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a b s t r a c t

Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges

for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing

in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such

cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum

depending on the specific chosen initial conditions. Practical solutions are then obtained through an often

extended interplay of experienced manual adjustment of certain suitable parameters and local searches by

varying other parameters.

However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the

determination of all solutions within a certain range of parameters that lead to a specific optimum. For example,

it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find

ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust

nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms

of such an optimization problem; but while mathematically this formulation is often straightforward, it has

been common belief that it is of limited practical value since the resulting optimization problem cannot usually

be solved.

However, recent significant advances in modern methods of rigorous global optimization make these

methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous

local underestimators of the objective functions, and by using the underestimators to rigorously iteratively

eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a

branch-and-bound approach.

Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of

aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence,

the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried

out particularly effectively. The end result is the rigorous determination of the single or multiple optimal

solutions of the parameter optimization, regardless of their location, their number, and the starting values of

optimization.

The methods are particularly powerful if executed in interplay with genetic optimizers generating their new

populations within the currently active unpruned space. Their current best guess provides rigorous upper

bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its

performance will be presented, including the determination of all operating points of desired tunes or

chromaticities, etc. in storage ring lattices.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The Differential Algebraic method has been successful for the
description of weakly nonlinear systems, and has been utilized to
compute high order transfer maps of various kinds of systems in beam-
and particle optics. In addition to the computation of maps, the method
ll rights reserved.

of Energy.
also enables various algorithms to analyze such systems efficiently [1].
Its first implementation was in the code COSY INFINITY [2–4], and it is
now used in a wide variety of other codes as well [5–11]. Considering
the method of Differential Algebras allows the computation of Taylor
expansions on computers, one of the natural extensions is to consider
the errors of the expansion, which can be captured in terms of the
Taylor remainder. It is possible to obtain bounds of remainder errors on
computers, and the method of remainder enhanced Differ-
ential Algebras, also called the Taylor model method [12–15], has
been developed as an enhancement to the framework of Differential
Algebras.
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The method has broad applications, and this paper covers one of
them, namely the use for rigorous global optimization. Enhanced
by the remainder error bound, the method naturally allows to
obtain bounds of a function of interest. The next section reviews the
Taylor model method, followed by a section discussing some
function range bounding schemes, leading to a realization of a
rigorous global optimization algorithm. We will demonstrate the
performance of the rigorous global optimization using the Taylor
model method, first using small but difficult examples, and then
showing practical problems that may be encountered in common
computations in beam optics and in any other fields.
2. The Taylor model method

We begin with the definition of the Taylor model, which
combines the Taylor expansion at a given reference point with
an enclosure for the remainder error over a domain.

Definition 1 (Taylor model). Let f : D� Rv-R be a function that is
(n+1) times continuously partially differentiable on an open set
containing the v-dimensional domain D. Let x0 be a point in D and P

the n-th order Taylor polynomial of f around x0. Let I be a bound
interval such that

f ðxÞAPðx�x0Þþ I for all xAD: ð1Þ

Then we call the pair (P,I) an n-th order Taylor model of f around x0

on D.

To relate to the Differential Algebraic method, the polynomial P

is the n-th order Differential Algebraic vector to represent f around
x0, and the deviation of f from P is confined between the lower and
the upper bound of I over D, thus the Taylor model (P,I) forms two
hypersurfaces P+ I that encloses f on D rigorously. We proceed to
define the arithmetic in Taylor models.

Definition 2 (Addition and multiplication). Let T1,2¼(P1,2,I1,2) be
n-th order Taylor models around x0 over the domain D. We define

T1þT2 ¼ ðP1þP2,I1þ I2Þ

T1 � T2 ¼ ðP1�2,I1�2Þ

where P1�2 is the part of the polynomial P1 � P2 up to order n and

I1�2 ¼ BðPeÞþBðP1Þ � I2þBðP2Þ � I1þ I1 � I2

where Pe is the part of the polynomial P1 � P2 of orders (n+1) to 2n

and B(P) denotes a bound of P on the domain D.

These operations allow the computation of Taylor models for
sums and products of two functions f and g from the Taylor models
of f and g [12]. With addition and multiplication defined on Taylor
models, one can now also define intrinsic functions for the Taylor
models by performing various manipulations. Refer to Refs. [12,13]
to see how to employ manipulations for each intrinsic function to
achieve computed remainder bounds of sufficient sharpness.
Finally it is straightforward to obtain an integral of a Taylor model,
because obtaining the integral with respect to variable xi of P is
straightforward, thus we have an antiderivation operation @�1

i in
the Taylor model arithmetic as well.

As introduced, the method has the following properties. It
provides enclosures of any function given by a finite computer
code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order (n+1) of the width of the domain.
It alleviates the dependency problem in the calculation [16,17], and
it scales favorable to higher dimensional problems.

A realization of Taylor models and the arithmetic has been
implemented in the code COSY INFINITY [3], first released in version
8 [18], and followed by adding improvements and more advanced
algorithms. The implementation is intimately tied to that of the
Differential Algebras in COSY INFINITY, hence all the advantageous
features in the Differential Algebras package such as the sparsity
support and the efficient coefficient addressing scheme are inherited to
the Taylor model implementation [19], making it a realistic device to
study practical problems as we will show in some examples. Another
advantageous feature in the implementation is to have the Taylor
coefficients adhere to floating point numbers. This has practical
benefits starting from the smooth connection between the Differential
Algebras and the Taylor models, as well as the applicability of some
powerful algorithms such as Differential Algebra fixed point solvers
and some others [1]. However, it requires careful handling of errors
associated to floating point numbers to maintain mathematical rigor
and correctness of the arguments.

As a method to obtain rigorous estimates, interval arithmetic
has been known (see for example Refs. [17,20,21]). While providing
rigorous estimates, the method suffers from some practical diffi-
culties such as the dependency problem [16], leading to over
estimations to the extent that the estimates may be rigorous but at
times practically useless. The Taylor model implementation in
COSY INFINITY has succeeded in obtaining rigorous estimates with
a minor additional computational cost, based on the superb
performance of the Differential Algebras in the code.

The first natural application of the Taylor model method is range
bounding of a given function f over a sufficiently small domain D.

In fact, if the remainder bound I of the Taylor model (P,I) over D is
sharp enough, even crudely bounding P by merely evaluating it in
interval arithmetic serves the purpose often [16] and others will be
briefly discussed below. As a natural consequence of these boun-
ders, it is possible to develop methods for rigorous global optimi-
zation, based on iteratively decomposing the domain of interest
until sub-regions can be shown to produce function values lying
above an already established upper bound of the minimum, and
then discarding these regions. The availability of the antiderivation
@�1 in the arithmetic leads to applications such as rigorous ODE
solvers for the flow [22–24], to obtain transfer maps with error
estimate [14,15]. Other algorithms can be realized, and for details
of the method and the implementation, refer to, for example,
Refs. [12,13].
3. Bounds and rigorous global optimization using Taylor
models

As mentioned, the simplest method of function range bounding
using the Taylor model method is to evaluate P in interval
arithmetic and add the remainder bound I, and there are various
methods based on this approach [12]. However, the exact definition
of the Taylor models (1) suggests the immediate availability of
richer information on the function f that enables more sophisti-
cated schemes for range bounding.

The behavior of a function f is characterized primarily by the
linear part, where the accuracy of the linear representation increases
as the domain of interest becomes smaller, except when there is a
local extremum, in which case the quadratic part becomes the
leading representative of the function. Since Taylor models have
linear and quadratic terms explicitly as coefficients of P, there is no
need for further efforts to obtain them. This is a significant advantage
of Taylor models compared to other rigorous methods like the
interval method that does not have any automated mechanism to
obtain such information.

The idea leads to some Taylor model-based range bounders, first
utilizing the linear part, second utilizing the quadratic part [12], and
even utilizing the full Taylor polynomial up to the n-th order. Among
them, the Linear Dominated Bounder (LDB) [12,25,26] and the Quad-
ratic Fast Bounder (QFB) [25,26] are practically economical while
providing excellent range bounds [13,25,26]. Both bounders are



Table 1
The minimum search of the function (2).

Algorithm Guarantee Steps Min

Simulated Annealing No 1000 ��1

Simplex No 130 ��1

LMDIF No 27 � 0

COSY-GO, IN(1) Yes 161 1:708
16

COSY-GO, IN(2) Yes 7699 1:7081767
85

COSY-GO, TM Yes 129 1:708176752160726
39
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implemented to work for multi-dimensional cases, and both can be
used for multi-dimensional pruning to eliminate the area in the domain
which does not contribute to range bounding. For LDB, the result of
pruning can be fed back to re-evaluate the linear part in the remaining
domain, resulting in the iterative refinement of bounds. Furthermore,
the low end point in the domain can be used to provide a cutoff value
for pruning, allowing for the scheme obtaining ultimately accurate
bound if the function is monotonic.

As for the Quadratic Dominated Bounder (QDB) [12], it is difficult
to implement an economical general tool for multi-dimensional
cases, because a v-dimensional quadratic range bounding problem
produces cascading lower dimensional quadratic bounding pro-
blems on all the lower dimensional boundary surfaces unless the
quadratic part is positive definite. This, on the other hand, leads to a
special purpose quadratic bounder limiting to only positive definite
cases, the Quadratic Fast Bounder (QFB). In particular it is advanta-
geous in the situation when LDB does not work well in a local domain
due to proximity to an isolated interior minimizer, which is the case
when the local quadratic part of the function is positive definite.
Thus LDB and QFB complement each other very well.

When those efficient tools for range bounding are used, it can
lead to an efficient rigorous global optimization tool for general
purpose. The key to the success is to combine all the economically
available information of the objective function and the resulting
tools in a smart way. For a given multi-dimensional box representing
part of the search domain, we apply a branch-and-bound approach
that proceeds as follows. Bound the function from below over the
box, and if the lower bound is above the cutoff value, the box is
eliminated from the task. Here the bounding tools are to be used in a
hierarchical way, and even when the box cannot be eliminated,
pruning of the box may happen when LDB or QFB is applied. If the
box is not eliminated, bisect it to keep in the task unless the box size
falls below the pre-specified discretization limit. The cutoff value is
to be updated as efficiently as possible. When working on a box, the
function value at the center point of the box, which is easy to obtain,
can be used for a possible update of the cutoff value. Any other point
in the search domain can be used to provide a possible update of the
cutoff value. For example, some information obtained while using
QFB might bring a good candidate point, and any other way is
beneficial as long as it is economical. The branch-and-bound method
is easily adjustable to parallel computing environment, then more
sophisticated non-rigorous schemes such as global genetic optimi-
zation algorithms can be used complementarily to obtain better
cutoff values globally.

For the more detailed description of the schemes, refer to
Refs. [12,25,26].
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Fig. 1. The minimum search of the function (2). (Left) Profile of the function. (Middle) B

Simulated Annealing, Simpex, and LMDIF methods.
4. Illustrative benchmark challenges for rigorous global
optimization

4.1. A sharp isolated local minimum

To illustrate the performance of the discussed method of
rigorous global optimization, we use a well known, difficult two-
dimensional test problem. We ask to find the minimum and the
minimizer of the function

f ðx,yÞ ¼ cosxcosy�2exp½�500 � ððx�1Þ2þðy�1Þ2Þ�: ð2Þ

The first term represents the majority of the behavior of the function
with the value varying periodically between �1 and 1. On the other
hand, the second term represents an extremely sharp negative spike
localized around (1,1), which in fact contains the actual minimum of
the function. Fig. 1 shows the profile of the function with the negative
spike visible, where it should be noted that the picture required a
careful selection of setting such as the line sampling spacing, and the
spike could be completely missed if it is drawn casually. For similar
reasons, most conventional optimization methods without rigorous
estimates miss the spike as will be shown below.

The code COSY INFINITY [3] has three non-rigorous optimizers, the
Simplex method, the LMDIF program based on an improved Leven-
berg–Marquardt algorithm, and the Simulated Annealing method, thus
covering different groups of typical non-rigorous optimization meth-
ods. For a given problem, besides setting up a good objective function
that depends on the parameters to be optimized, the user has to choose
a suitable method and assign good starting values for the parameters.

We chose the starting parameter values (�0.1,�0.1) purposely to
confuse the optimizers a little instead of giving more naive starting
values like (0,0). The processes of the optimization tasks are schema-
tically shown by marking the parameter values at each optimization
step in Fig. 1. Also marked is the true minimizer that is obtained using
the rigorous global optimization. The result is summarized in Table 1,
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ranch-and-bound using the Taylor model method. (Right) Non-rigorous search by
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and the outcome varies wildly depending on the starting parameter
values, with the best performing optimizer altering accordingly.

The Simulated Annealing method moves around like a random
walk while stochastically trying neighboring values, hence it does
not produce a completely wrong result, but it cannot reach to a
highly accurate result after many steps; the bast accuracy obtained
by changing the starting values was around 10�2. The performance
of LMDIF fluctuates wildly depending on the situation. For instance,
the starting parameter values (0,0) yield to reach the minimum
with accuracy 10�10 in about 35 steps. When the starting values are
just slightly different, it will be trapped at a wrong local extremum.
The example case is that the proceeding direction encounters a
local saddle point, letting the optimizer misinterpret it as a local
minimum and being trapped there. The Simplex method may be
the most robust optimizer among three, as it performs well overall
without producing a completely wrong result, though it does not
help much for this example problem.

Shown also in Fig. 1 and Table 1 are the situation of heuristic and
rigorous global optimizations. The domain [�4,4]2 is searched for
the guaranteed global minimum using the branch-and-bound
method implemented in the Taylor model-based optimizer
COSY-GO. We compared two approaches, the Taylor model method
utilizing the advantageous features as discussed in the previous
section, and the interval method representing conventional rigor-
ous numerical methods.

The Taylor model-based COSY-GO reaches the true minimum
with 10�14 accuracy in 129 steps at the minimizer localized within
a volume 5� 10�17. The minimum and the minimizer are found
bounded sharply as

min¼�1:708176752160726
39 at x¼ y¼ 1:000227292

85:

It is worth noting that the minimizer is not located exactly at (1,1),
but it is slightly shifted towards the down-hill direction of the
neighboring periodic hills. Fig. 1 shows each box at the time it is
eliminated from consideration in the branch-and-bound approach,
clearly revealing the process of branching into smaller boxes near
the area of relevance. Indeed, the area containing the true mini-
mizer can be recognized by many branched boxes gathered. In this
example, there is only one such area observed. For more compli-
cated problems, one observes multiple areas having many
branched boxes gathered, due to multiple minimizers and local
minima whose values are close to the true minimum, as seen in
Fig. 3. Even in Fig. 1, apart from the true minimizer area, one can
observe more branched boxes in the low basin areas than the hill
top areas.

When the branch-and-bound method is applied based only on
the interval method, the achievable accuracy becomes quite low.
Table 1 lists two such cases under different accuracy demands. The
first case (1) reaches a solution in 161 steps with quite low accuracy
and the achieved minimizer localization volume is 2:5� 10�4. The
second case (2) reaches a solution with moderately high accuracy
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Fig. 2. Analysis of the ALS-TBA. The stable region search by scanning (left), and by the Tay

model-based rigorous global optimization (right).
with the minimizer localized in the volume 6� 10�9, but the task
required 7699 steps, and an attempt to achieve yet higher accuracy
becomes impractical.

4.2. Other complicated challenges

In addition to the small illustrative problem discussed above,
there is a large number of other known optimization challenges,
each of which representing a particular trap to try to fool
optimization tools. As an example, the Rosenbrock function is a
typical text book optimization problem, particularly known to be
difficult for gradient based methods. The Beale function is difficult
for rigorous optimization methods due to a wide shallow basin
which suffers from the so-called ‘‘cluster effect’’. Moore’s one-
dimensional polynomial problem is a milestone problem for
practical rigorous optimization methods due to the ‘‘cancellation
problem’’ which triggers the cluster effect. For more detail on the
performance of the Taylor model method on these problems, the
reader is referred to Refs. [25,26].
5. Design parameter search: stability regions of accelerator
lattices

We now apply the rigorous global optimization method to
analyze a realistic challenging problem in beam optics, the proper-
ties of a triple bend achromat (TBA) structure in the Advanced Light
Source (ALS) at Lawrence Berkeley National Laboratory by studying
a wide range of strength of three quadrupole magnets, kQF, kQD and
kQFA [27]. The linear lattice description of the TBA and the linear
transfer map depending on kQF, kQD and kQFA were provided by Wan
at LBNL [28]. The challenge was to analyze the design parameter
settings globally to meet certain properties such as a stable
operation regions and desired tunes, and find all possible operating
solutions for further analysis. The very first attempt, in general,
would be to scan the entire range of parameter space. Work based
on this approach was reported in Ref. [27]. While the approach is
simple and easy to conduct technically, in practice, the fine-ness of
the discretization coupled with dimensionality of the problem
leads to excessively challenging computational problems. For the
purpose of comparison, the non-rigorous method developed in
Ref. [27] requires a computation cost that is about 1000 times
larger than the fully rigorous analysis with the COSY-GO rigorous
global optimizer, which we discuss now.

Specifically, we study the stable operation regions of the TBA
system by scanning and by the Taylor model-based rigorous global
optimization method over the parameter space domain

ðkQF ,kQD,kQFAÞA ½�10,10�3:

For the purpose of illustration and comparison with our rigorous
tools, we first scan the entire domain with a discretization size
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0.1 in each parameter, thus consisting of 201� 201� 201� 8:12�
106 scanning points. At each scanning point, the x and y trace trx and
try are computed, and only those points satisfying

jtrxjo2, jtryjo2 ð3Þ

are retained; they are shown in the left picture in Fig. 2. An
equivalent computation was conducted by COSY-GO using the
Taylor model method, and the obtained parameter regions are
shown in the middle picture.

As the default scope of COSY-GO is to search globally the minimum
of a multivariate function and the minimizer(s) rigorously, the condi-
tion (3) is altered to an optimization problem to search the minimum of
the following function. Since one of the advantageous features of the
Taylor model method is bounding a multivariate function sharply, the
condition (3) fits naturally to the Taylor model method. However, for
conducting the task here, we just limited ourselves to use only the
default scope of COSY-GO:

f ðkQF ,kQD,kQFAÞ ¼ ðtr
2
x�1:92

Þ
2
þðtr2

y�1:92
Þ
2: ð4Þ

If there exist parameter values in the search domain to yield 0 to the
function (4), they provide a stable operation region. Using COSY-GO,
indeed the minimum of the objective function (4) was found to be 0,
and the parameter regions for the minimizers are shown in the middle
picture in Fig. 2. It can be seen that the rigorous optimizer indeed
properly classifies the regions of relevance, but does so at a computa-
tional cost about 1000 times lower than the scanning in Ref. [27].

Next we ask to search the parameter regions yielding pre-
specified tunes, as an example

nx ¼ 0:63, ny ¼ 0:53:

We run COSY-GO for the following objective function:

f ðkQF ,kQD,kQFAÞ ¼ ðtr
2
x�½trxðnx ¼ 0:63Þ�2Þ2þðtr2

y�½tryðny ¼ 0:53Þ�2Þ2:

ð5Þ

It turned out that the TBA system has quite a big range of the
parameter regions yielding the desired tunes as shown in the right
picture in Fig. 2. However, to conduct the same tune fitting task by
scanning is very difficult if not impossible. For example, among all
the stable points found by scanning as shown in the left picture,
the data is processed to find the closest parameter values near the
desired tunes, and they are (kQF,kQD,kQFA)¼(1.7,�1.1,1.4), with the
tune values nx ¼ 0:6292,ny ¼ 0:5417:

To illustrate the processes of the rigorous global optimization
method, the tune fitting problem is brought to a two-dimensional
problem by fixing the value of KQFA:

ðkQF ,kQDÞA ½�10,10�2, KQFA ¼ 0:

The boxes produced by the branch-and-bound method are
recorded in Fig. 3 in the same manner as in Fig. 1. There are six
optimal parameter regions found, which enclose the parameter
values yielding the desired tune values exactly. Starting from the
entire domain [�10,10]2 at the top, the pictures are zoomed into an
interesting area near (kQF,kQD)¼(�3.8,7) toward the bottom. The
demanded box branching limit size here is 0.01. Two different
methods are used for a comparison. The left pictures show the case
utilizing the Taylor model method, and the right pictures with the
interval method. The Taylor model method narrowed down the
volume of the solution regions very sharply to 2� 10�4 in 1370
steps, on the other hand the interval method achieved the volume
to 8� 10�3 in 2718 steps, as one can observe the performance
difference merely from the pictures. Almost the same computa-
tional time was spent by both cases. While the top pictures
covering the entire domain look similar between the two methods,
the zoomed in pictures look quite different. The irregularly
branched boxes observed in the Taylor model method case are
the result of pruning by the LDB bounding method, and some cases
are due to the pruning by the QFB bounding method, which appears
characteristically with three or four side pruning, and one sees such
examples near (kQF,kQD)¼(�3.7,7.25). Another aspect is that the
Taylor model method provides sharper bounds without needing to
branch further, and it is observed near (kQF,kQD)¼(�3.8,7.1).

Because of limitations of space, we restrict our study of practical
beam physics problems to the one above; but we hope that the
example can convey the usefulness for the method for other
problems as well.
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