed to be free [17]. With
this result, it can be concluded that the optimal symplecti-
fication is achieved by the class of generators �S� obeying
S � 0, and associated with the following a:

aopt �

µ
2JM21 J

1
2 M21 1

2 I

∂
. (17)

Interestingly enough, it turns out that if in aopt the lin-
ear part M is replaced with the unit matrix I, the result-
ing matrix gives a valid generator type, which exists for
symplectic maps close enough to identity. It was first
used by Poincaré in the restricted three body problem for a
completely different purpose [20], and is hence called the
Poincaré generating function. Our aopt can be regarded
as a dynamically adjusted Poincaré generator, to symplec-
tic maps not having identity as linear parts. That is why
we call it the extended Poincaré (EXPO for short) gen-
erating function type. Finally, the best symplectified map
Nopt, in the sense presented in this Letter, is obtained if the
114302-3
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FIG. 1. 1000 turn tracking of a random two dimensional sym-
plectic map with (a) the 19th order Taylor map (considered to
be essentially the exact result), (b) with the 11th order Taylor
map, (c) with the symplectified map obtained by symplectiying
the 11th order Taylor map with F1, and (d) with the symplecti-
fied map obtained by symplectiying the 11th order Taylor map
with EXPO.

symplectification is performed using the EXPO generator
type, i.e.,

Nopt � NEXPO . (18)

The method for optimal symplectic tracking (EXPO) has
been implemented in the code COSY INFINITY [5]. A few
examples of EXPO can be found in [2,3,5,21]: specifi-
cally, muon accelerators, and the standard test problem of
an anharmonic oscillator. Here another example is pre-
sented to illustrate its performance. To test EXPO, various
random two dimensional truncated symplectic maps have
been generated from random functions taken as Hamilto-
nians. The maps have been computed to very high orders
(around 20); so for practical purposes they can be con-
sidered as the “exact” solutions. Then, using EXPO, the
symplectified map has been computed from lower order
approximations. In Fig. 1 a typical seed is presented. It
is apparent that EXPO predicts the behavior of the exact
map under iteration already at order 11, while the order
11 truncated Taylor map and the best of the conventional
generator types (F1 in this case) fail to do that. Similar
conclusions can be drawn from other random seeds too.

In summary, using Hofer’s metric, a condition for op-
timal symplectification was given. After a few manipu-
lations, Hofer’s metric for Hamiltonian symplectic maps
was expressed in terms of associated generating functions.
Therefore, finding the best symplectified map turned out
to be equivalent to finding the appropriate generator type.
It was shown that the generator type which satisfies the
optimality condition in general is given by (17), and it
was called the EXPO type. Consequently, the symplectic
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map NEXPO, obtained by symplectification of Mn using
EXPO, will give the best results in general. We mention
that this result does not exclude the existence of custom
tailored generator types that give better results for specific
symplectic maps. Finally, while the results obtained in this
Letter have been derived with accelerator physics motiva-
tion in mind, their relevance goes beyond beam physics
and directly applies to any other weakly nonlinear prob-
lem in Hamiltonian dynamics.
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