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Techniques for the simulation of intense particle beams are investigated with respect to the required number of simulation
particles . It is shown that for nonchaotic systems it is advantageous if the particles initially are not distributed in a statistical manner
but rather arranged in a regular pattern in phase space . This reduces the number of required simulation particles drastically. In the
case of such an initially regular arrangement of particles the algorithm which assigns the charges of the particles to the computation
mesh becomes of prime importance . The performances of different commonly used algorithms are investigated . The Gaussian
assignment algorithm proved far superior to other more commonly used techniques, allowing simulations even at the theoretical limit
of 1 particle per cell. Examples for very accurate simulations of beam dynamics with very few particles using an initially regular mesh
of particles and Gaussian assignment are given.

1 . Introduction

In order to simulate the dynamics of charged particle
beams in accelerators, beam guidance systems and par-
ticle spectrometers, phase space is often represented by
an ensemble of simulation particles which are traced
individually through the optical system under consider-
ation [1-3]. The effects of focusing or accelerating fields
are taken into account in a step-by-step manner using
standard integration techniques such as the Runge-
Kutta methods.

In the case of intense charged particle beams not
only forces due to external electromagnetic fields act on
an individual particle but also the internal space-charge
forces . These forces depend on the positions, velocities
and charges of all other particles . Thus the computation
of space-charge effects is usually rather involved and
time consuming. A direct calculation of the internal
force on a particle as a sum over the forces created by
all other particles requires a computation effort propor-
tional to the square of the number of particles in a
beam . Therefore, one often uses a POISSON solver to
determine the electromagnetic potentials and fields [1-3]
at the points of a regular computation mesh at which
charge and current densities are known. The forces on
individual particles are then calculated by interpolation.

2. The initial distribution of particles in phase space

One way to achieve a representative arrangement of
individual particles of a beam in phase space is to
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distribute them in a random fashion at the beginning.
Unfortunately, this requires a large number of particles
to achieve on required grid points a charge density that
is sufficiently accurate.

To appreciate this, note that most assignment al-
gorithms distribute the charge of a particle among the
mesh points closest to the particle. Let Nn, be the
average number of mesh points to which a significant
amount of charge is transferred by the algorithm under
consideration. Then the average number Nc of particles
contributing to the charge of one of the NP mesh points
is

NoNm

Here No is the total number of simulation particles in
the beam. Because the number of contributing particles
Nc varies statistically from one mesh point to another,
the standard deviation of the charge of an arbitrary
mesh point is proportional to

	

Nc .
As an example, consider now as assignment al-

gorithm with N�, = 4, then a relative error of 5% re-
quires an average of N, = 400 particles per mesh point
totalling No = 90 000 particles in case of a modest 30 by
30 two-dimensional mesh with NP = 900. Choosing al-
gorithms with enlarged values of N�, of course makes N,,
larger and thus reduces these statistical errors . However,
this entails an undesirable loss of the fine structure of
the calculated charge distribution .

Alternatively to statistically selecting the initial
phase-space coordinates of the particles one can distrib-
ute them in a regular way. This can, for instance, be on
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a grid where, if desired, each particle can carry a
different charge so that it is possible to model an
arbitrary charge distribution in a beam. In this case the
number of particles in the proximity of a point of the
computation mesh does not fluctuate statistically so
that one can expect a better performance for small
numbers of particles.

An initial regularity in the distribution of particles
will more or less persist during the simulation as long as
the forces acting on the particles during the whole
simulation are continuous and vary only smoothly . In
fact, linear forces just enlarge or diminish the whole
particle mesh, whereas nonlinear forces cause distor-
tions . In the case of chaotic motion (characterized by
the fact that initially neighbouring phase-space points
can eventually move further and further apart) this is of
course only, true for a limited time. After this time the
new density distribution in phase space must be de-
termined and then represented by a new regularly
arranged ensemble of particles.

3. Requirements for assignment algorithms

Algorithms assigning the charge of simulation par-
ticles to a computation mesh should have the following
three basic properties :
(1) The charge assigned to a computation mesh point A

from a simulation particle P should be proportional
to the charge of P.

(2) The smaller the distance between A and P becomes,
the more charge should be assigned to A.

(3) In case of an infinitely large ensemble of simulation
particles of equal charges arranged on a regular
mesh the charge assigned to a computation mesh
point A should be independent of its position.
The requirements (1) and (2) are obvious. Require-

ment (3) is necessary since the infinite mesh of simula-
tion particles is the particle in cell (PIC) representation
of a homogeneous charge distribution . In this case the
charge assigned to a computation mesh point A should
be independent of the position of A.

Given a certain algorithm, it turns out that the finer
the mesh of particles is chosen, the better property (3) is
fulfilled . However, since a finer mesh requires more
simulation particles, the objective is to determine an
algorithm that satisfies property (3) with as few par-
ticles as possible. In sections 4-7 different assignment
algorithms will be investigated with respect to this goal .

The above three properties guarantee a smooth
charge assignment without unphysical charge fluctua-
tions within one cell also in the case of a distorted
particle mesh . To appreciate this, we first consider a
distorted mesh of particles of equal charges like the one
on the right hand side of fig . 1 . Assume here a computa-
tion mesh point A located in a certain cell of the
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Fig. 1 . In the case of a regular mesh of simulation particles of
equal charges, the charge assigned to a computation point A
should be independent of its position . In the case of a distorted
mesh of simulation particles, this implies that the charge
assigned to a point A still varies smoothly as this point moves

across the particle mesh .

distorted particle mesh and construct a regular particle
mesh with cells the sizes of all of which are equal to the
one A is located in (see left hand side of fig . 1). In both
cases the charge assigned to point A from the four
closest particles is identical . However, in the distorted
case the nine second closest particles contribute slightly
more if they are closer to point A as compared to the
case of the regular mesh according to the above require-
ment (2) .

This implies that the charge assigned to A is no
longer constant as A moves within one cell of the
distorted mesh . In case of the example of fig . 1, the
charge assigned to the point A increases if A moves to
the lower part of the cell . The most important fact,
however, is that the charge assigned to A, though no
longer constant, still varies smoothly with the position
of A not showing any unphysical charge fluctuations. A
similar argument using the above requirement (1) shows
that no unphysical charge fluctuations occur even if
different particles carry different charges.

In the case of initially statistically distributed par-
ticles the smoothness of the final charge distribution
across the particle beam depends mainly on the number
of particles per cell of the computation grid No/NP and
only slightly on the used assignment algorithm. How-
ever, in case the particles are originally arranged on a
regular grid the assignment algorithm becomes of prime
importance. Whereas the above demanded properties
(1) and (2) are fulfilled by all frequently used algorithms,
property (3) is usually violated for small numbers of
particles. In the following sections we therefore will
investigate how well different assignment algorithms
fulfill property (3) for limited numbers of simulation
particles.

4. The nearest grid point (NGP) algorithm

Easy to implement and hence frequently used is the
nearest grid point algorithm (NGP). In this case the
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Fig. 2. In the case of the nearest-grid-point (NGP) algorithm,
the total charge of a simulation particle P is transferred to the
nearest point A of the computation grid . An equivalent inter-
pretation of this method is to assign to each particle a con
stant, square-shaped charge density distribution extending

dc/2 both in x- and y-direction .

charge q of a particle is transferred to the nearest grid
point of the computation mesh of cell size dc . This
implies N�= 1 . This procedure can also be viewed as
every particle with a charge q causing a charge density
PNGP which vanishes everywhere except in a square area
extending to distances dc/2 both in x- and y-directions
around the position of the particle under consideration
(see fig . 2) . Inside this square the charge density is

PNGP x, Y

	

- 9/dô "

	

(2)
The amount of charge assigned to a computation point
A is then proportional to the sum of all charge densities
at this point.

Consider now charged particles arranged on a regu-
lar mesh of cell size dp. For dc =dp, UP , 3dP , " " " the
requirement that the charge assigned to a computation
mesh point A be independent of its position is fulfilled
perfectly for the NGP algorithm. But when dc is no
integer multiple of dp, this property fails . Fig. 3 shows
the charge PNGP assigned to a computation mesh point
moving along the x-axis of the particle mesh for d. =
2.5dP and d, = 4.5dp. A plot of the relative charge
fluctuation DNGP = (PNGP - PNGP)/PNGP, the dif-
ference between the largest and the smallest charge
value assigned to a computation point as a function of
r =d,/d p , is shown in fig . 10a. Having chosen a certain
value of DNGP as the allowable relative difference, the
required r2, i.e . the number of particles per cell of the
computation mesh, can be read from this plot . In order
for DNGP to stay below 5% it is necessary to choose
r > 10 which in the two-dimensional case corresponds
to a minimum of r2 = 100 particles per cell.

For dp << d., the fluctuation DNGP becomes smaller
and smaller, and this is the reason why the NGP
algorithm has actually been used successfully in case of
many particles per computation cell, i.e . for Nc >> 1 .
Another way to achieve a large ratio r=d,/dp is to
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Fig. 3 . The charge assigned by the NGP algorithm to a
computation mesh point moving along one of the axes of the
particle mesh as a function of its position . Shown are results
for the cases r = d, 1d P = 2.5 (left) and r = d,1d P = 4.5 (right).
A plot of the corresponding relative differences DNGP

=

[PNGP - PrG~i/PNGP between maximum and minimum
charge values assigned to arbitrary mesh points as function of

r = dc/dp is shown in fig. 10a.

choose d, in eq . (2) not to be the computation mesh cell
size but an arbitrary larger value. This would increase
Nm in eq . (1) and thus yield smoother results without an
increase in the number of particles. However, as men-
tioned under eq . (1), this would cause the charge of
individual particles to be smeared out over a number of
computation cells and thus also entail an undesirable
loss of fine structure in the charge distribution of a
beam.

5. The area-weighted method

27

A refinement of the NGP algorithm is the area-
weighted method (AW) [1] where the charge q of a
particle is distributed among the four closest compu-
tation mesh points in the two-dimensional case . The
amount assigned to each mesh point A is proportional
to the area of the rectangle R opposite to A as shown in
fig . 4. This implies that once a particle lies right on top
of a computation mesh point, all its charge is assigned
to this point. With increasing distance from this point,
an increasing amount of charge will be assigned to the
other three points of the cell into which the particle fell.
Analogously to eq . (2) this algorithm can be interpreted
as attributing to every particle of charge q a charge
density pAw which vanishes everywhere except for x < d~
and y < dc where it is

PAW(x,Y)=4 (1-d ) (l-d) "

	

(3)
xc c

Here x and y are the distances between the particle
and the mesh point A. Similarly to section 4 we con-
sider now the charged particles to be arranged on an
infinite, regular mesh with grid constant dp. Due to the
periodicity of the particle mesh only one cell of this



28

A

Fig. 4. In case of the area-weighted method the charge q of a
particle is distributed among the four closest computation
mesh points, such that the amount transferred to point A is

proportional to the area of the rectangle opposite to A.

mesh is representative for the whole grid . For such a
cell contour lines of the total charge assigned to points
at positions x, y are shown in the three plots of fig . 5,
where r equals d~/dp = 1.25, 1.5 and 1 .75 . The contour
lines are chosen in 1% steps of the maximum assigned
charge . Note that the special form of the charge density
distribution in eq . (3) implies that as for the NGP
algorithm the assignment is perfectly smooth for dp =
d, 2d, 3d, - - - . A plot of the relative fluctuation
DAw as a function of r = d,,/d, is shown in fig . 10a.

From figs. 3, 5 and 10a it is evident that the nonuni-
formities of theAW algorithm are smaller than those of
the NGP algorithm, though they are still undesirably
large . In order to obtain charge fluctuations of 5% or
less, one reads from fig . 10a that r = d,/d v must be at
least 4 and for fluctuations of 1% or less at least 10 .
This corresponds to an average of about rz =16 or
rz =100 particles per cell, respectively . However, these
16 particles per cell for DAw <0.05 are already consid-
erably less than the 100 in the case of the NGP al-
gorithm of section 4 or the 400 in the case of a statisti-
cal distribution of phase-space points with Nm= 1 .

r = 1 .25
1.0

.5

0
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The area-weighted method of eq. (3) is the two-di-
mensional generalization pAw(x, y ) = pAw ( x )pAw ( y)
of a one-dimensional algorithm with a charge distribu-
tion that vanishes everywhere except for u < d,, where it
is

9Âw ( u ) = Z (1
-
d)

.	(4) ~

A different generalization of this one-dimensional al-
gorithm is a charge density pxAw which vanishes every-
where except for (x z -yz) < d~ where it is

x z +yz
Pxnw ( x , Y) = 2

11
-	d

	

~ .

As is illustrated in fig . 6 this radially symmetric (RAW)
charge distribution performs slightly better than the
area-weighted (AW) method of eq . (3) . To obtain charge
fluctuations DRAw of 5% or less one reads from fig . l0a
that r= d,/da must at least be 3 which corresponds to
an average of about r z = 9 particles per cell .

6. The TSC algorithm

The TSC algorithm [4] is a generalization of the AW
method having a differentiable and hence smoother
charge distribution . For the TSC algorithm the charge

(6)

This one-dimensional algorithm can be generalized to

Fig. 5 . 1% contour lines are shown of the charge assigned by the AW method to a computation mesh point A(x, y) as a function of
its position in a cell of the particle mesh for the cases r = d~/dP=1.25, 1 .5 and 1 .75 . A plot of the relative differences
Dnw = [ pÂw Xt - Pp.w ) ]/pÂwXt between maximum and minimum charge values assigned to an arbitrary computation mesh point as a

function of r is shown in fig. 10a.

density pTSC vanishes everywhere
3/2dc where it is

except for I u I <

z

4 - ld.l
for I uI < 2`,

PTscW= 4
z1 3 I u 1

2l2
- dc ~

d 3d
for 2 -< ~u~ < 2° .
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Fig. 6. 1% contour lines are shown of the charge assigned by the RAW method to a computation mesh point A(x, y) as function of
its position in a cell of the particle mesh for the cases r=d~/dp =1.25, 1 .5 and 1 .75 . A plot of the relative difference
DRAw = [ p~Uw -pM]/p= between the maximum and minimum charge values assigned to an arbitrary computation mesh

point as a function of r is shown in fig. 10a.

two dimensions similarly as the area-weighted method
by :

PTSC(x " Y)=P~TSC(x)P~TSC(Y) "

	

(7)

As in section 5 we also here tested a new radially
symmetric version

PRTSC(X , Y)=RTSC x2 +y2 ) .

	

(8)

The performance of these two algorithms is shown in
figs . 7 and 8. They both display 1% contour lines of the
charge assigned to a computation mesh point A(x, y)
as function of its position in the particle mesh. In figs .
7a, 7b and 7c, the charge assigned to a computation
mesh point is shown for r = dc,/dp = 1.25, 1.5 and 1.75
in the case of the TSC algorithm. Figs. 8a, 8b and 8c
show the same assigned charge in the case of the RTSC
algorithm. Plots of the relative fluctuations Disc and
DRTsc versus r = d~/dp are shown in figs . 10a and 10b.
Note that both of these algorithms perform significantly
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better than those discussed previously . Again the ra-
dially symmetric version is better than the normal TSC
algorithm. As can be read from figs . 10a and 10b, both
the TSC and RTSC assignment algorithms already reach
the level of D=1% for about r = dc/dp = 3 which
corresponds to about r2 = 9 particles per cell .

7. The Gaussian assignment algorithm

In the case of the Gaussian assignment method, the
above mentioned charge distribution characterizing the
algorithm is a Gaussian distribution of the form

xz+yz
PG(x, Y) =

	

4

	

e-~

	

sz
27r s

As before, g is the total charge of the particle while s is
the half-width of the Gaussian .

In order to finally obtain a resolution of the order of
that of the computation grid, the standard deviation s

Fig. 7 . 1% contour lines are shown of the charge assigned by the TSC method to a computation mesh point A(x, y) as function of its
position in a cell of the particle mesh for the cases r =d~/dp = 1 .25, 1 .5 and 1 .75 . Aplot of the relative differences D~ = [psrsc) -
pVc)]/pVc between maximum and minimum charge values assigned to an arbitrary computation mesh point as a function of r is

shown in fig. 10a.
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r=1 .25

	

r=1 .5

	

r=1 .75
1.01 -1.0

.5

should be about d, However, if the computation mesh
is chosen smaller than the required resolution, for in-
stance in order to obtain more precise results in the
POISSON solving process using differences instead of
derivatives, also large values of the above standard
deviation can be taken in order to have less particles.

Note here that even though the Gaussian distribu-
tion has infinite range, it is not necessary to calculate
the charge assigned to mesh points more than about 3s
away from the center of the particle due to the fast
decrease of the Gaussian. It is also worth mentioning
that contrary to the methods discussed in ref. [4], this
assignment algorithm is infinitely often differentiable
which guarantees a very smooth dependence of the
charge assigned to a computation mesh point as the
particle moves in the mesh.

To investigate the smoothness of the Gaussian as-
signment algorithm we have plotted 1% contour lines of
the charge assigned to a computation mesh point as a
function of its position in a cell of the particle mesh for

1 0A
0
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1.0 0
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1.0 0

	

.5

	

1.0

Fig. 8. 1% contour lines are shown of the charge assigned by the RTSC method to a computation mesh point A(x, y) as function of
its position in a cell of the particle mesh for the cases r = d~/d v =1.25, 1 .5 and 1 .75 . A plot of the relative difference

DRTsc = [ pVTSC -Pr&]/pRTSC between maximum and minimum charge value assigned to an arbitrary computation mesh point as
function of r is shown in fig . 10b.

different values r = d~/d c in fig . 9. However, since
values of r = 1.25, 1.5, 1.75 as used in the previous
sections here would show contour lines only if the step
size would be 0.01% or less we have here chosen r=0.6,
0.7 and 0.8 . Fig. lob shows a plot of the fluctuations

DGAUSS, i.e ., the difference between maximum and
minimum assigned values as a function of r for the case
of the Gaussian as well as the RTSC method . The plot
shows that in case of the Gaussian algorithm these
fluctuations are far below 1% for all values of r greater
than 1 . The RTSC method, though much better than the
NGP, AW, RAW and TSC methods (see figs. l0a and
10b), is by far inferior.

As one finds from figs. 9 and 10b, the fluctuations

DGAUss are negligible as soon as r is greater than 1, i.e.
the half-width s is greater than or equal to the particle
mesh size dp . From fig . lob one also reads that com-
parable values of D Rrso can only be obtained for r> 3 .
Note that in case of a mere statistical distribution of
particles, a much larger average fluctuation of, for in-

Fig. 9 . Contour lines in 1% steps for the Gaussian algorithm of the charge assigned to a computation mesh point as a function of its
position for the values r = dc/dp = 0 .6, 0.7 and 0.8. A plot of the relative difference DGAUss = [ P~A'Vss - PrVssl/p~A"Vss between

maximum and minimum charge value assigned to an arbitrary computation mesh point as a function of r is shown in fig. 10b.
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stance, 5% requires about 400 particles per cell . In a 2D
example, this entails that the number of particles re-
quired in the statistical case is at least 400 times higher
and in the case of the RTSC method about 32 = 9 times
higher than in the Gaussian case . In a 3D example, the
RTSC method would even require at least about 27
times as many particles as the Gaussian method . Note
that with r =1 and hence s= dp the Gaussian method
yields a very smooth charge assignment in a case where
the width of the particle is of the same magnitude as the
distance between the simulation particles.

8. Comparison of the above assignment algorithms

Table 1
The maximum relative fluctuations in percent for different
assignment functions and r-values

r

As the above sections have shown, the number of
particles required in particle-in-cell codes can be re-
duced drastically by initially arranging the individual
particles on a regular mesh and choosing a good assign-
ment algorithm. To compare the performance of the
NGP, AW, TSC, RTSC and Gauss methods we have
plotted in fig . 10 the relative differences D between
maximum and minimum charge values assigned to an
arbitrary computation mesh point as function of r =
d,/dp and r =s/dp in the Gaussian case.

The performance may also be read from table 1 in
which the different D-values are given in percent for
r> 1, r> 2 and r > 3. The Gaussian algorithm pre-
sented here has by far the best performance reaching
the level of D =1 % at about r = 0.8, followed by the

D
10

RTSC

l~GAUSS

b

---___,_---______-_-_____ I
1
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Fig. 10. The relative differences D= [q(') - q(~n) ]/q(") between maximum and minimum charge value assigned to an arbitrary
computation mesh point as a function of r are shown for the assignment algorithms in (a) : NGP, AW, TSC; in (b) : RTSC and

GAUSS. Note that for a perfect algorithm, D should be negligible for r > 1.

RTSC method which reaches D =I% at about r = 3.
Note that thus with 1% accuracy the RTSC method
requires about (3/0.8)2 = 14 times as many particles as
the Gaussian in the 2D case and about (3/0.8)3 -53
times as many particles as the Gaussian in the 3D case.
Note here also that the RTSC algorithm was already
superior to all other investigated algorithms.

9. Performance of the above assignment algorithms in
PIC simulations

In order to demonstrate the properties of some of
the discussed assignment algorithms we simulated a 20
mA beam of 2.8 MeV protons along a field-free drift
distance of 80 m. The simulation was done using the
program BEAMTRACE [5]. This PIC code uses a two-
dimensional POISSON solver and is able to handle
arbitrary particle optical elements such as magnetic and
electric bending fields and multipoles . It is part of the
package GIGS-BEAMTRACE [6,7] of the University of
Giessen for the design and study of particle optical
systems.

The initial distribution was assumed to be parabolic
and radially symmetric with an initial radius of R = 4
cm . The parabolic shape of the charge distribution was
obtained by assigning different charges to the particles .
With x and y denoting the position of the particle and
R the initial beam radius, the charge assigned to each
particle was q= p, (I - (x2 +y2)/R2 ) . The computa-
tion grid size dc was readjusted at each new computa-
tion of the electromagnetic fields such that the total
computation grid was always slightly larger than the
beam diameter .

The charge distribution in the particle beam was
simulated in three different fashions :
(1) with a statistical initial arrangement of about 1500

simulation particles and the AW assignment
method ;

D NGP AW RAW TSC RTSC Gauss
r>1 68 35 17 7 3 0.02
r>2 53 14 6 3 2 <10-17
r>3 42 6 3 2 1 <10 -17
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Fig. 11 . The simulation of a laminar 20 mA beam of 2.8 MeV
protons with initially parabolic charge distribution moving in a
field free drift region with a length of 80 m. About 1500
particles were initially arranged statistically. The effect of
widening and flattening is apparent only in a qualitative
manner . The dashed contour lines mark 10, 40 and 70%, the
solid lines 20, 50 and 80% and the dotted lines mark 30, 60 and
90% of the maximum charge density. The scaling is in meters .

(2) with a regular initial arrangement of about 300
simulation particles on a grid and the AW assign-
ment method ;

(3) with a regular initial arrangement of about 300
simulation particles on a grid and the Gaussian
method .
The initial and final charge distributions for these

three cases are shown in fig. 11, 12 and 13 . Due to the
parabolic structure of the initial charge distribution the
resulting space-charge forces are nonlinear and lead to
charge distributions which become more and more ho-
mogeneous. After a flight distance of about 80 m the
charge distribution is almost perfectly homogeneous.

Fig. 11 shows the result of the simulation for a
statistical initial distribution and the AW assignment
method. The final charge distribution exhibits fluctua-
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tions of about 40% in agreement with section 2. The
fluctuations are so large that the desired parabolic ini-
tial charge distribution is strongly disturbed . After the
flight distance of 80 m only a widening and flattening is
noticeable from the fact that the contour lines of the
charge density accumulate at the edge of the beam.
Altogether one can state that the simulation is of poor
accuracy and allows a rough estimate only.

The same simulation was then carried out with a
regular initial arrangement on a grid using again the
AW assignment method . The grid constant of the regu-
lar initial particle mesh was chosen as dp = dc which
required about 300 particles using a 20 by 20 compu-
tation mesh . The choice of the initial dp =d, implies
that the assigned charge distribution should be very
smooth according to section 5. This is the case accord-
ing to fig. 12 . However, the nonlinear forces eventually
distort the initially regular mesh such that the distances

.05

0

- .05

- .02 0 .02

-.05 0 .05

Fig. 12. The simulation of fig. 11 performed with about 300
particles initially arranged on a grid using the AW method .
The effect of widening and flattening of the charge distribution
can well be seen . The different contour lines mark the same
percentages of the maximum charge density as in fig . 11 . In the
lower figure unphysical charge fluctuations caused by the AW

algorithm are clearly visible .
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Fig. 13 . The simulation of figs . 11 and 12 performed with
about 300 particles initially arranged on a grid using the
Gaussian assignment algorithm. The different contour lines
again mark the same percentages as m fig . 11 . Note that in the
lower figure no unphysical charge fluctuations are noticeable .

between two mesh points depend upon their positions.
The charge distribution of fig. 12b obtained with 300
particles also exhibits nonphysical fluctuations of up to
40% in agreement with section 5. Finally the same
simulation was done with a regular initial particle mesh
and the Gaussian assignment algorithm. The results are
shown in figs . 13 and 14 obtained with 300 particles as
contour plots and as three-dimensional plots, respec-
tively. As predicted in section 7, the unphysical charge
fluctuations are much smaller in this case even though
the mesh gets distorted and hence r = s/dv fluctuates .
This is true even though it required only about 20% of
the number of particles used in the by far less accurate
statistical case. Note that about one particle per cell was
used - a number far beyond the realms of most PIC
codes. Since the computation effort of PIC codes de-
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Fig. 14 . The simulation of figs . 13 shown as three-dimensional
plots.

pends mainly upon the number of particles used, the
savings in computing time are considerable.

10. An example with a four-dimensional phase-space
distribution

The next example will present results obtained with
BEAMTRACE using the Gaussian method for an ex-
ample with four-dimensional phase space [8,9] . It is a
system for the focusing of an intense 10 GeV, 1250 A
beam of 2°9BI+ with an initially waterbag-like charge
distribution with a phase-space volume of 56 X 36 X 22
X 34 mm2 mrad2 as required by the HIBALL study [9]
for an inertia confined fusion reactor.

The final focusing system consists of two quadrupole
triplets with two magnetic sector fields of opposite
bending direction and bending angles of about 3° each
in between. The total length of the system is about 100
m. Its detailed geometric layout was optimized with the
program GIOS under the assumption of linear space-
charge forces and can be found in refs. [8,9] .

In the BEAMTRACE simulation the widths s of the
Gaussians were chosen to be about 1/15 of the respec-
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Fig. 15 . The charge distribution at the positions z = 0 m,
z = 57 .5 m and z =101 m of the final focusing system of the
HIBALL study [9-11] generated by BEAMTRACE using the
Gaussian assignment algorithm. Note that the scaling of the
pictures is readjusted to the actual beam widths which are
about t2.5 cm in the first picture, t25 cm in the middle

picture and ±0.5 cm in the last picture .

tive x-y beam diameter and about 1/7 of the respective
v.-vy distribution . Assigning the same charge to each
particle as long as its phase-space center point was
inside the waterbag ellipsoid and omitting all particles
lying outside, the number of particles totalled about
4000 .

In fig. 15 the initial, an intermediate and the final
charge distributions obtained with BEAMTRACE are

M. Berz, H. Wollnik / Simulation of intense particle beams

plotted where the x-y scaling was readjusted to the
corresponding beam diameters. As fig . 15 shows, the
charge distribution is not stigmatically focused at the
final image due to nonlinear space-charge effects which
could not be taken into account in the optimization
process with GIOS. As fig . 15 shows further, the chosen
number of 4000 simulation particles produced rather
smooth charge distributions throughout the optical sys-
tem. This suggests that a few hundred particles could be
quite sufficient for a thorough ion optical investigation
of a system with non-negligible space charge forces.
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