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In this paper, after reviewing the basics of the method of Taylor models which enables rigorous
computations, we introduced various function range bounding methods utilizing the inherent infor-
mation associated to Taylor models. The superb performance is demonstrated by using a simple but
tricky example. These components allow the construction of rigorous global optimization tools. We
explain how to construct such a tool based on the branch-and-bound approach using the example
function, while illustrating the excellent quality obtained by the method of Taylor models. With
this, we proceed to demonstrate the efficiency by applying the method to a practical application
to search all the parameter operation points yielding desired properties in a lattice of a charged
particle storage ring.

Keywords: rigorous computation, Taylor model, function range bound, rigorous global optimiza-
tion, parameter optimization.

Introduction. There are numerous situations in engineering and science where param-
eter optimization is required, and consequently the branch of parameter optimizations has
been one of the important fields in numerical computations. Tremendous amount of effort
has been made to further the methods and algorithms, and to expand the types of applica-
tions that can be treated. Many different kinds of optimization tools have been used in the
scientific and engineering communities to assist various tasks of design parameter optimiza-
tions to obtain desired properties, one example being the design and operation of particle
accelerators. Still the reality is that we experience too often that the knowledge and skill
in manual tuning by experts in the fields more directly leads to the desired optimization
results, as opposed to modern numerical optimization methods.

One typical drawback of numerical optimization methods comes from the fact that the
process gets caught by a local optimum and remains confined nearby. The process is even
often sensitive to the starting values of the parameters. To compensate this difficulty, there
has been a large amount of activity in the field of numerical optimizations to search the global
optimum, for example utilizing genetic algorithms, as summarized in [1]. However, those
methods based on point evaluations cannot avoid the risk of overlooking critically important
points. Thus, ideally there should exist economical numerical tools, determining the global
optimum with respect to all the parameter values yielding the optimum without overlooking
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anything. Such tools, if available, would promote non-experts to efficiently proceed with
designs and analysis with confidence, freeing some mysteries from the hands of experts.

Numerical methods assuring confidence involve the treatment of entire sets instead of
mere point evaluations. The method of interval arithmetic is a long known method to sup-
port such rigorous computations (see for example [2-4] and a large number of other excellent
books). All operations are carried out on intervals instead of numbers, and furthermore,
floating point inaccuracies are accounted for by rounding lower bounds down and upper
bounds up. The basic operations of interval arithmetic are listed in table 1. While pro-
viding rigorous estimates, the method suffers from some practical difficulties such as the
dependency problem, leading to overestimation to the extent that in some cases, the esti-
mates may be rigorous but practically useless.

Table 1: Basics of interval arithmetic

[L1, U1] + [L2, U2] = [L1 + L2, U1 + U2],

[L1, U1]− [L2, U2] = [L1 − U2, U1 − L2],

[L1, U1] · [L2, U2] = [min{L1L2, L1U2, U1L2, U1U2},max{L1L2, L1U2, U1L2, U1U2}]

We have been proposing the method of Taylor models combining Taylor expansions and
the remainder error bounds, supporting rigorous computations, and in this paper, we will
review the basics of the method and will discuss its applications to rigorous global opti-
mizations using some examples. Thanks to the richer information the method carries auto-
matically, despite the more complicated structures of the method compared to conventional
rigorous numerical methods like interval arithmetic, we will observe that the method offers
an economical means to various problems including rigorous global optimization problems.

The Method of Taylor Models. We list the definition of the Taylor model and the
basic arithmetic such as addition and multiplication in table 2 and refer to [5,6] for more
details. Using these, intrinsic functions for the Taylor models can be defined by performing
various manipulations. To maintain sharp estimates, however, a certain care has to be taken
for how to define the Taylor models corresponding to each intrinsic function. Refer to [5,6]
for the details on definitions of standard intrinsic functions to achieve computed remainder
bounds of sufficient sharpness. Since obtaining the integral with respect to variable xi of
P is straightforward, it is straightforward to obtain an integral of a Taylor model. Thus
we have an antiderivation ∂−1

i in the Taylor model arithmetic, and it enables Taylor model
applications such as rigorous ODE solvers.

Based on the definitions of n-th order Taylor models and the arithmetic, the method has
the following properties. It provides enclosures of any function given by a finite computer
code list by an n-th order Taylor polynomial and a remainder bound with a sharpness that
scales with order (n+1) of the width of the domain D. It alleviates the dependency problem
in the calculation [7], and it scales favorable to higher dimensional problems.

The method has been implemented in the code COSY INFINITY [8,9]. The Taylor
model implementation is based on that of the Differential Algebras [10] in the code, hence

62



Table 2: Definition of an n-th order Taylor model T and the basic arithmetic

f(x) ∈ T = (P, I) = P (x− x0) + I for all x ∈ D,
where f : D ⊂ Rv → R is (n+ 1) times continuously partially differentiable,
P is the n-th order Taylor polynomial of f around x0, x0 ∈ D, and I is a bound interval,

T1 + T2 = (P1 + P2, I1 + I2),

T1 · T2 = (P1·2, I1·2),
where P1·2 is the part of the polynomial P1 · P2 up to order n, and
I1·2 = B(Pe) +B(P1) · I2 +B(P2) · I1 + I1 · I2,
where Pe is the part of the polynomial P1 · P2 of orders (n+ 1) to 2n, and
B(P ) is an enclosure bound of P over D

all the advantageous features in the Differential Algebras package such as the sparsity sup-
port and the efficient coefficient addressing scheme [11] are inherited to the Taylor model
implementation, making it a realistic device to study practical problems. Another advan-
tageous feature in the implementation is to have the Taylor coefficients adhere to the set
of floating point numbers. This has practical benefits starting from the smooth connection
between the Differential Algebras and the Taylor models, then the applicability of some
powerful algorithms such as Differential Algebra fixed point solvers and some others [10],
however it requires careful handling of errors associated to floating point numbers to main-
tain mathematical rigor and correctness. For details of the method and the implementation,
refer to, for example, [5,6].

Function Range Bounding. Naturally, Taylor models can be used for range bounding
of functions. Even a crude method of evaluating a bound of P by applying interval arithmetic
to all the monomials and then summing them up together with the remainder bound, which
we call “naive” Taylor model bounding, provides good function range bounds compared to
conventional range bounding methods like interval arithmetic as we will see shortly. But
there are more sophisticated Taylor model based algorithms possible, such as the Linear
Dominated Bounder (LDB) [5,12,13] and the Fast Quadratic Bounder (QFB) [12,13]. We
will review some function range bounding methods using a one dimensional function, which
is simple enough so that some of the estimates can be confirmed even by hand calculations.

We study a function, originally proposed by Ramon Moore for the illustration of the
points we want to make*, which is given as

f(x) = 1 + x5 − x4 (1)

in [0, 1], whose profile is shown in the left top picture in fig. 1. As one can hand calculate
easily, the function is bounded from above by 1, and from below by the minimum that
happens at x = 4/5 = 0.8, where the value of the function and hence the minimum is
1 + (4/5)5 − (4/5)4 = 1− 44/55 = 0.91808. Even though both the mathematical expression
and the profile of the function in [0, 1] seem to be exceedingly simple, conventional function
range bounding methods on computers find it rather difficult to perform the task near the

*Moore R. E. Private communication.
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Figure 1: Range bounding of the function f(x) = 1+x5−x4 in [0, 1] in sub divided domains
Left top: the function in [0, 1]. Left second to bottom: using the Taylor model method in 16 subdomains by
first order naive Taylor model bounding, by fifth order naive Taylor model bounding, by LDB on the fifth
order Taylor models. Right from top to bottom: using interval arithmetic in 16, 128, 512, 1024 subdomains.
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minimum, which is the reason of Moore’s interest in it. Because the precise answer is
trivially known, the problem serves as an excellent benchmark test for rigorous computation
methods.

Conducting interval arithmetic on the function in [0, 1],

f([0, 1]) = 1 + [0, 1]5 − [0, 1]4 = 1 + [0, 1]− [0, 1] = 1 + [0, 1] + [−1, 0] = [0, 2],

we obtain the function range bound [0, 2] that certainly encloses the precise bound [0.91808, 1]
but with a large overestimation of around 24.4 times the exact range. Dividing the domain
of interest into smaller subdomains leads to decrease the overestimation, and the achieved
sharpness of the range bound can be seen in the right pictures in fig. 1, from the top to
the bottom, by 16, 128, 512, and 1024 equally divided subdomains. For an easier visual
comparison, all the picture frames in fig. 1 are fixed to cover the range [0.90, 1.02]. The
function range bound estimates with 16 subdomains show unacceptably large overestima-
tions, where the largest bound estimate happens at the right end subdomain providing the
bound [0.724196, 1.227524], which width is yet 6.2 times wider than the precise bound on the
entire domain. When the number of subdomain reaches at 1024, disabling the picture from
distinguishing each subdomain, the local function range bound becomes reasonably sharp; at
the right end subdomain, the range bound is [0.995126, 1.003901] with the width 8.8 · 10−3,
and around x = 0.8, the range bound is [0.916077, 0.920083] with the width 4.0 ·10−3. There
is quite a struggle to be invested with the interval method to tackle this problem.

To observe the performance of Taylor models for this problem, let us start with the
arithmetic step by step. We first represent the variable x in [0, 1] by a Taylor model as

x ∈ 0.5 + 0.5 · x0 + [0, 0], x0 ∈ [−1, 1].

Then, we determine the fifth order Taylor model arithmetic on the function, which can be
performed by hand with moderate effort:

fTM5
=1 + (0.5 + 0.5 · x0 + [0, 0])

5 − (0.5 + 0.5 · x0 + [0, 0])
4
=

=1 + 0.55 ·
(
1 + 5x0 + 10x20 + 10x30 + 5x40 + x50 + [0, 0]

)
−

− 0.54 ·
(
1 + 4x0 + 6x20 + 4x30 + x40 + [0, 0]

)
=

=1 + 0.55 ·
(
−1− 3x0 − 2x20 + 2x30 + 3x40 + x50

)
+ [0, 0] =

=1− 0.55 − 3 · 0.55x0 − 2 · 0.55x20 + 2 · 0.55x30 + 3 · 0.55x40 + 0.55x50 + [0, 0].

(2)

Since the original function (1) is a fifth order polynomial, the most accurate Taylor model
representation of the function is achieved by a fifth order Taylor model, resulting in a [0, 0]
remainder bound. When the Taylor model arithmetic is conducted on computers, however,
a tiny nonzero remainder bound will result due to errors associated to the floating point
number representation on computers. If lower order Taylor models are used, the order of
the polynomial is truncated by the order used, and the higher order polynomial contributions
are lumped together under the Taylor model remainder bound.

Based on (2), the fifth order Taylor model representing the function in [0, 1], the simplest
way to obtain a function range bound is to conduct interval arithmetic on each monomial
in the polynomial part of fTM5 then add them together with the remainder error bound,
which we call “naive Taylor model bounding”. Utilizing x0 ∈ [−1, 1], x20 ∈ [0, 1], x30 ∈ [−1, 1],
x40 ∈ [0, 1], and x50 ∈ [−1, 1], while recognizing that even power contributions of xk0 cannot
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be negative,

fTM5
∈1 + 0.55 · (−1− 3 · [−1, 1]− 2 · [0, 1] + 2 · [−1, 1] + 3 · [0, 1] + [−1, 1]) + [0, 0] ∈
∈1 + 0.55 · [−9, 8] = [0.71875, 1.25],

which is much sharper than the bound [0, 2] obtained by interval arithmetic, but still around
6.5 times wider than the precise bound.

Contrary to interval arithmetic, a division of the domain brings a rapid improvement
in accuracy in Taylor models. We show the case with 16 equally subdivided domains in
the left pictures in fig. 1. The function range bounds via naive fifth order Taylor model
bounding is shown in the left third picture, where the accuracy reaches to the level of the
1024 subdivided interval case everywhere throughout the entire domain. As a comparison,
we show the first order naive Taylor model bounding in the left second picture, and they
are already as sharp as the 128 subdivided interval case.

By the definition, Taylor models carry the information on the Taylor expansion to order
n, and this fact can be efficiently utilized to craft sophisticated schemes for function range
bounding. The behavior of a function is characterized primarily by the linear part, where
the accuracy of the linear representation increases as the domain of interest becomes smaller,
except when there is a local extremum, in which case the quadratic part becomes the leading
representative of the function. Since Taylor models have linear and quadratic terms explicitly
as coefficients of P, there is no need for further efforts to obtain them. This is a significant
advantage of the Taylor model method compared to other rigorous methods like the interval
method that does not have any automated mechanism to obtain such information.

The idea leads to some Taylor model based range bounders, first utilizing the linear
part, second utilizing the quadratic part [5], and even utilizing the full Taylor polynomial
up to the n-th order. Among them, the Linear Dominated Bounder (LDB) [5,12,13] and the
Quadratic Fast Bounder (QFB) [12,13] are practically economical while providing excellent
range bounds. Both bounders are applicable to multivariate functions, and both can be used
for multi-dimensional pruning to eliminate the area in the domain which does not contribute
to range bounding. For LDB, the result of pruning can be fed back to re-evaluate the linear
part in the remaining domain, resulting in the iterative refinement of bounds. Furthermore,
the low end point in the domain can be used to provide a cutoff value for pruning, allowing
for the scheme obtaining ultimately accurate bound if the function is monotonic.

While a general quadratic bounding tool to range bound multivariate functions, which we
call the Quadratic Dominated Bounder (QDB) [5], is computationally expensive in higher
dimensions, a special purpose quadratic bounder limited to only positive definite cases, the
Quadratic Fast Bounder (QFB) [12,13], is possible and leads to a very economical tool.
The situation when the LDB does not work well in a local domain is a case having an
isolated interior minimizer, which is the case when the local quadratic part of the function
is positive definite. Thus LDB and QFB complement each other excellently. See [5,12,13]
for details on the algorithms of those bounders. To provide a qualitative demonstration
of those sophisticated Taylor model bounding methods, the left bottom picture shows the
function range bounds obtained using the LDB bounder on fifth order Taylor models, where
the bounds are optimally sharp within the picture resolution.

Before concluding this section, we comment that on the entire domain without subdivi-
sion, neither the LDB bounder nor the QFB bounder helps to improve the function range
bound. As for QFB, fTM5 is not positive definite there, thus simply QFB is not applicable
unless any subdomain is considered. As for LDB, fTM5 is not dominated by the linear part
there, having larger contributions from the nonlinear polynomial part.
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Rigorous Global Optimization. When those efficient tools for range bounding are
used, it can lead to an efficient rigorous global optimization tool for general purpose. The
key to the success is to combine all the economically available information of the objective
function and the resulting tools in a smart way. For a given multi-dimensional box repre-
senting part of the search domain, we apply a branch-and-bound approach that proceeds as
follows [12,13].

Bound the function from below over the box, and if the lower bound is above the cutoff
value, the box is eliminated from the task. Here the bounding tools are to be used in a
hierarchical way, and even when the box cannot be eliminated, pruning of the box may
happen when LDB or QFB is applied. If the box is not eliminated, bisect it to keep in the
task unless the box size falls below the pre-specified discretization limit.

The cutoff value is to be updated as efficiently as possible. When working on a box, the
function value at the center point of the box, which is easy to obtain, can be used for a
possible update of the cutoff value in the form of a mid point test. Any other point in the
search domain can be used to provide a possible update of the cutoff value. For example,
some information obtained while using QFB might bring a good candidate point, and any
other way is beneficial as long as it is economical. One caution is, however, that a upper
bound of a rigorous estimate of the function evaluation has to be used for the cutoff value
update. The current implementation of the Taylor model based rigorous global optimization
package, called COSY-GO [12,13], uses a gradient method based on the linear and the
quadratic parts of a local Taylor model and a quadratic minimizer when the quadratic part
of a local Taylor model is positive definite, beside the mid point tests.

We continue to work on the previous example function (1) to illustrate the mechanism
of the Taylor model based rigorous global optimizer COSY-GO. As all the underlying al-
gorithms are applicable to multivariate functions, of course the optimizer works for multi-
dimensional cases as well.

Upon the first bisection of the original domain [0, 1], the right subdomain provides an
improvement to the cutoff value. The first improvement is brought by the mid point estimate,
then a quick minimum search based on gradient methods using the linear and quadratic parts
of the Taylor model can improve it as shown in the right top picture in fig. 2. Since the true
minimum happens in the right subdomain, it will be subdivided and/or pruned to localize the
area that holds the minimum. The function range bounding yields still big overestimation
as shown in the picture, which is obtained by the naive fifth order Taylor model bounding.
Since the function behavior is not dominated by the linear part, the LDB bounding does not
provide any improvement here. On the other hand, the quadratic part of the Taylor model
representation of the function is now positive definite, so the QFB bounding does yield an
improvement on the lower bound, and also, more interestingly, it narrows the domain of
interest by excluding the area that cannot assume the minimum, called “pruning”. The
resulting smaller subdomain [0.5876, 1] by the QFB pruning and the improvement of the
lower bound are shown in the picture. One may wonder why no improvement on the upper
bound is shown; it is because that the QFB is meant to bound only from below if the
function’s quadratic part is positive definite.

In the left subdomain, the function can be easily bounded sharp enough even by mere
interval arithmetic, being able to conclude to be above the improved cutoff value, hence to
be discarded from further consideration. Even if the treatment of subdomains begins from
the left one instead of the right one, due to the benign behavior of the function in the left
subdomain, the candidate area that may include the minimizer can be localized quickly to
the right end of the left subdomain, which is near the center of the entire domain. Then, as
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Figure 2: Branch-and-bound processes to find the minimum of function (1) rigorously
The subdomains and the function range bounds are shown by boxes, and the cutoff values including all the
renewals are shown by dots. Left top: using Taylor models. Left bottom: using only interval arithmetic.
Right: the Taylor model method situations after the first (top) and the second (bottom) bisects.

soon as the work starts in the right subdomain, the small candidate area remained in the
left subdomain is assured to yield a bound of the function that is above the improved cutoff
value, which is renewed in the right subdomain.

The next step is to bisect the remaining QFB pruned subdomain in the right half into
the left piece [0.5876, 0.7938] and the right piece [0.7938, 1]. Since the right piece contains
the true minimum, further improvements of the cutoff value are possible using the local
quadratic polynomial and the minimizer of it, which is shown in the right bottom picture.
As one sees in the picture, the function behavior is now quite linear dominated in both the
left and the right pieces, so the LDB bounding provides very sharp function range bounds,
resulting in the immediate removal of the left piece from the further consideration. In the
right piece, pruning of the domain of interest happens both by the LDB and the QFB
schemes in an avalanched fashion until the area is localized in the size smaller than the
pre-specified discretization demand, which in this example is 10−6. It is worth noting that
those pruning actions happen in much finer scale than the picture resolution.

The obtained minimum is guaranteed to be enclosed in

[0.9180799999999953, 0.9180800000000021]

with accuracy around 5 × 10−15, which is only one order of magnitude larger than the
representation error of floating point numbers near 1. And the minimizer is localized to
reside in [0.79999992846, 0.80000007154] with the width of around 1.43 · 10−7. In fact, the
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achieved localization is narrower than the pre-specified discretization demand of 10−6, and it
is realized thanks to the QFB pruning. The entirety of the branch-and-bound processes using
the Taylor model method is shown in the left top picture in fig. 2, where the function range
bound covering the entire original domain [0, 1] is shown as well, which in this particular
example is redundant as the domain includes the minimum thus subdivisions of the domain
are necessary. However, an optimization problem can be given with multiple of initial
domains, in which case bound estimates on all the initial domains are useful to allow possible
removals of some initial domains in the very beginning. To conclude, the above result of the
minimum and the minimizer is obtained in eight subdomain steps including the very first
domain covering [0, 1].

For the sake of comparison, branch-and-bound processes based on interval arithmetic
are conducted without using Taylor models, and they are shown schematically in the left
bottom picture. The same size 10−6 is demanded for the pre-specified discretization limit.
The task required 13 767 subdomain steps, achieving the guaranteed minimum enclosure
[0.91807804, 0.91808001] with the accuracy 2 · 10−6, localizing the minimizer in [0.798766,
0.801238] with the width 2.47 · 10−3, by far inferior to the Taylor model result. While
this appears to be striking, one could have expected this performance difference from the
previous studies shown in fig. 1.

An Example of Parameter Optimization. The discussed rigorous global optimiza-
tion method can be used to find all possible values of system parameters that yield de-
sired properties. We use a triple bend achromat (TBA) structure in the Advanced Light
Source (ALS) at Lawrence Berkeley National Laboratory, considering the strength of three
quadrupole magnets, kQF , kQD and kQFA, as the system parameters [14]. The linear lat-
tice description of the TBA and the linear transfer map depending on kQF , kQD and kQFA

were provided by W. Wan at LBNL*. An heuristic approach to scan a wide range of the
parameter space to analyze the system properties to globally find operation values to satisfy
certain conditions was reported in [14]. This is simple and easy to conduct technically, but
in practice, the computational cost becomes high to provide satisfactory solutions with fine
discretization so that important regions would not be missed. Furthermore, as the dimen-
sionality of the parameter space increases, the approach becomes merely to provide very
rough ideas on the properties, not to mention the prohibitively increased computational
cost.

The Taylor model based rigorous global optimization is used to search all parameter
values that yield the tune values νx = 0.63, νy = 0.53, by defining the objective function as

f(kQF , kQD, kQFA) =
(
tr2x − [trx(νx = 0.63)]

2
)2

+
(
tr2y − [try(νy = 0.53)]

2
)2

on the parameter space
(kQF , kQD, kQFA) ∈ [−10, 10]3.

The parameter regions yielding the specified tunes are shown in fig. 3, covering a quite large
range.

To evaluate the performance, the entire parameter space is scanned to compute the tunes.
The discretization size matching the consumed CPU time to that of the Taylor model based
rigorous global optimization turned out to be very coarse 0.1 in each parameter dimension,
totaling 2013 = 8.12 · 106 scanning points. Among all the scanned parameter values, there

*Wan W. Private communication.
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Figure 3: Three dimensional parameter optimization to yield desired x and y tunes, νx = 0.63 and
νy = 0.53, for the ALS-TBA by the Taylor model based rigorous global optimization

are none found that yield the desired tune values, as it can be expected to be very difficult
if not impossible. In this example case, the closest parameter values that yield the tune
values nearest to the desired values are (kQF , kQD, kQFA) = (1.7,−1.1, 1.4), providing the
tune values νx = 0.6292, νy = 0.5417.
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