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Abstract: Poincaré maps often prove to be invaluable tools in the study of long-term behaviour and
qualitative properties of a given dynamical system. While the analytic theory of these maps is fully
explored, finding numerical algorithms that allow the computation of Poincaré maps in concrete problems
is far from trivial. For the verification it is desirable to approximate the Poincaré map over as large a
domain as possible. Knowledge of the flow of the system is a prerequisite for any computation of Poincaré
maps. Taylor model based verified integrators compute final coordinates as high-order polynomials in
terms of initial coordinates, with a small remainder error interval which typically is many orders of
magnitude smaller than the initial domain. We present a method to obtain a Taylor model representation
of the Poincaré map from the original Taylor model flow representation. First a high-order polynomial
approximation of the time necessary to reach the Poincaré section is determined as a function of the
initial conditions. This is achieved by reducing the problem to a non-verified polynomial inversion. This
approximate crossing time is inserted into the Taylor model of the time-dependent flow, leading to an
approximate Poincaré map. A verified correction is performed heuristically which provides a rigorous
enclosure of the Poincaré map.
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1 Introduction

Poincaré maps are a standard tool in general dy-
namical systems theory to study qualitative prop-
erties of a continuous dynamical system under con-
sideration (e.g. the flow generated by an ordi-
nary differential equation), most prominently the
asymptotic stability of periodic or almost periodic
orbits. The traditional notion of a Poincaré map
is that it describes how on a plane S (the Poincaré
section) transversed by a periodic orbit O (the ref-
erence orbit) points which are sufficiently close to
O∩S get mapped back onto S by the flow. The two
key benefits in this approach are that long-term
behaviour of the flow close to O can be analyzed
through the derivative of the Poincaré map at the
intersection point of S and O, which is available
after just one revolution of O, and that the dimen-
sionality of the problem has been reduced by one
since the Poincaré map is defined on S and neglects

the ‘trivial’ direction of the flow perpendicular to
the surface.

We will actually consider a somewhat general-
ized notion of Poincaré maps, by dropping the re-
striction that the flow exhibits a periodic reference
orbit. Assuming we are given a smooth surface in
phase space, the Poincaré section S, and an initial
condition X0 for the flow such that the orbit orig-
inating at X0 actually transverses the section S at
some crossing time, then by a Poincaré map we
understand a map that projects all flows originat-
ing in a neighborhood of X0 directly to the section
S.

One is faced with the question which numerical
representations of a flow are particularly favorable
in the sense that they easily allow the computa-
tion of corresponding Poincaré maps for a given
reference orbit and Poincaré section. In this paper
we present a method that yields both polynomial



approximations of Poincaré maps of a certain type
as well as their verification, i.e. a rigorous interval
enclosure of the true map. The method assumes
that a (verified) high-order polynomial approxima-
tion of the flow has been obtained previously using
differential algebraic (DA) and Taylor model (TM)
methods as described in [1, 4]. We focus on the
case where the flow under consideration has been
generated by an ODE.

The key question that will be discussed is how
to project a domain box exactly to a given surface.
If we recall that the flow representation in DA- or
TM-arithmetic yields final coordinates in terms of
initial coordinates, the key step will be to express
the crossing time as a function depending on said
initial conditions and insert it into the flow.

2 Review: DA- and TM-Tools
The DA- and TM-tools which are necessary to ap-
preciate the method are described in detail in [1, 4].
Here we review briefly the most important appli-
cations of DA/TM-methods as far as they relate
to the problem discussed here: the DA-integration
method employed to obtain high-order polynomial
approximations of the flow ϕ(x0, t), the verifica-
tion technique which finds rigorous interval enclo-
sures for ϕ(x0, t) and the functional inversion tools
which are necessary in later steps of the algorithm.

2.1 DA-integration of ODEs
First we tackle the problem of obtaining a poly-
nomial approximation of the solution of the initial
value problem

ẋ(t) = f(x(t), t), x(0) = X0 + x0 (1)

where f : Rν+1 ⊃ Uopen −→ Rν is defined for
DA-vectors (see below), i.e. f is a composition
of intrinsic functions which have been defined in
DA-arithmetic. This also entails that f exhibits
sufficient smoothness to guarantee existence and
uniqueness of solutions for all initial conditions.
The vector X0 ∈ Rν is constant and the mid-
point of the domain box D = X0 + [−d1, d1] ×
... × [−dν , dν ] ⊂ Rν for the small relative initial
conditions x0 ∈ D. Typical box widths di are of

the order 10−2 to 10−8. We remark that for the
sake of simplicity, we will refer to the flow of the
system as ϕ(x0, t) instead of ϕ(X0 + x0, t), since
X0 is just the constant part of the initial value
x(0) and the actual interesting aspect is the de-
pendence of the flow on the initial displacement
x0. Also, we will use the name ϕ(x0, t) for both the
flow and its numerical representation (in DA- and
TM-arithmetic respectively), it will be clear from
the context which notion is meant. The desired
polynomial approximation ϕ(x0, t) of the flow of
eq.(1) is an expansion in terms of the independent
time coordinate t and the relative initial conditions
x0, and the representation of this approximation is
a so-called DA-vector which stores the expansion
coefficients up to a prespecified order n in a struc-
tured fashion.

To achieve the aforementioned goal, we recall
that the standard procedure of a Picard iteration
yields a polynomial approximation of the solution
of (1) after repeated application of a Picard op-
erator on the initial conditions. The iteration in
general increases the order of the expansion by at
least one in every step, and since a DA-vector can
store coefficients up to order n, we see that the it-
eration converges after finitely many steps in the
DA-case (for details see [1]).

The Picard-operator in the DA-computation is
defined by

C(.) := (X0 + x0) + ∂−1
ν+1f(.) (2)

where f is computed in DA-arithmetic and ∂−1
ν+1is

the antiderivation operator, essentially the integra-
tion with respect to the (ν + 1)st variable t. It
can now be shown that C is a contracting opera-
tor (with a suitable definition of a contraction, see
[1]) and fixed-point theorems exist which guaran-
tee that repeated application of C on the initial
condition x(0) = X0 +x0 will converge to the DA-
vector representation of the solution ϕ(x0, t) of (1)
in n + 1 steps, where n is the order of computa-
tion. Subsequently the step-size of the integration
step is inserted as the final time to eliminate the
time-dependence and yield final coordinates only
in terms of initial coordinates.



2.2 Taylor model verified integration of
ODEs

Verification of the previously obtained DA-
vector representation of the ODE-flow is per-
formed with the full time-dependence of the so-
lution, prior to the insertion of the stepsize. As-
suming we have obtained such a DA-vector repre-
sentation of the flow for one time step, it is now
necessary for the verification to outfit this poly-
nomial in time t and initial conditions x0 with a
rigorous remainder interval vector which encloses
the true flow in a verified fashion.

The procedure to achieve this goal is ex-
plained in detail in [4]. Apart from being based
on educated heuristics, it rests fundamentally on
Schauder’s fixed point theorem, which states that
for a continuous operator A on a Banach space X
a unique fixed point for A exists in any compact
convex set M ⊂ X if only A(M) ⊂ M . Moreover,
the sequence An(m) converges to the fixed point
as n → ∞ for arbitrary m ∈ M . Applied to the
problem at hand, this means that for an interval
vector I the true flow of the ODE is contained in
the Taylor model ϕ(x0, t) + I exactly if

C(ϕ(x0, t) + I) ⊂ ϕ(x0, t) + I,

where C is again the Picard operator, but evaluated
in TM-arithmetic. Note also that the polynomial
part stored in the DA-vector ϕ(x0, t) stays invari-
ant. We proceed iteratively to find such an I. A
first guess about the interval vector size needed to
satisfy the inclusion property is obtained by eval-
uating

C(ϕ(x0, t) + [0, 0]) = ϕ(x0, t) + I∗

and setting I(1) := I∗. If

C(ϕ(x0, t) + I(1)) ⊂ ϕ(x0, t) + I(1),

we are done. If not, choose I (k) ⊃ I(k−1), say
I(k) := 2k · I(1), until

C(ϕ(x0, t) + I(k)) ⊂ ϕ(x0, t) + I(k).

Once this is satisfied for some k, we have es-
tablished the existence of a fixed point of C in
ϕ(x0, t) + I(k) according to Schauder and can pro-
ceed to sharpen the remainder bound I (k) by re-
peated application of C until the remainder bound
has converged sufficiently. Again subsequently the
stepsize is inserted for the time dependence.

2.3 Functional inversion using DA-
arithmetic
Next we review the actual functional inversion em-
ployed to obtain the inverse M−1 of a function
M, or rather a DA-vector which stores the expan-
sion coefficients of M−1 up to order n. Assume
we are given a smooth map M : Rν −→ Rν s.t.
M(0) = 0 and its linearization M is invertible at
the origin. This assures the existence of a smooth
inverse M−1 in a neighborhood of the origin. If
we write M =M+N , where N is the nonlinear
part, and insert this into the fundamental condi-
tion M◦M−1 = I, we easily obtain the relation

M−1 = M−1 ◦ (I −N ◦M−1)

and see that the desired inverse M−1 is a fixed
point of the operator D(.) := M−1 ◦ (I −N◦.),
which proves to be a contracting operator in the
DA-picture (see [2]). Hence the existence of the
fixed point M−1 of D is verified and M−1can be
obtained through repeated iteration of D, begin-
ning with the identity I. Also in this case the
iteration converges toM−1 in at most n+ 1 steps
(n is the computation order).

3 Computation of the Taylor Ap-
proximation
The first step we perform in order to find a Tay-
lor model for the Poincaré map is to compute its
Taylor polynomial part. This computation will be
performed entirely in the DA-framework, i.e. with-
out verification. It will prove possible to outfit the
resulting polynomial with a rigorous error bound
in a post-correction step.



3.1 Preliminary remarks

3.1.1 Reduction of the problem
We begin our discussion with the assumption that
the ODE under consideration exhibits a periodic or
almost periodic solution ϕ(X0, t) which starts on a
suitable Poincaré section S and returns after a pe-
riod T , which has been determined approximately
e.g. by a high-order Runge-Kutta-integration.

We assume that we are given a suitable
Poincaré section S (see next section for details)
and that the flow ϕ(0, t) originating at the initial
condition X0 crosses this section at the crossing
time T . This crossing time needs to be known to
high accuracy (however, a non-verified result for
T is sufficient) and we assume that it is known.
Typically the computation of T can be formed as
a scalar constraint satisfaction problem and can be
solved by standard algorithms for the solution of
nonlinear systems.

Since tools for the verified integration of ODEs
are available (as described in the previous section),
the propagation of a domain box X0 + D, where
D := [−d1, d1] × ... × [−dν , dν ], through the time
interval [0, T ] is merely a technicality and we as-
sume that it has been performed until the last time
step.

The interesting question of how this trans-
ported box can be projected to S only becomes
apparent in this last step. Since it is intuitively
clear that the time dependence of the TM-solution
for the flow is necessary to perform this projec-
tion, we do not perform the usual insertion of the
time-stepsize into the time dependence, but in-
stead keep the full time expansion for this last time
step at T .

3.1.2 Treatable types of sections
We want to consider as large a class of surfaces as
Poincaré sections as possible. A suitable assump-
tion is that the Poincaré section S ⊂ Rν is given
implicitly in terms of a function σ : Rν −→ R as
S := {x ∈ Rν : σ(x) = 0}. Since the function σ
also needs to be expressed in terms of elementary
functions available in the computer environment
for DA/TM-arithmetic, it is necessarily smooth,
and hence also the surface S. This contains most

surfaces which are of practical interest, in partic-
ular the most common case where S is an affine
plane of the form S := {x ∈ Rν : x1 = c} where
without loss of generality the first component x1

of the vector x is set to the fixed value c ∈ R; here
σ(x) = x1 − c.

3.1.3 Transversality of the flow
Another condition which needs to be met by S is
that the flow is transversal to it for all possible
initial conditions x0 ∈ D, i.e. that

0 /∈ (∇σ(ϕ(x0, t)), f(ϕ(x0, t))) ∀x0 ∈ D.

Without this assumption a Poincaré map cannot
be defined meaningfully, since for its definition the
existence of a uniquely defined crossing time for
each initial condition is required. However, for our
method this question can be neglected. It is be-
cause in the ‘pathological’ case that the vectorfield
is in the tangent space of the surface at any point,
the functional inversion step described in the fol-
lowing will fail anyway.

3.2 Projection of the domain box to the
section
The starting point of our discussion is that we have
a Taylor model enclosure ϕ(x0, t) + Iϕ of the flow
at the time T , the crossing time of the reference
orbit, where Iϕ is a TM remainder error interval of
the flow ϕ. Furthermore ϕ(x0, t) + Iϕ still contains
the dependence of the time-expansion around T .

Let tl and tu > tl be times such that at tl
the transported domain box has not yet crossed
S and that at tu the entire transported box has
crossed the section. These times should be roughly
of the dimension of the stepsize at the final step
and the crossing condition can be checked using
various range bounding tools as in [5, 6]. Then
the interval [tl, tu] contains a unique crossing time
tc(x0) ∀x0 ∈ D determined by the geometry of S
and the flow (or the vectorfield of the ODE, re-
spectively). From a purely analytic standpoint,
the existence of such a crossing time near the ref-
erence orbit is only guaranteed locally, however in
practice usually D is small and both the flow and



S are somewhat well-behaved, and then tc(x0) ex-
ists globally on D. This is again related to the
question of transversality, if the crossing time does
indeed not exist globally the inversion explained in
the subsequent paragraphs will fail.

The construction of the projection (and thus
Poincaré map) enclosure P(x0)+IP can be re-
duced to the construction of a Taylor model for
tc(x0) + Itc for the crossing time. If we succeed
in doing this, then P(x0)+IP can be easily found
simply by insertion of the crossing time into the
flow

P(x0)+IP := ϕ(x0 + [0, 0], tc(x0) + Itc) + Iϕ.

We note that from now on in this section all
computations are performed in the nonverified DA-
framework and proceed by constructing an artifi-
cial DA-valued function ψ(x0, t) with components
ψk(x0, t) from the function x0 with components
x0,k via

ψk(x0, t) := x0,k ∀ k ∈ {1, ..., ν}
ψν+1(x0, t) := σ(ϕ(x0, t))

where the indices k denote components of the re-
spective vectors.

Note that only the polynomial part ϕ(x0, t) of
the Taylor model solution is used. To get an idea
how the construction of ψ comes about, we remark
that a functional inversion step is expected because
of the implicit occurrence of the tc(x0) in the prob-
lem, and hence ψ needs to map between spaces
of equal dimension. Furthermore tc(x0) depends
on the variables x0 and is determined by the con-
straint condition

σ(ϕ(x0, tc(x0))) = 0 (3)

and ψ contains both the constraint condition (3)
and the independent variables x0 as simple identi-
ties. Because of (3) tc(x0) satisfies

ψ(x0, tc(x0)) = (x0, 0)

and suppose ψ is invertible then we can evaluate

ψ−1(x0, 0) = ψ−1(ψ(x0, tc(x0))) = (x0, tc(x0))T

and immediately extract the DA-vector represen-
tation of tc(x0) in terms of the x0 in the last com-
ponent. In this case the invertibility of ψ at the
point (x0, tc(x0)) is actually guaranteed (at least
in an analytic sense) by the condition of transver-
sality.

We can now employ the previously described
DA inversion tools to manipulate ψ and obtain the
inverse ψ−1. Naturally, because of the identities in
ψ, also ψ−1 will preserve these identities and hence
only the component ψ−1

ν+1(x0, 0) is nontrivial.

3.3 Summary of the algorithm for the
Taylor approximation of the Poincaré
map
We conclude the first part of the method by sum-
marizing the algorithmic steps:

(1) Perform a verified transport of the initial do-
main box X0 + D for one cycle using polynomial
expansion in time and initial conditions.
(2) Keep the time-expansion in the last time step
at T .
(3) Find interval enclosure It := [tl, tu] for all cross-
ing times tc(x0), x0 ∈ D.
(4) Set up and invert the auxiliary function ψ us-
ing DA functional inversion to obtain a DA-vector
representation of ψ−1.
(5) Obtain tc(x0) := ψ−1

ν+1(x0, 0).
(6) Obtain the projection P(x0) := ϕ(x0, tc(x0)).

4 Verification

4.1 Preliminary remarks
In the following we present a technique of finding a
rigorous remainder bound for the truncation error
of the polynomial approximation of the Poincaré
map, which we have obtained in the previous sec-
tion.

We remark that methods have been developed
that allow to find Taylor model enclosures of the
inverse function directly from a Taylor model for
a function (see [2]), which would directly lead to
a Taylor model enclosure of the crossing time if
applied to a Taylor model extension of ψ(x0, t)



in the previous section. However, these inversion
techniques are much harder to implement than the
method presented here.

Furthermore, for many applications the verifi-
cation is actually not required and in those cases
the nonverified method described above is satisfac-
tory. The computation can be sped up by perform-
ing all TM-operations simply in the DA-framework
and completely ignoring the remainder bounds.

As already noted, the verification of the
Poincaré map automatically follows if we are able
to find a verification for the crossing time tc(x0).
Recall that in the box D × It the polynomial ap-
proximation of the crossing time models the so-
lution manifold of points (x0, t) ∈ D × It which
satisfy σ(ϕ(x0, t)) = 0. The verification consists in
finding a remainder bound which, if added to the
polynomial tc(x0), rigorously encloses the full part
of the manifold which intersects D × It.

For the purpose of verification we now also need
a verified Taylor model representation of the con-
straint condition, i.e. in this case the parameteri-
zation of the section S. In other words, the func-
tion σ by the means of which the section is given
implicitly needs to be enclosed in a Taylor model

σ(x0) + Iσ := σ(x0,1 + [0, 0], ..., x0,ν + [0, 0])

where the right hand side of the last equation is
evaluated in Taylor model arithmetic.

4.2 Heuristic enclosure of tc(x0)
We attempt to verify tc(x0) in a heuristic manner
by simply making an educated guess about the
form of this remainder bound, based on the fact
that its magnitude can roughly be estimated by
evaluating σ(ϕ(x0, tc + [0, 0])) + Iσ over all x0 ∈ D
using Taylor model range bounding techniques.

Pick random numbers ε
(1)
u , ε

(1)
l ≥ 0 and con-

struct a remainder bound [−ε(1)
l , ε

(1)
u ] for tc. The

verification argument hinges on the fact that if we
scan the complement C := C+ ∪ C− := (D ×
It)\{tc(x0) + [−ε(1)

l , ε
(1)
u ] : x0 ∈ D} which lies

‘above’ and ‘below’ the set {tc(x0) + [−ε(1)
l , ε

(1)
u ] :

x0 ∈ D} and can verify that the constraint
σ(ϕ(x, t)) = 0 is violated there, then the feasible

set of all crossing times which satisfy the constraint
must be contained in the Taylor model tc(x0)+

[−ε(1)
l , ε

(1)
u ] and thus [−ε(1)

l , ε
(1)
u ] is indeed a rigor-

ous enclosure of the remainder error. If this is not
the case, choose ε

(2)
u > ε

(1)
u and ε

(2)
l > ε

(1)
l and re-

peat the construction. So the only condition that
needs to be checked is

0 /∈ σ(ϕ(C)) + Iσ,

compare also figure 1.

This test can be performed by parameterizing
the two disjoint parts C± of C in TM-arithmetic
by the variables (x0, t

±(x0, y)) where

t+(x0, y) = (tc(x0) + ε(1)
u )

1 + y

2
+ tu

1− y
2

(4)

t−(x0, y) = (tc(x0)− ε(1)
l )

1 + y

2
+ tl

1− y
2

and then perform a range bounding of the two Tay-
lor models

σ(ϕ(x0,1 + [0, 0], ..., x0,ν + [0, 0], t+(x0, y))) + Iσ

σ(ϕ(x0,1 + [0, 0], ..., x0,ν + [0, 0], t−(x0, y))) + Iσ

over the set (x0,1, ..., x0,ν , y) ∈ D × [−1, 1] for the
scanning of C± respectively.

One might ask why we choose such a some-
what awkward parameterization (4) for the C± in
terms of the variables x0,1, ..., x0,ν , y. This is a pe-
culiarity of our computing environment. In princi-
ple it is arbitrary by which means we perform the
range bounding in expression (4). However, we use
the package COSY INFINITY [3] for our computa-
tions, which fully supports DA-arithmetic, interval
arithmetic, and TM-arithmetic as well as the rigor-
ous accounting for round-off and threshold errors.
The range bounding necessary in (4) can be eas-
ily performed using Taylor model arithmetic (see
[5, 6]) in COSY INFINITY, however fully rigor-
ous error-handling in Taylor model range bounding
is performed most efficiently if all involved Taylor
models have the domain [−1, 1] for each of their
expansion variables. COSY INFINITY also can
automatically rescale all Taylor models internally
in such a way that they are defined on the domain
[−1, 1]ν+1, but for the parameterization (4) we can



easily satisfy this requirement by hand calculation
and prefer to do so.
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Figure 1: Domain box D × It, solution manifold (grey line), Taylor model tc(x0)+ [−εl, εu] (white), and
complements C± (grey region).


