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Abstract Establishing long-term relative bounded motion between orbits in
perturbed dynamics is a key challenge in astrodynamics to enable cluster flight
with minimum propellant expenditure. In this work we present an approach
that allows for the design of long-term relative bounded motion considering
a zonal gravitational model. Entire sets of orbits are obtained via high-order
Taylor expansions of Poincarè return maps about reference fixed points. The
high order normal form algorithm is used to determine a change of expansion
variables of the map into normal form space, in which the phase space behavior
is circular and can be easily parameterized by action-angle coordinates. The
action-angle representation of the normal form coordinates is then used to
parameterize the original Poincaré return map and average it over a full phase
space revolution by a path integral along the angle-parameterization. As a
result, the averaged nodal period and drift in the ascending node are obtained,
for which the bounded motion conditions are straightforwardly imposed. Sets of
highly accurate bounded orbits are obtained, extending over several thousand
kilometers and valid for decades.
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1 Introduction

Henri Poincaré’s three volumes on ‘New Methods of Celestial Mechanics’[32]
were one of the greatest methodological contributions not only to the field of
celestial mechanics, but for the mathematical theory of dynamical systems in
general. Based on his work, numerous methods to analyze dynamical systems
have been established and developed in various fields. Due to their common
origin and mathematical underpinnings, it is sometimes possible to transfer
specific methods from one field of dynamical systems to another. In this paper
we transfer differential algebra (DA) based normal form methods, which were
inspired by Poincaré work and first developed in the field of particle beam
physics and accelerator physics, to the field of astrodynamics to design bounded
motion in the Earth’s zonal problem.

The DA framework [7,8], the DA normal form algorithm [9,10], and their
associated techniques are hybrid methods of numerical and analytic calculations
and have been established by Berz et al. Many of the methods use concepts going
back to Poincaré [32], especially considering his work on perturbation theory,
return maps (later: Poincaré maps), non-integrability, and integral invariants.
While the DA methods are derived on a general basis, they have predominantly
been applied and developed in the field of accelerator physics, where they
reveal details of those dynamical systems that are otherwise very difficult to
obtain by conventional methods. More recently, researchers have begun on the
fruitful transfer of those DA methods to the astrodynamics community [28,2,
3,41]. An advancement of this transfer to normal form methods provides new
possibilities, as it will be demonstrated in this work, including the capability
of determining entire sets of bounded motion orbits in the zonal problem.

Two or more objects are in bounded motion if the relative distance between
them remains bounded for an extended period of time. In practice, this finds
application in cluster flight [13] and formation flying [1] missions, which can of-
fer many advantages compared to single spacecraft mission. From the scientific
standpoint, they enable measurements of unprecedented spatial and temporal
correlation, but they also have economic advantages such as allowing for redun-
dancies within the group, a distribution of the payload and the adaptability of
the mission by exchanging modules of the group. Missions such as PRISMA
[17], GRACE [31], and TerraSAR-X and TanDEM-X [18] demonstrated the
practicability of formation flying and stimulated further research in the field.

To minimize the amount and extend of formation-keeping maneuvers with
control strategies during the mission, it is of great interest to the astrodynamical
community to find ‘naturally’ bounded motion orbits for models considering as
many perturbations as possible, which leave only the unmodeled perturbations
to be corrected by control maneuvers.

In Keplerian dynamics, bounded motion is obtained by choosing orbits with
the same semi-major axis, i.e. orbits with the same orbit period and energy.
The most general expression of the energy-matching condition for Keplerian
orbits in Euler-Hill coordinates was derived by Gurfil [22]. Alternatively, the
linearized relative equations of motion (Hill-Clohessy-Wiltshire [15,37] and
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Tschauner-Hempel equations [25]) can be used to determine initial conditions
which produce periodic relative orbits.

Introducing perturbations to the dynamics generates a non-trivial bounded
motion problem. The dominating perturbation is often due to the oblateness of
the central body and the associated zonal perturbation from the second zonal
harmonic coefficient J2 of the gravitational potential. This zonal perturbation
introduces a drift in the right ascension of the ascending node (RAAN), the
argument of periapsis, and the mean anomaly. The drift in each of the quantities
is oscillating at different frequencies, which drastically increases the complexity
of the bounded motion problem.

Two main routes have been followed to approach this problem: the first
one is based on analytic derivations and the second one uses fully numerical
techniques. The analytic approaches were mainly developed in reduced zonal
problems, e.g. considering J2 only. Schaub and Alfriend [35] derived conditions
for the first-order differential mean orbit elements, which identify J2-invariant
orbits by minimizing the relative drift in the RAAN and mean argument of
latitude. The resulting relative motion remains bounded for short times and
short relative distances due to the unmodeled nonlinear effects and short-
periodic oscillations. Further linear approaches [20,36] using a state transition
matrix and approaches using non-osculating orbital elements [23,19] offered
a deeper understanding of the mathematical underpinnings of the bounded
motion problem, while yielding similarly limited results in size and duration.
The approach by Chu et al. [14] within the framework of analytical theory
used Hamilton–Jacobi theory and action-angle variables to derive canonical
solutions for a constant nodal period and drift of the ascending node for the
pseudo-elliptical orbits and matching those constant values between pairs of
orbits.

On the other hand, numerical approaches enabled the calculation of bounded
motion conditions in a more complete dynamical model, thus avoiding the
inaccuracies introduced in the osculating to mean transformations and in lin-
earizations. The pioneering work by Broucke [12] on families of two-dimensional
quasi-periodic invariant tori around stable periodic orbits of the Ruth-reduced
axially symmetric system, was used by Koon et al. [27] in combination with
Poincaré section techniques to study the J2 problem. While this method was an
improvement to the first-order approaches, long-term bounded motion was still
not achieved by placing orbits on the center manifold. Xu et al. [42] pointed
out that long-term bounded motion in the zonally perturbed system could
only be achieved when the RAAN drift and nodal period are on average the
same for each of the bounded modules. These constrains are weaker than the
constrains originally derived by Martinusi and Gurfil [30] and when they are
enforced on a numerical searching method based on ergodic maps and contour
plots the resulting relative motion is bounded for more than two years.

In [5] a fully numerical technique based on stroboscopic maps was used
to obtain entire families of quasi-periodic orbits producing bounded relative
motion about a periodic one. This method was then used to study both bounded
motion about asteroids [4] and in low Earth, medium Earth, and geostationary
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orbits [6]. Numerical approaches yield bounded relative orbits with arbitrary
size over very long periods of time (or infinite time in theory). However, they
require complex and time-consuming algorithms.

In [24] a compromise between the analytic and numerical technique was
presented, based on the use of DA. DA techniques were used to expand to
high order the mapping between two consecutive equatorial crossings (i.e.,
Poincaré maps). This enabled the study of the motion of a spacecraft for
many revolutions by the fast evaluation of Taylor polynomials. The problem
of designing bounded motion orbits was then reduced to the solution of two
polynomial nonlinear equations (constraining the mean nodal period, Td, and
drift of the right ascension of the ascending node ∆Ω). The derived method
showed an accuracy comparable with that of fully numerical methods, but with
a reduced complexity due to the introduced polynomial approximations. The
main drawback of this technique consisted in the calculation of the mean Td and
∆Ω using numerical averaging over thousands of nodal crossings. This process
resulted in the main computationally intensive part of the algorithm and was
also responsible for accuracy degradation in case of very large separations.

The aim of this paper is to overcome this limitation by the introduction of
DA based normal form (DANF) methods. In particular, the DANF algorithm
is used to determine a change of expansion variables of the Poincaré map into
normal form space, where the phase space behavior is circular and can be easily
parameterized by action-angle coordinates (Fig. 1). The parameterized set of
normal form phase space coordinates is then transformed back to the original
coordinates and averaged over a full phase space revolution by a path integral
along the angle parameterization, yielding the Taylor expansion of the averaged
bounded motion quantities Td and ∆Ω. The expansions are transformed back
to the original coordinates. Map inversion methods are then used to match
two remaining expansion variables in the constants of motion such that the
bounded motion conditions are met. As a result, an entire set of bounded
orbits extending up to thousands of kilometers with a stable relative motion for
decades is achieved in the full zonal problem, avoiding the numerical averaging
introduced in [24]. The superiority, in terms of elegance, computational time,
and accuracy of the new algorithm will be demonstrated using similar test
cases to those presented in [24] and [6].

The paper is organized as follows. Firstly, we introduce the DA framework,
the associated DA Poincaré maps and the DA normal form algorithm, with an
example. Secondly, we discuss the zonal problem and bounded motion condi-
tions, before moving on to the calculation of DA Poincaré return maps. Lastly,
we present parameterized sets of bounded orbits for a low Earth orbit example
from [24] and a medium Earth orbit example from [6] before discussing the
boundaries of the DANF method, which are far beyond any realistic/practical
set up.
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2 Methods

The methods in this paper are hybrids of numerical and analytic calculations,
and are based on a DA framework which was first developed to its current
extent by Berz et al. [10,7,8]. The following summary and introduction to the
DA framework, DA maps and the DANF algorithm is based on Ref. [10] and
was first given in Ref. [40].

2.1 Differential Algebra Framework

The basic goal of the DA framework is the representation and manipulation
of analytic functions. To standardize the notation, an analytic function f
is expressed up to order m in terms of its Taylor polynomial expansion Tf ,
similar to how real numbers are approximated to a certain arbitrary number
of significant digits. Instead of just using ‘≈’ to represent the approximation,
the notation ‘=m’ is used to express that both sides are equivalent up to order
m. Because of the approximation, multiple functions may be represented by
the same Taylor polynomial of order m and are therefore equivalent up to that
order (‘=m’).

This gives rise to the definition of equivalence classes following Ref. [10,
p.91]. The equivalence class [f ]m represents all elements f of the vector space
of infinitely differentiable functions C∞(Rn) with n real variables that have
identical derivatives at the origin up to order m. The origin is chosen out of
convenience and without loss of generality - any other point may be selected.
In the DA framework, the equivalence class [f ]m is represented by a DA
vector, which stores all the coefficients of the Taylor expansion of f and the
corresponding order of the terms in an orderly fashion. Operations are now
defined on the vector space mDn of all the equivalence classes []m, where n is
the number of variables.

There are three operations: addition, vector multiplication and scalar multi-
plication, which are equivalent to the truncated result of adding two polynomials,
multiplying two polynomials and multiplying them with a scalar. The first
two operations on the equivalence classes (DA vectors) form a ring, the scalar
multiplication makes the three operations on the real (or complex) DA vectors
an algebra, where not every element has a multiplicative inverse. An intuitive
example of such elements are functions expanded at zero without a constant
part. To make the algebra a differential algebra, the derivation D satisfying
Leibniz’s law (D(fg) = fD(g) + gD(f)) is introduced, which is almost trivial
in the picture of differentiating polynomial expansions. The derivation opens
the door to algebraic treatment of ordinary and partial differential equations
as it is common in the study of differential algebras [34,33,26].

Implemented in COSY Infinity[11,29], the DA framework allows preserving
the algebraic structure up to arbitrary order while manipulating the coefficients
of the DA vectors with floating point accuracy. An example of a DA vector in
the application of DA transfer maps and Poincaré maps is given in Sec. 2.2.
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2.2 DA Transfer Maps and Poincaré Maps

Transfer maps are a standard tool in dynamical system theory to represent the
effect of the flow generated by a set of ordinary differential equations (ODE).
They are also called propagators or simply maps. Basically, a transfer mapM
algebraically expresses how a final state zf is dependent on an initial state zi
and the system parameters η, zf =M (zi,η).

In the DA framework, this is implemented by a local expansion ofM in
(δz, δη) up to order m around an expansion point z0 and a reference set of
parameters η0. The expansion point of the map belongs to a chosen reference
orbit of the system, e.g. a (pseudo-)closed orbit for a fixed point map and/or
the ideal orbit of the unperturbed system.

There are special transfer maps, called Poincaré return maps or Poincaré
maps for short, that constrain the initial and final state to the same Poincaré
surface S, reducing the dimension of the original map. These maps are particu-
larly useful for repetitive systems, where multiple applications of the Poincaré
return map correspond to a propagation of the system. System dynamics
represented by a Poincaré return maps can be further analyzed by normal form
methods and for the asymptotic stability of the system.

Constraining the map to a surface is often done by calculating the flow
of an ODE and projecting the flow onto the Poincaré surface to generate the
Poincaré map. The DA Poincaré projection itself makes use of DA inversion
methods that compute the inverse A−1 to the auxiliary map A, which contains
the constraining conditions of the Poincaré surface, such that A−1 ◦ A =m

A ◦ A−1 =m I, given that A has no constant part. The basic idea of the
projection of a transfer map M onto a surface defined by σ(z,η) = 0 is to
replace one of the variables or parameters ofM by an expression in terms of
all the other variables and parameters such that the constraint σ(M) = 0 is
satisfied. This eliminates the component of the map and thereby reduces its
dimensionality. An implementation of a timewise projection is outlined in Ref.
[21], where the mapM is expanded in the independent variable time t to find
the intersection time t?(z,η) such that σ(M(z,η, t?(z,η))) = 0.

2.3 Overview of DA Normal Form Algorithm

Given an origin preserving Poincaré return mapM of a repetitive Hamiltonian
system where the components of the map are in phase space coordinates, the
DANF algorithm [10] provides a nonlinear change of variables by an order-by-
order transformation to rotationally invariant normal form coordinates.

For parameter dependent systems, the first step is determining the parameter
dependent fixed point δzFP(δη) of the origin preserving mapM(δz, δη) such
thatM(δzFP(δη), δη) = δzFP(δη). The parameter dependent fixed point δzFP

is determined by defining the extended map N = (M−Iδz, δη) and evaluating
its inverse at the expansion point δz = 0:

(δzFP (δη) , δη) = N−1 (0, δη) . (1)
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The map M is then expanded around its parameter dependent fixed point
δzFP .

In the next step, the linear transformation, the system is diagonalized,
transforming the mapM into the complex conjugate eigenvector space of its
linear part, assuming linearly stable behavior around the fixed point.

The following nonlinear transformations are determined separately in each
of the complex conjugate eigenvector subspaces one order after another, starting
with m = 2. The transformations are given by Am =m I + Tm, where Tm is a
polynomial only of order m. Hence, the transformation Am is a near-identity
transformation and a full identify up to order m− 1. The goal is finding Tm
such that the mth order of the map Mm−1 is simplified or even eliminated
when the transformation Am and its inverse A−1m =m I − Tm are applied to it.
The following equations illustrate how Tm is determined.

Given the mapMm−1, representingM simplified up to order m− 1 and
applying Am and its inverse to it, yields [10, Eq. 7.60]:

Am ◦Mm−1 ◦ A−1m =m (I + Tm) ◦ (R+ Sm) ◦ (I − Tm)

=m (I + Tm) ◦ (R−R ◦ Tm + Sm)

=m R+ Sm + [Tm,R] , (2)

where R is the diagonalized linear part and Sm represents only the mth order
terms of the mapMm−1 (the leading order of terms that are non-simplified yet).
Note that the equations above only consider terms up to order m, since terms
of order m + 1 and larger are irrelevant for determining Tm. The maximum
simplification would be achieved by finding Tm such that the commutator
Cm = Tm ◦ R −R ◦ Tm = [Tm,R] = −Sm, which would eliminate all terms of
order m. This is not always possible, because for uneven orders the commutator
has vanishing terms such that the associated terms in Sm cannot be canceled.
The remaining terms of Sm describe the entire dynamics of the systems in a
nutshell and are the key elements of the normal form and therefore essential
for further dynamic analysis.

As a result of the order-by-order transformation, the map is significantly
simplified up to an arbitrary order to a rotational invariant normal form map
MNF yielding circular phase space behavior. The rotational invariance implies
an interpretation of the normal form as an averaged representation of the
original Poincaré return map M, in the limit where the map application is
repeated infinitely many times. The entire dynamics in the normal form is
given by the angle advancement along the circular phase space curves, which
is only dependent on the (normal form) radius rNF of the circular curves.

Subsection 2.4 explains the key steps of the algorithm in detail for a
one-dimensional system and is complemented by Ref. [39] and its detailed step-
by-step calculation of the DANF algorithm on a 1D example case. Specifics
for higher dimensional systems are also given in Ref. [39] as well as Ref. [10],
which also considers non-symplectic systems.
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2.4 Key steps in DANF algorithm

Since the zonal bounded motion problem can be reduced to one-dimensional
phase space motion (see Sec. 4), we will be considering the DANF algorithm
in more detail for the 1D case. Ref. [39] provides a very detailed calculation
of the DANF algorithm for the one-dimensional phase space system of the
Centrifugal Governor, which shall complement the following explanations.

The starting point for the DA normal form algorithm is an origin preserving
fixed point phase space mapM, which expresses the final phase space state
zf = (Q0, P0) around a fixed point in terms of the initial phase space state
zi = (q0, p0) (around the same fixed point) within the same phase space.

To introduce our notation of the map and its coefficients we will write the
first few terms of the mapM = L+

∑
m Um explicitly

M(q0, p0) =

(
M+(q0, p0)
M−(q0, p0)

)
=

(
Q0(q0, p0)
P0(q0, p0)

)
=

(
(Q0|q0) (Q0|p0)
(P0|q0) (P0|p0)

)(
q0
p0

)
︸ ︷︷ ︸

L

+

(
U+
2(2,0)

U−2(2,0)

)
q20 +

(
U+
2(1,1)

U−2(1,1)

)
q0p0 +

(
U+
2(0,2)

U−2(0,2)

)
p20︸ ︷︷ ︸

U2

+

(
U+
3(3,0)

U−3(3,0)

)
q30 +

(
U+
3(2,1)

U−3(2,1)

)
q20p0 + ...︸ ︷︷ ︸

U3

, (3)

where L is the linear part and Um denotes the nonlinear parts of order m.
The position Q and momentum P components of the map correspond to the
upper and lower component and are denoted with ‘+’ and ‘-’, respectively. The
coefficients in the upper and lower (±) component for the nonlinear k(= a+b)th
order terms xapb are denoted with U±k(a,b). The coefficients (a|b) of the matrix
L̂ in the linear part L represent the factor with which a is linearly dependent
on b.

If the system is parameter dependent, the first step is determining the
parameter dependent fixed point δzFP as explained in Sec. 2.3 and expanding
the map around it.

In the linear transformation of the DA normal form algorithm, the map is
diagonalized, transforming it into the eigenvector space of the linear matrix
L̂. For this we require that the transfer matrix L̂ has distinct eigenvalues.
Furthermore, we require that the system is linearly stable, which means that
all of the distinct eigenvalues have an absolute value of ≤ 1.

In this introduction, we are only considering the most common case: a
symplectic system yielding a complex conjugate eigenvalue pair of magnitude



Bounded Motion Design using Differential Algebra based Normal Form Methods 9

one. The diagonal matrix R̂ of the diagonalized linear part R is given by the
complex conjugate eigenvalues on main diagonal

R̂ =

(
eiµ 0
0 e−iµ

)
, (4)

where µ is the complex phase of the eigenvalue. The linear transformation A1

and its inverse A−11 for the diagonalization have corresponding transformation
matrices Â1 and Â−11 , which are obtained in the usual fashion by using the
complex conjugate eigenvectors of the linear matrix L̂, such that R̂ = Â1 ·L̂·Â−11 .
Since higher order terms Um are also transformed by the linear transformation,
it is important that the determinant of the transformation and its inverse are
of magnitude 1 (more details in Ref. [39]). The result of the first step is the
mapM1 in the complex conjugate eigenvector basis of its linear part:

M1 = A1 ◦M◦A−11 = A1 ◦ L ◦A−11 +
∑
m

A1 ◦ Um ◦A−11 = R+
∑
m

Sm, (5)

where Sm are the transformed non-linear parts of order m. Note that the upper
and lower components of the mapM1 are complex conjugate to each other
just like the new variables (q1, p1) of the map.

All the following non-linear transformations are done one order after another,
where the result of the mth order transformation is calculated via

Mm = Am ◦Mm−1 ◦ A−1m . (6)

The transformation Am and its inverse A−1m are given by

Am =m I + Tm A−1m =m I − Tm, (7)

where Tm is a polynomial of only order m terms (see Eq. 9 for example of T2).
The higher order terms of the transformation Am do not influence the

mth order transformation and can therefore be chosen freely, i.e. to make the
transformation symplectic (with Am = exp(LTm) - see Ref. [39]) or to avoid
higher order resonances between multiple dimensions. However, the higher
orders of the resulting map Mm are strongly dependent on Am, its higher
order terms, and its corresponding inverse. Ref. [39] analyzes the influence of
the second order transformation on the third order terms of the resulting map
in great detail.

The second order transformation has the following form

A2 ◦M1 ◦ A−12 =2 (I + T2) ◦ (R+ S2) ◦ (I − T2)

=2 (I + T2) ◦ (R−R ◦ T2 + S2)

=2 R+ S2 + [T2,R] . (8)

The goal is to find T2 such that [T2,R] = −S2, where T2 is

T2 (q, p) =
(
T ±2 |2, 0

)
q2 +

(
T ±2 |1, 1

)
qp+

(
T ±2 |0, 2

)
p2

=

(
T +
2(2,0)

T −2(2,0)

)
q2 +

(
T +
2(1,1)

T −2(1,1)

)
qp+

(
T +
2(0,2)

T −2(0,2)

)
p2. (9)
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The commutator C2 = T2,R−RT2 = [T2,R] from the second order transfor-
mation is given by

[T2,R] =

(
T +
2(2,0)

(
e2iµ − eiµ

)
T −2(2,0)

(
e2iµ − e−iµ

)) q2 +

(
−eiµT +

2(1,1)

−e−iµT −2(1,1)

)
qp

+

(
T +
2(0,2)

(
e−2iµ − eiµ

)
T −2(0,2)

(
e−2iµ − e−iµ

)) p2
=
(
C±2 |2, 0

)
q2 +

(
C±2 |1, 1

)
qp+

(
C±2 |0, 2

)
p2. (10)

Note that none of the coefficients of C2 are zero, which means that the coefficients
of T2 can be chosen such that the commutator C2 cancels the nonlinear terms
of order two S2, so for (C±2 |k+, k−) = −(S±2 |k+, k−) we choose

(T ±2 |k+, k−) =
−(S±2 |k+, k−)(

eiµ(k+−k−) − e±iµ
) . (11)

In the second order transformation, all second order terms ofM1 will be
canceled. Note that higher order terms Sm with m > 2 will change due to
the second order transformation and so will the complex conjugate variables
from (q1, p1) to (q2, p2). The resulting map of the transformation will be
M2 = R+

∑n
k=3 Sk, where Sk ofM2 are not equal to the Sk ofM1.

The process for the third order transformation is very similar to the second
order transformation with the exception that the commutator has at least one
zero in the coefficients:

C3 =

(
T +
3(3,0)

(
e3iµ − eiµ

)
T −3(3,0)

(
e3iµ − e−iµ

)) q3 +

(
0(

eiµ − e−iµ
)
T −3(2,1)

)
q2p

+

((
e−iµ − eiµ

)
T −3(1,2)

0

)
qp2 +

(
T +
3(0,3)

(
e−3iµ − eiµ

)
T −3(0,3)

(
e−3iµ − e−iµ

)) p3. (12)

The coefficients C+3(2,1) and C
−
3(1,2) are both zero, which means that the terms

S+3(2,1) and S
−
3(1,2) cannot be eliminated. While we will not go there in detail, we

want to note that generally only terms S+
k( k+1

2 , k−1
2 )

and S−
k( k−1

2 , k+1
2 )

for uneven
orders k survive the non-linear transformations.

These surviving terms are the key structure of the normal form as the
following steps will show. We will rewrite the map to make use of the special
form of the surviving terms with

(
M+

m

M−m

)
=

qm (e+iµ +
∑
k

(
S+k |k + 1, k

)
(qmpm)

k
)

pm

(
e−iµ +

∑
k

(
S−k |k, k + 1

)
(qmpm)

k
) =

(
qm f (qmpm)
pm f̄ (qmpm)

)
.

(13)
Furthermore, we are going to make use of the complex conjugate property of
the upper and lower component and rewrite f = eiΛ(qmpm).
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Since the original map M only operates in real space, the normal form
mapMNF should also only operate in real space. This is why the current map
Mm, where m is the order of last transformation, is transformed to a real
normal form basis (qNF , pNF) composed of the real and imaginary parts of the
current complex conjugate basis (qm, pm) using the transformation Areal and
its inverse [10, eq 7.58,7.59 and 7.67]:

qNF = (qm + pm) /2 and pNF = (qm − pm) /2i. (14)

In particular, this allows expressing qmpm in terms of the squared normal form
radius r2

NF
[10, Eq. 7.67]:

qmpm = (qNF + i pNF) (qNF − i pNF) = (qNF)
2

+ (pNF)
2

= r2
NF
. (15)

The transformation into normal form coordinates (qNF , pNF) is conducted
as follows [10, cf Eq. 7.68]:

M±
NF

=

(
QNF(qNF , pNF)
PNF(qNF , pNF)

)
=

(
1/2 1/2
1/2i −1/2i

)
· (qNF ± i pNF) e

±iΛ
(
(qNF)

2
+(pNF)

2
)

=

 qNF

(
e+iΛ(r

2

NF
) + e−iΛ(r

2

NF
)
)

+ pNFi
(
e+iΛ(r

2

NF
) − e−iΛ(r

2

NF
)
)

−qNFi
(
e+iΛ(r

2

NF
) − e−iΛ(r

2

NF
)
)

+ pNF

(
e+iΛ(r

2

NF
) + e−iΛ(r

2

NF
)
)

=

(
cos
(
Λ(r2

NF
)
)
− sin

(
Λ(r2

NF
)
)

sin
(
Λ(r2

NF
)
)

cos
(
Λ(r2

NF
)
) ) · (qNF

pNF

)
. (16)

Eq. 16 illustrates the circular phase space behavior in normal form coordinates
with only amplitude rNF depended angle advancements Λ.

The normalized constant part of Λ is referred to as the tune ν in the beam
physics terminology. The amplitude rNF dependent changes are known as the
tune shifts δν, so ν + δν(r2

NF
) = Λ(r2

NF
)/2π.

The normal form transformation A and its inverse A−1 are given by

MNF = Areal ◦ Am ◦ Am−1 ◦ ... ◦ A1︸ ︷︷ ︸
A

◦M ◦ A−11 ◦ ... ◦ A
−1
m−1 ◦ A−1m ◦ A

−1
real︸ ︷︷ ︸

A−1

.

(17)
In particular, the normal form transformation A yields how the normal

form variables (qNF , pNF) depend on the original phase space variables (q, p)
and, if considered, system parameters η (see Ref. [39]), which suggests the
following notation for A and its inverse

A = (qNF(q, p,η), pNF(q, p,η)) (18)
A−1 = (q(qNF , pNF ,η), p(qNF , pNF ,η)). (19)

For higher dimensional cases, the general process does not change and can
be considered in the complex conjugate eigenvector subspaces generated by the
diagonalization. However, the commutator will include a resonance condition
[10, Eq. 7.65], which might allow for the survival of more terms that would
break the rotational invariance of the normal form (see Ref. [39]).
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3 Zonal Problem

The zonal problem considers a gravitational field of an axially symmetric body.
Accordingly, the system is described in cylindrical (r, φ, z)-coordinates with
the origin at the center of mass, z along the symmetry axis, and φ as the cyclic
variable. The gravitational potential energy U (r, z) is expressed by the zonal
harmonics (Legendre Polynomials) Pl and their corresponding zonal harmonic
coefficients Jl:

U (r, z) = −µ
ρ

(
1−

∞∑
l=2

Jl

(
R0

ρ

)l
Pl

(
z

ρ

))
with ρ =

√
r2 + z2. (20)

In the case of the Earth, the J2-term is the most dominate zonal perturbation
representing the oblateness of the Earth. The following dimensionless units are
used: distances are considered in units of the Earth radius R0 = 6378.137 km
and time is considered in units of T0 = 806.811 s such that the gravitational
constant assumes the value µ = 1.

3.1 Equations of motion

Given the Lagrangian L = 1
2

(
ṙ2 + r2φ̇2 + ż2

)
−U (r, z) in cylindrical (r, φ, z)-

coordinates, the generalized velocities (canonical momenta) to the coordinates
r, z and φ are denoted with vr, vz and Hz, respectively, so that we have

vr =
dL

dṙ
= ṙ, vz =

dL

dż
= ż, and Hz =

dL

dφ̇
= r2φ̇, (21)

where Hz = r2φ̇ is the angular momentum component along the symmetry axis
and the canonical momentum to the angle φ. The Lagrange-Euler equations
show that Hz is a constant of motion, since ∂L

∂φ = 0 = dtHz. Using the Legendre
transformation, the Hamiltonian

H = v2r +
H2
z

r2
+ v2z −

v2r + v2z
2

− H
2
z

2r2
+ U (r, z) (22)

=
v2r + v2z

2
+
H2
z

2r2
+ U (r, z) (23)

is obtained.
Due to the time independence of the system (dtH = 0), the Hamiltonian is

equivalent to the energy

E (r, vr, vz,Hz) =
v2r + v2z

2
+
H2
z

2r2
+ U (r, z) (24)

as the other constant of motion.
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The equations of motion are derived from the Hamiltonian via the Hamilton
equations

ṙ = vr, ż = vz, φ̇ =
Hz
r2
, (25)

v̇r =
H2
z

r3
− ∂U

∂r
, v̇z = −∂U∂z and Ḣz = 0, (26)

which show that the dynamics of the system are only dependent on the reduced
state Z = (r, vr, z, vz)

T .
The time evolution X (t) of the state X = (r, vr, z, vz, φ)

T of a spacecraft
is determined by the integration of the system of ODE’s Ẋ = f (X ,Hz), where
the components of f (X ,Hz) are given by the right hand side of the equations
of motion (Eq. 25 and 26). The orbit O of the spacecraft is described by the
set of all states X (t).

3.2 Bounded motion

In the unperturbed case, with a spherically symmetric potential, every orbit
is closed and forms a fixed elliptic shape in space. In particular, every orbit
intersects with the equatorial plane in two places (excluding orbits of zero
inclination). The intersection from south to north is called the ascending node
�. Due to zonal perturbation the orbits do not close [16], since the ascending
node moves with every revolution around the Earth. The angular difference
between two consecutive ascending nodes is denoted with ∆Ω, the drift of the
right ascension of the ascending node (Ω). It is defined by

∆Ω = φ (�n+1)− φ (�n)− 2πsgn (Hz) , (27)

where −2πsgn (Hz) ensures that ∆Ω is the shortest angular distance between
the two consecutive ascending nodes. The time between two consecutive ascend-
ing nodes is denoted with the nodal period Td = t (�n+1)− t (�n). The nodal
period and the Ω-drift show oscillatory behavior over multiple revolutions,
which are periodic with a frequency ωp corresponding to rotation frequency
of the orbit / its apsides within its respective orbital plane. The oscillatory
behavior of Td and ∆Ω is illustrated in Fig. 2. Quasi-circular orbits show
periodic behavior in the reduced dynamics of Eq. 25 and 26, and the amplitude
of the oscillation of Td and ∆Ω is zero for those orbits.

Xu et al. [42] showed that the conditions for bounded motion between two
orbits O1 and O2 in the zonal problem require the following conditions to be
met:

T d (O1) = T d (O2) (28)
∆Ω (O1) = ∆Ω (O2) . (29)

In other words, any two orbits are in sync, if their average nodal period T d
and average drift of the ascending node ∆Ω are the same.
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4 Poincaré return map calculation and averaging

The goal is to generate a Poincaré return map P that describes the dynamics
of the system by characterizing how a state (Xini, t = 0) within a Poincaré
surface S belonging to an orbit O returns to / is mapped back onto S after
each revolution of the orbit (Xfin, Td). Defining a suitable Poincaré surface
is the first step in generating the map. Secondly, a reference orbit with fixed
point properties has to be identified to ensure that the expansion point of the
map returns to itself after each revolution. The Poincaré return map is then
calculated as an expansion around the reference orbit before being averaged
using DA normal form methods. This yields the average nodal period T d and
average ascending node drift ∆Ω as a function of the system parameters and
expansion variables around the reference orbit. Using DA inversion methods,
the system parameters can be determined such that the bounded motion
conditions are met.

4.1 Poincaré surface space

The subsection on bounded motion (3.2) indicated the importance of the
ascending node for various definitions in the zonal problem, which is why the
Poincaré surface is choose to be equivalent to the set of all ascending nodes �.
The Poincaré surface S� can be divided into subsurfaces S�,Hz,E

for specific
angular momentum components Hz and energies E. These surfaces contain
all states with the parameters (Hz, E) that lie in the equatorial plane (z = 0)
and satisfy vz > 0. The restriction of vz to positive values makes the relation
between E and vz (Eq. 24) bijective and therefore locally invertible in S�,Hz,E

,
so

S�,Hz,E
=

X | z = 0, vz =

√
2 (E − U (r))− v2r −

(
Hz
r

)2
 . (30)

This means that any state X ∈ S�,Hz,E
is uniquely determined by (r, vr, φ),

since z = 0 and vz (r, vr,Hz, E).

4.2 Fixed Point Orbits

The orbit associated with the fixed point state is called reference orbit. The
reference orbit has the special property that it returns to the same reduced
state Z = (r, vr, z, vz)

T after each revolution with a constant nodal period T ?d
and a constant angle advancement in φ, which is also referred to as the fixed
point drift in the ascending node ∆Ω?.

For a certain set of parameters (Hz, E), we use DA inversion techniques
iteratively to find the fixed point orbit. The iteration is initialized with the
state

Z0 = (r = −1/(2E), vr = 0, z = 0, vz (r,Hz, E))
T (31)



Bounded Motion Design using Differential Algebra based Normal Form Methods 15

at its ascending node � (vz > 0) and the state is expanded in the variables
(r, vr). After a full orbit integration until the next ascending node intersection,
the mapM is timewise projected onto the Poincaré surface S�,Hz,E

(subsection
2.2). The resulting Poincaré map P represents a one turn map in dependence on
variations (δr, δvr) in the variables (r, vr). The difference between the constant
part of the map P and the initial state Z0 in the components r and vr is
denoted with ∆r and ∆vr, respectively. The Poincaré map without its constant
part is indicated by P ′. The next initial state Z1 for the iterative process will
be given by the evaluation of

(
Zr,1
Zvr,1

)
=

(
P ′r (δr, δvr)− δr
P ′vr (δr, δvr)− δvr

)−1
(δr = −∆r, δvr = −∆vr) . (32)

The process is repeated until the offset (∆r,∆vr) is smaller than a threshold
value i.e. 1E-14.

4.3 Calculation of Poincaré return map

Given a fixed point state Z? from 4.2 for the parameter set (Hz, E), the
Poincaré return map P : (S�, t)→ (S�, t) is calculated as a DA expansion
around that reference orbit. In the first step, the flow M of the fixed point
and its neighborhood in S� (expansion in (δr, δvr, δHz, δE)) is obtained by
integrating the system of ODE’s from the initial state until the reference/fixed
point orbit is an element of S�,Hz,E

again after T ?d . In other words, the state
is integrated until the orbit of X 0 intersects with the equatorial plane from
south to north again.

While the reference orbit itself is in S�,Hz,E
⊂ S� after T ?d , the expansion

around the reference orbit is not in S�,Hz+δHz,E+δE ⊂ S� due to changing
nodal periods of the orbits within the expansion. In order to project the flow
M after T ?d onto the Poincaré surface S�,E+δHz,E+δHz

, a timewise projection
is calculated following 2.2 and [21]. The flowM is expanded in time to find
the intersection time tintersec(δr, δvr, δHz, δE) such that

Pz =Mz (δr, δvr, δHz, δE, tintersec (δr, δvr, δHz, δE)) = 0 (33)

and P = (M(tintersec), T
?
d + tintersec) ∈ (S�,Hz+δHz,E+δE , t) ⊂ (S�, t).

The time component PTd
of the Poincaré return map yields the dependence

of the nodal period Td on the system parameters and expansion variables.
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4.4 Normal Form Averaging

Given the fixed point Poincaré return map P from 4.3 with

P (δr, δvr, δHz, δE) =


Pr (δr, δvr, δHz, δE)
Pvr (δr, δvr, δHz, δE)

Pz = 0
Pvz (δr, δvr, δHz, δE)
Pφ (δr, δvr, δHz, δE)
PTd

(δr, δvr, δHz, δE)

 (34)

we are using only the first two components (in r and vr) of the Poincare map
for the calculation of phase space transformation provided by the DA normal
form algorithm, since the motion is determined by only the (r, vr) phase space
and the parameters (Hz, E). The reduced map is denoted with K = (Pr,Pvr )T .

The DA normal form algorithm yields the normal form transformation
A(δr, δvr, δHz, δE) (see Eq. 18) such that

A ◦ K ◦ A−1 (qNF , pNF , δHz, δE) = KNF (qNF , pNF , δHz, δE) (35)

is rotational invariant in the normal form phase space coordinates (qNF , pNF)
up to the order of calculation. In other words, the phase space curves in
(Pr(δr, δvr, δHz, δE),Pvr(δr, δvr, δHz, δE)) are transformed to circles in the
normal form (QNF(qNF , pNF , δHz, δE), PNF(qNF , pNF , δHz, δE)) phase space as
Fig. 1 illustrates.
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Fig. 1 a) Non-circular behavior in the original phase space (q, p) and b) circular behavior
in the corresponding normal form phase space (qNF , pNF). In a), the phase space angle
advancement Λk and the phase space radius ri are not constant by continuously change
along each of the phase space curves. In b), the phase space behavior is rotationally invariant
(‘normalized’) with a constant normal form radius rNF and a constant, but amplitude
dependent, angle advancement Λ(rNF ).
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By rewriting the normal form coordinates (qNF , pNF) in an action-angle
representation (rNF , Λ) with(

qNF

pNF

)
= rNF

(
cosΛ
sinΛ

)
, (36)

each normal form phase space curve is characterized by the normal form radius
(action) rNF and the path along each curve is parameterized by the angle Λ.
Using the inverse normal form transformation A−1 (see Eq. 19), the original
phase space variables (δr, δvr) of P (and K) are expressed in terms of the
action-angle representation and variations in the system parameters (δHz, δE):

(δr, δvr) = A−1 (qNF (rNF , Λ) , pNF (rNF , Λ) , δHz, δE) . (37)

The Poincaré map P(rNF , Λ, δHz, δE) is then averaged over a full phase
space revolution, by integrating along the angle Λ:

P (rNF , δHz, δE) =
1

2π

∮
P (rNF , Λ, δHz, δE) dΛ. (38)

The numerical averaging presented in [24] is done in the time domain, which
cannot incorporate the slightly different oscillation frequencies of the relevant
quantities Td and ∆Ω for the different orbits. The key advantage of the normal
form representation is that the different oscillation frequencies are captured
by the amplitude dependent angle advancement in the normal form. The
generalized parameterization of all normal form phase space curves makes the
averaging independent of those differences in the frequency.

Splitting the integration into subsections minimizes the error of the nu-
merical integration and considerably improves the quality and accuracy of the
averaging. For n separate parameterization

(
qNF

qNF

)
= rNF

cos
(

2π(k−1)
n

)
− sin

(
2π(k−1)

n

)
sin
(

2π(k−1)
n

)
cos
(

2π(k−1)
n

) (cosΛ
sinΛ

)
k ∈ {1, 2, ..., n}

(39)
each section is integrated over the symmetric interval of Λ ∈

[
−πn ,

π
n

]
.

The result of the averaging yields every component of P averaged over a full
phase space curve. In particular, it will yield the averaged drift in the ascending
node ∆Ω (rNF , δHz, δE) and average nodal period T d (rNF , δHz, δE).

For mission design purposes the abstract quantity rNF is expressed by the
original coordinates (δr, δvr) and the parameters (δHz, δE) with

r2
NF

(δr, δvr, δHz, δE) =
(
q2
NF

+ p2
NF

)
(δr, δvr, δHz, δE) (40)

using the normal form transformation A, which yields how (qNF , pNF) depend
on the original coordinates (δr, δvr) and the parameters (δHz, δE).
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The average drift in the ascending node ∆Ω (δr, δvr, δHz, δE) and the
average nodal period T d (δr, δvr, δHz, δE) are then projected such that the
bounded motion conditions are satisfied, with

∆Ω? = ∆Ω (δr, δvr, δHz (δr, δvr) , δE (δr, δvr)) (41)
T ?d = T d (δr, δvr, δHz (δr, δvr) , δE (δr, δvr)) . (42)

In this process, DA inversion methods are used to find δHz(δr, δvr) and
δE(δr, δvr). The dependence of Hz and E on orbital parameters for bounded
motion orbits became apparent already in Ref. [38,35].

Theoretically, one could have proceeded with the abstract invariant of
motion rNF to satisfy the bounded motion condition with δHz(rNF) and δE(rNF).
For specific bounded orbits one would then have chosen a value for rNF to
calculate (δHz, δE) and afterwards the initial values for (r, vr) by using Eq. 37,
where Λ can be chosen freely.

5 Results

In the following section we will apply the normal form methods for bounded
motion of low Earth and medium Earth orbits. For this we use fixed point
orbits of the zonal problem that have previously been investigated by He et al.
[24] for the low Earth orbit and Baresi and Scheeres [6] for the medium Earth
orbit. As explained above, the fixed point Poincaré maps P are calculated as an
expansion in the variables (δr, δvr, δHz, δE) around the respective fixed point
orbit. In the calculation we consider zonal perturbations up to the J15-term
(list of the used values of the coefficients J2 to J15 in appendix Tab. 8), since
investigations in [24] indicated only little influence of Jk terms for k > 15. We
are using maps of 8th order, which provide the best balance of accuracy and
computation time.

It will be shown that the DANF method provides entire sets of bounded
motions that extend far beyond the realistic/practical scope. Since the approach
is based on polynomial expansions, it is obvious it will have to fail at some
point. In the last part of this section we take a look at the limitations of the
DANF method and the resulting sets for very large distances between orbits.

5.1 Bounded motion in low Earth orbit

In a first comparison, we are investigating bounded motion around a pseudo-
circular low Earth orbit (LEO) that was also considered in [24]. The pseudo-
circular orbit corresponds to the reduced fixed point state

(r?, v?r ) = (1.14016749,−1.05621369E-3) (43)
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for the parameters (Hz, E) = (−0.16707295,−0.43870527). The orbit has a
fixed nodal period of T ?d = 7.64916169 (≈103 min) and a constant ascend-
ing node drift of ∆Ω? = 1.22871195E-3 rad (0.0704◦). The z-phase-space-
components of the Poincaré fixed point orbit are defined by the Poincaré
section (z = 0) and Eq. 30 with v?z (r?, v?r ,Hz, E) = 0.92518953.

The computation of the Poincaré map took 165 seconds on a Lenovo E470
with an Intel®CoreTM i5-7200U CPU 2.5GHz. The map confirms the fixed
point property of the orbit, since the offset of the constant part of the map
from the initial coordinates is well within the numerical error of the integration
with (∆r,∆vr, ∆z,∆vz) = (4E-15, 5E-13,−1E-15,−4E-15). The normal form
transformation of the reduced fixed point Poincaré map K = (Pr,Pvr)T is
calculated via the DA normal form algorithm (in 90 milliseconds). The circular
phase space behavior in normal form space is parameterized using the action-
angle notation (rNF , Λ). The phase space parameterization is then transformed
back to the original coordinates of the Poincaré map. The Poincaré map is then
averaged (in 52 milliseconds) over a full phase space rotation using 8 subsections
following the procedure outlined in Sec. 4.4. Afterwards, the variable rNF is
expressed in terms of δr, δvr, δHz and δE before the variations in the constants
of motion (δHz, δE) are matched dependent on (δr, δvr) such that the averaged
expressions for Td and ∆Ω satisfy the bounded motion conditions (Eq. 41+42).

The dependence of the constants of motion (Hz, E) on (δr, δvr) for bounded
motion around the pseudo-circular LEO from Ref. [24] are given in Tab. 9
in the appendix. Considering bounded orbits initiated with the same vr as
the pseudo-circular orbit (δvr = 0), the dependence of Hz(δr, δvr = 0) and
E(δr, δvr = 0) are provided in Tab. 1 below.

Table 1 The expansion of Hz(δr, δvr = 0) and E(δr, δvr = 0) for relative bounded motion
orbits with an average nodal period Td = 7.64916169 (≈103 min) and an average ascending
node drift of ∆Ω = 1.22871195E-3 rad. The expansion is relative to the pseudo-circular LEO
from Ref. [24].

Hz(δr, δvr = 0) = E(δr, δvr = 0) =
− 0.16707295 − 0.43870527
+ 0.32072807 δr2 − 0.31602983E-3 δr2

+ 0.25767948E-3 δr3 − 0.25390482E-6 δr3

− 0.19132824 δr4 − 0.31003174E-3 δr4

+ 0.53296708E-4 δr5 − 0.85361819E-6 δr5

+ 0.12006391E-1 δr6 − 0.32152252E-3 δr6

+ 0.60713391E-3 δr7 − 0.24661573E-5 δr7

− 0.19751494 δr8 − 0.21784073E-3 δr8

To show that the expansion of δHz and δE provide relative bounded
motion orbits, we illustrate the long-term behavior of three LEOs relative to
one another. The first orbit is the fixed point / pseudo-circular orbit and is
denoted with O0. The other two orbits are initiated at δr = 0.06 with δvr = 0
(O1) and δr = 0.13 with δvr = 0 (O2), respectively, and both have an initial
longitudinal offset of φ = 0.5◦ relative to O0. The specific values of the orbits
are given in Tab. 2.
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Table 2 All LEOs below are initiated with vr,0 = −1.05621369E-3 and r0 = 1.14016749+δr,
and have an average nodal period of Td = 7.64916169 (≈103 min) and an average ascending
node drift of ∆Ω = 1.22871195E-3 rad. O0 is the pseudo-circular LEO from Ref. [24].

δr δvr φ Hz E
O0 0.00 0 0.0◦ -0.16707295 -0.43870527
O1 0.06 (383 km) 0 0.5◦ -0.16592075 -0.43870642
O2 0.13 (829 km) 0 0.5◦ -0.16170668 -0.43871071

In Fig. 2 we show that the bounded motion conditions are met: the oscillatory
behavior of the nodal period Td and the ascending node drift ∆Ω of the two
orbits O1 and O2 average out to the same value, respectively, which corresponds
to the constant nodal period T ?d and constant ascending node drift ∆Ω? of the
fixed point orbit O0.
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Fig. 2 Oscillatory behavior of the bounded motion quantities Td and ∆Ω of the bounded
LEOs O1 and O2 initiated at δr = 0.06 and δr = 0.13, respectively. Additionally, the constant
nodal period T ?

d = 7.64916169 and constant ascending node drift of ∆Ω? = 0.0704◦ of the
fixed point orbit O0 are shown. The periods of oscillation are 1763 orbital revolutions (126
days) for O2, 1810 orbital revolutions (129 days) for O1, and 1823 orbital revolutions (130
days) for δr → 0 of O0. The shown results are generated by numerical integration. The time
domain was added assuming that on average one orbital revolution ≈̂ T ?

d .

The bounded motion is further confirmed by Fig. 3, which shows the total
distance between the three LEOs respectively for 14 years. Furthermore, Fig. 3
illustrates the relative radial and along-track distance between the orbit pairs
from the perspective of one of the orbits in the pair.

Apart from yielding long-term bounded motion, the normal form methods
also provide the average angle advancement Λ in the (r, vr) phase space. This
angle advancement is directly linked to the rotation frequency ωp of the orbit
(and its apsides) within its orbital plane, which causes the oscillation of Td and
∆Ω shown in Fig.2 with ωp. One (r, vr) phase space rotation corresponds to one
revolution of the orbit (and its apsides) within its orbital plane. Accordingly,
the frequency ωp = Λ/2π is equivalent to the definition of the tune and the
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Fig. 3 Relative bounded motion of LEOs with an average nodal period of Td = 7.64916169
(≈103 min) and an average node drift of ∆Ω = 1.22871195E-3 rad for 14 years. The total
relative distance between the orbits is shown in the left plot and the right plot shows the
relative radial and along-track distance between orbit pairs from the perspective of one of the
orbits in the pair. The oscillation in the relative distance between O2 and O1 is caused by
the rotating orbital orientation of the orbits at different frequencies as explained in the text.

tune shifts ν + δν, which are just the normalized angle advancement separated
into its constant part (the tune ν) and its amplitude dependent part (the tune
shifts δν). The normal form yields the average angle advancement Λ dependent
on (rNF , δHz, δE). After normalizing Λ, by division by 2π, and replacing rNF

by an expression of (δr, δvr) and (δHz, δE) according to Eq. 40, and using the
expressions from Tab. 9 for (δHz, δE) the frequency ωp(δr, δvr) is obtained
for the bounded motion orbits around the fixed point LEO (see Tab. 9). The
coefficients of ωp for δvr = 0 are given in Tab. 3 below.

Table 3 Expansion of ωp(δr, δvr = 0) of relative bounded motion LEOs with an average
nodal period Td = 7.64916169 (≈103 min) and an average node drift of ∆Ω = 1.22871195E-3
rad. The expansion is relative to the pseudo-circular LEO from Ref. [24].

ωp(δr, δvr = 0) =
+ 0.54868728E-3
+ 0.10803872E-2 δr2

+ 0.86800515E-6 δr3

+ 0.10552068E-2 δr4

+ 0.29106874E-5 δr5

− 0.76284414E-3 δr6

+ 0.39324207E-5 δr7

− 0.35077526E-1 δr8
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Accordingly, the periods of the oscillations of the nodal periods Td and the
ascending node drifts ∆Ω in Fig. 2 (in units of orbital revolutions) are just the
inverse of the frequencies ωp(δr = 0.06) = 5.52590498E-4 and ωp(δr = 0.13) =
5.67242676E-4. These frequencies also help explain the oscillation of the total
relative distance range between O1 � O2 over 13.3 years in Fig. 3.

While O1 shows repetitive behavior after 1809.7 orbital revolutions (129.3
days), the behavior of O2 is repetitive after 1762.9 orbital revolutions (125.9
days). Accordingly, the two orbits will be in and out of sync regarding their
orbital orientation, while maintaining bounded due to the matching average
nodal period and ascending node drift. Specifically, the two orbits will be back
in sync after about 68170 orbital revolutions (4869 days / 13.3 years) as Fig. 3
illustrates, since O1 will have turned 37.7 times while O2 will have turn exactly
once less, namely, 36.7 times, bringing them both back into the same orbital
orientation to one other before moving apart again.

In conclusion, our first comparison showed the superiority of the normal
form methods, in particularly, compared to the iterative map evaluation method
in [24], where numerical adjustments to the method were required to provide
long-term relative bounded motion for δr = 0.11.

In section 5.3 we will show that the DANF method even provides hypothet-
ical long-term bounded motion up to δr = 0.3, which covers all realistic cases
until δr = 0.14 and further hypothetical (non-practical) cases with altitudes
below the Earth’s surface.

In the next comparison we are going to investigate bounded motion much
farther from the Earth’s surface. Accordingly, we expect a larger theoretical
and practical bounded motion range from the DANF method, due to a weaker
influence of the zonal perturbations.

5.2 Bounded motion in medium Earth orbit

In this comparison, we are considering a medium Earth orbit (MEO) from [6,
p.11] with r = 26562.58 km, vr=−9.05E-4 km/s and vz = 3.18 km/s. In the
units of R0 = 6378.137 km and T0 = 806.811 s, the zonal problem with J2 to
J15 yields a fixed point orbit at (r?, v?r ) = (4.17198963,−1.14150072E-4) and
v?z = 0.40154964 for the parameters (Hz, E) = (1.16863390,−0.11984818). The
fixed point orbit has a fixed nodal period T ?d = 53.5395648 (≈12 hours) and
constant drift in the ascending node of ∆Ω? = −3.35410945E-4 rad (-0.0192◦).

The computation of the map took 131 seconds on the same computer
system as mentioned above (Subsec. 5.1). The offset of the integration with
(∆r,∆vr, ∆z,∆vz) = (−4E-15,−2E-13,−4E-15, 2E-16) is well within the range
of the numerical error of the integration. After the normal form transformation
(in 100 milliseconds) and the averaging (in 62 milliseconds) following the same
procedure as in 5.1, the dependencies of the constants of motion (Hz, E) on
(δr, δvr) were calculated (see Tab. 10 in the appendix). Below, Tab. 4 yields
Hz(δr, δvr = 0) and E(δr, δvr = 0).
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Table 4 Expansion of Hz(δr, δvr = 0) and E(δr, δvr = 0) for relative bounded motion
MEOs with an average nodal period of Td = 53.5395648 (≈ 12 h) and an average node drift
of ∆Ω = −3.35410945E-4 rad. The expansion is relative to the pseudo-circular MEO from
[6].

Hz(δr, δvr = 0) = E(δr, δvr = 0) =
+1.16863390 − 0.11984818
− 0.16787983 δr2 − 0.11295792E-05 δr2

− 0.57819536E-5 δr3 − 0.38903865E-10 δr3

+0.72342680E-2 δr4 − 0.16786161E-07 δr4

+0.16208617E-6 δr5 − 0.34176382E-11 δr5

− 0.69493130E-4 δr6 − 0.28279909E-08 δr6

+0.11561378E-6 δr7 +0.27190622E-12 δr7

+0.54888817E-4 δr8 − 0.51224108E-10 δr8

To illustrate that the DANF methods also provide bounded motion for this
set of parameters, we consider the long-term behavior of three MEOs relative
to one another. The first orbit is the fixed point / pseudo-circular orbit and is
denoted with O0. Since r? of the fixed point MEO is about four times the r? of
the low Earth fixed point orbit from the previous section, the bounded orbits
are initiated at four times the distance compared to the LEO investigation
in section 5.1. O1 is initiated at δr = 0.24 (1531 km) with δvr = 0 and O2 is
initiated at δr = 0.52 (3317 km) with δvr = 0. These relative distances are
already at the border or larger than distances that are used in practice. Again,
both orbits have an initial longitudinal offset of φ = 0.5◦ relative to O0. The
specific values of the orbits are given in Tab. 5.

Table 5 All MEOs are initiated with vr,0 = −1.14150072E-4 and r0 = 4.17198963 + δr and
have an average nodal period of T d = 53.5395648 (≈ 12 h) and an average ascending node
drift of ∆Ω = −3.35410945E-4 rad. O0 is the pseudo-circular MEO from Ref. [6].

δr δvr φ Hz E
O0 0.0 0 0.0◦ 1.16863390 -0.119848175
O1 0.24 (1531 km) 0 0.5◦ 1.15898794 -0.119848240
O2 0.52 (3317 km) 0 0.5◦ 1.123766254 -0.119848482

Equivalent to Fig. 2 we show that the bounded motion conditions are met
for the chosen MEOs in Fig 4. The oscillatory behavior of the nodal period
Td and the ascending node drift ∆Ω of the two orbits O1 and O2 average
out to the same value, respectively, which correspond to the constant nodal
period T ?d and constant ascending node drift ∆Ω? of the fixed point orbit O0.
In contrast to the investigated LEOs, the oscillation period of the bounded
motion quantities of the MEOs increases with increasing δr. The period of
oscillation in the MEO cases is also about two orders of magnitude longer with
periods of 47 and 53 years for O1 and O2, respectively, compared to the LEOs.

Using the normal form methods, the rotation frequency ωp of the orbital
orientation within its orbital plane is calculated as described in Sec. 5.1. The
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Fig. 4 Oscillatory behavior of the bounded motion quantities Td and ∆Ω of the bounded
MEOs O1 and O2 initiated at δr = 0.24 and δr = 0.52, respectively. Additionally, the constant
nodal period T ?

d = 53.5395648 and constant ascending node drift of ∆Ω? = −0.0192176316
deg of the fixed point orbit O0 are shown. The periods of oscillation are 38682 orbital
revolutions (52.9 years) for O2, 34621 orbital revolutions (47.4 years) for O1, and 33671
orbital revolutions (46.1 years) for δr → 0 of O0. The shown results are generated by
numerical integration. The time domain was added assuming that on average one orbital
revolution ≈̂ T ?

d .

results from the expansion of ωp confirm these periods of oscillation with
ωp(0.24) = 2.88842404E-5 and ωp(0.52) = 2.58516089E-5. The expansion of ωp
dependent on δr is given in Tab. 6. The full expansion ωp(δr, δvr) is provided
in Tab. 10 in the appendix.

Table 6 Expansion of ωp(δr, δvr = 0) of relative bounded motion orbits with an average
nodal period of T d = 53.5395648 (≈ 12 h) and an average ascending node drift of ∆Ω =
−3.35410945E-4 rad. The expansion is relative to the pseudo-circular MEO from [6].

ωp(δr, δvr = 0) =
+ 0.29699500E-04
− 0.14137545E-04 δr2

− 0.48691156E-09 δr3

− 0.22644327E-06 δr4

− 0.43912160E-10 δr5

− 0.10717280E-05 δr6

− 0.10374073E-09 δr7

+ 0.23789772E-05 δr8

Fig. 5 shows the long-term bounded motion behavior by illustrating the
relative total distance between the orbits and their relative radial and along-
track distances. Due to the long oscillation periods in the bounded motion
quantities of 47 and 53 years for O1 and O2, respectively, the oscillation in the
total distance between O1 and O2 is about 456 years and can therefore only be
partially shown. After 456 years the orbital orientation of O1 will have turned
9.6 times and align again with the orbital orientation of O2, which will have
turned 8.6 times.
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Fig. 5 Relative bounded motion of MEOs with an average nodal period of Td = 53.5395648
(≈ 12 h) and an average ascending node drift of ∆Ω = −3.35410945E-4 rad over 70 years.
The total relative distance between the orbits is shown in the left plots and the right plot
shows the relative radial and along-track distance between orbit pairs from the perspective
of one of the orbits in the pair. The ‘breathing’ of the relative total distance between O2

and O0 originates from the rotating orbital orientation of pseudo-elliptical O2 relative to
the pseudo-circular O0. Due to the very long rotation periods, only the first 70 years of the
relative distance oscillation and radial/along-track behavior between O2 and O1 could be
shown.

The ‘breathing’ of the relative distance between the orbits is particularly
noticeable for the orbit pair of O2 and O0. The frequency of the ‘breathing ’
is 2ωp which is a result of the rotation of the orbital orientation of the pseudo-
elliptical O2 relative to the pseudo-circular O0. Since the orbital shape of the
pseudo-elliptical O2 is approximately symmetric along its semi-major axis, one
full rotation of the orbital orientation corresponds to two breathing cycles.

In conclusion, our methods also provided an entire set of long-term relative
bounded motion around the considered fixed point MEO from [6], which was
validated far beyond practical relative distances. In the following subsection,
the limitations of our method are investigated. The investigations will show
that the validity of the sets presented in 5.1 and 5.2 extends over about twice
the already presented distance from their respective fixed point orbits.

5.3 Testing the limitations of the DANF method

The previous two sections illustrated the validity of the DANF method for all
practical relative distances for bounded motion and beyond. In this section,
we move even further away from any practical relevance of the calculated
sets of bounded motion to the limitations of our method. Since it is based on
polynomial expansions, it is obvious it will fail at some point and we want to
show when and how this failing process takes place.
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First we pick a number of test orbits from the calculated bounded motion
sets (see Tab. 7). In contrast to previous examples, no initial longitudinal offset
relative to the respective fixed point orbits are set.

Table 7 The following orbit parameters are obtained by evaluating Hz(δr, δvr = 0) and
E(δr, δvr = 0) from Tab. 1 and 4 for various δr keeping δvr = 0.

Test LEOs Test MEOs
δr Hz E δr Hz E

O0 0.00 -0.167072950 -0.438705274 O0 0.0 1.16863390 -0.119848175
O0.15 0.15 -0.159952468 -0.438712546 O0.6 0.6 1.10913117 -0.119848584
O0.20 0.20 -0.154547603 -0.438718435 O0.7 0.7 1.08810278 -0.119848733
O0.25 0.25 -0.147770789 -0.438726324 O0.8 0.8 1.06414208 -0.119848906
O0.30 0.30 -0.139754169 -0.438736486 O0.9 0.9 1.03738028 -0.119849103
O0.35 0.35 -0.130665569 -0.438749297 O1.0 1.0 1.00796823 -0.119849324
O0.40 0.40 -0.120716695 -0.438765264 O1.1 1.1 0.976078338 -0.119849572

O1.2 1.2 0.941907258 -0.119849845
O1.3 1.3 0.905679721 -0.119850146
O1.4 1.4 0.867653615 -0.119850476

Fig. 6 illustrates the behavior of the bounded motion quantities Td and
∆Ω for the chosen orbits of the LEO bounded motion set. Both quantities
show oscillatory behavior centered at or close to T ?d and ∆Ω?, respectively.
With increasing distance δr, the influence of higher order oscillations becomes
apparent. The frequency and amplitude of oscillation of the bounded motion
quantities also increase with increasing distance δr.
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Fig. 6 Behavior of the bounded motion quantities Td and ∆Ω for the test orbits from Tab.
7 of the calculated LEO bounded motion set (see Tab. 9) generated by numerical integration.
For large δr, the influences of higher order oscillations are apparent. The frequency and
amplitude of oscillation increase with increasing δr. The amplitude of ∆Ω is particularly
sensitive to δr.

If the bounded motion conditions are not met or only met approximately,
the orbits will start drifting apart. This effect is illustrated in Fig. 7, which
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shows very slowly diverging behavior of approximately 2.6 km/year for δr = 0.3
(1913 km) and a stronger divergence of approximately 10.6 km/year for δr = 0.4
(2551 km) in the left plot. The thickening curves in the radial/along-track
representation of the relative orbit motion is further indication of divergence.
The strength of divergence in Fig. 7 can be directly linked to the size of the
offsets in the bounded motion quantities from T ?d and ∆Ω?, shown in Fig. 6.
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Fig. 7 Distance between the orbits in the calculated bounded motion set and O0 is deter-
mined in regular time intervals with numerical integration over more than ten years. Left
plot only shows the upper bound to avoid overlaps. Thin horizontal lines at initial upper
bound emphasize small changes. The dotted light-blue curve (right) originates from an
unintended near-resonance between the chosen time interval for distance evaluations and the
orbital behavior. Measurable increase in relative distances (left) over 10 years for δr ≥ 0.3 is
supported by thickening curves in the radial/along-track behavior (right).

From Fig. 7 and 6 we conclude that our method and the resulting expansions
in Hz and E (see Tab. 9) for long-term bounded motion of at least 10 years
around the fixed point LEO from [24] start to lose their significant accuracy
for δr ≥ 0.3 to satisfy the bounded motion conditions with the required
precision. Note that δr = 0.3 (1913 km) is already a purely theoretical orbit
with altitudes of more than 1000 km below the Earth’s surface, which means
that our expansions in Hz and E provided reliable bounded motion beyond
realistic (δr ≤ 0.14) inter-orbit distances.

The behavior of the bounded motion quantities Td and ∆Ω for the chosen
orbits of the MEO bounded motion set (from Tab. 7) are shown in Fig. 8.
In contrast to the test LEOs, the amplitude and period of oscillation of the
bounded motion quantities are decreasing with increasing distance δr, which
causes the almost steady behavior of δr = 1.4 over the shown time-span and
generally suppresses higher order oscillations that were seen for the LEOs.
While the oscillations of Td are approximately centered around T ?d (with the
exception of O1.4), the center of oscillation is increasingly diverging from ∆Ω?
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to lower ∆Ω for δr ≥ 0.8. In other words, the expansions in δHz and δE start
failing in producing related orbits that satisfy the bounded motion condition.
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Fig. 8 Behavior of the bounded motion quantities Td and ∆Ω for the test orbits from
Tab. 7 of the calculated MEO bounded motion set (see Tab. 10) generated by numerical
integration. In contrast to the investigated LEOs, the frequency and amplitude of oscillation
decrease with increasing δr such that O1.4 appears almost steady. For δr ≥ 0.8 the center of
oscillation of ∆Ω start to drift to more negative values and away from ∆Ω?.

The consequence of this offset in the bounded motion condition is diverging
behavior between the orbits, which can be seen in Fig. 9. The upper bound
of the total distance between the orbits starts diverging for those very large
distances and the thickening curves in the radial/along-track representation of
the orbits distance from the perspective of O0 further indicate this divergence.
Additionally, Fig. 9 shows the ‘breathing’ in the total relative distance between
the orbits with 2ωp, which is due to the rotating orbital orientation of the
orbits relative to the pseudo-circular fixed point orbit as already mentioned in
the section above.

From Fig. 9 and 8 we conclude that our method and the resulting expansions
in Hz and E (see Tab. 9) for long-term bounded motion of at least 70 years
around the fixed point MEO from [6] start to lose their significant accuracy for
δr ≥ 0.9 to satisfy the bounded motion conditions with the required precision.
Interestingly, the very long ‘breathing’ periods for very large distances like
δr = 1.3 suggested (temporary) bounded motion for the first 70 years when
looking at Fig. 9, while Fig. 8 reveals the underlying diverging behavior due to
the mismatched bounded motion conditions.
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Fig. 9 Distance between the orbits in the calculated bounded motion set and O0 is deter-
mined in regular time intervals by numerical integration over more than 70 years. Left plot
only shows the upper bound to avoid overlaps. Thin horizontal lines at initial upper bound
emphasize small changes. The ‘breathing’ of the total relative distance from the orbital
rotation is clearly visible. Its period increases with increasing δr until being unrecognizable
due to the strong divergence for δr ≥ 1.4, which is supported by thinker curves in the right
plot. Weaker divergence over the 70-year time-span is already noticeable for δr ≥ 0.9. The
divergence is caused by the offset in respective bounded motion quantities (see. 8).

6 Conclusion

The normal form methods presented in this work yield parameterized sets of
the constants of motion (Hz(δr), E(δr)) for bounded orbits with an average
nodal period and average ascending node drift corresponding to the fixed nodal
period and ascending node drift of the reference (fixed point) orbit. The range
of δr for which bounded motion orbits can be obtained is dependent on the
closeness to the Earth. The closer to the Earth, the stronger the influence of
the zonal perturbation and the stronger the dynamics of the orbit relatively
depend on δr.

In comparison to the approach in [24], our method avoided the time-
consuming and inaccurate numerical averaging, by using a normal form-based
parameterization for the averaging. As a result, the range of the bounded
motion provided by our methods is more than twice as large as the range
of the results in [24]. Additionally, our method does not require a separate
calculation for each δr, but rather provides an expansion in (δr, δvr), which
covers all orbits up to a certain maximum range that varies with the altitude
of the reference trajectory (see Section 5).
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While the method in [6] has the advantage of allowing for the calculation
of bounded orbits up to arbitrary distances δr, it lacks the ability to provide
parameterized sets of bounded motion just like [24].

The normal form methods are also able to provide parameterized sets of
the rotation frequency of the orbits within their orbital plane. This rotation
is due to the zonal perturbations in the gravitational field of the Earth, since
there is no rotation of the orbit for the spherically symmetric case. With
increasing distance from the Earth’s center ρ, the zonal perturbations Jl fall
off with ρ−l−1. Accordingly, it is not surprising that the rotation frequency of
the MEOs is so much lower than the rotation frequency of the LEOs. Similarly,
the δr dependence of the bounded motion is a lot less sensitive for the MEOs
comparted to the LEOs.

Future efforts can be dedicated to use our methods for more practical
mission design problem thus including additional perturbations, control and
verified results.
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Appendix

Table 8 Used values for coefficients J2 to J15.

J2 0.108265E-2
J3 -0.253198197166358E-5
J4 -0.162044603134295E-5
J5 -0.227974752444200E-6
J6 0.541020690186084E-6
J7 -0.350290712062631E-6
J8 -0.203807006663452E-6
J9 -0.121996071986768E-6
J10 -0.244590838844460E-6
J11 0.243134750456128E-6
J12 -0.182033357729771E-6
J13 -0.216491043170781E-6
J14 0.122216071480691E-6
J15 -0.125428247724183E-7
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Table 9 Expansion of Hz(δr, δvr), E(δr, δvr) and ωp(δr, δvr) for relative bounded motion
orbits with an average nodal period Td = 7.64916169 and an average node drift of ∆Ω =
1.22871195E-3. The expansion is relative to the pseudo-circular LEO from Ref. [24].

Hz(δr, δvr) E(δr, δvr) ωp(δr, δvr)
-1.6707295010E-1 -4.3870527389E-1 5.4868728036E-4
3.2072807154E-1 δr2 -3.1602983362E-4 δr2 1.0803872149E-3 δr2

-1.7601813145E-3 δr δvr 1.7343970089E-6 δr δvr -5.9292514649E-6 δr δvr
4.7445452964E-1 δv2r -4.6750440440E-4 δv2r 1.5982218376E-3 δv2r
2.5767948181E-4 δr3 -2.5390482153E-7 δr3 8.6800514949E-7 δr3

-7.1994896275E-4 δr2δvr 7.0940267192E-7 δr2δvr -2.4251810918E-6 δr2δvr
8.3360190532E-1 δr δv2r -8.2139075066E-4 δr δv2r 2.8080262400E-3 δr δv2r
1.5697482432E-4 δv3r -1.5467535278E-7 δv3r 5.2877689326E-7 δv3r
-1.9132824339E-1 δr4 -3.1003174299E-4 δr4 1.0552067951E-3 δr4

2.1035727160E-3 δr3δvr 3.3994863227E-6 δr3δvr -1.1570250200E-5 δr3δvr
-2.0121336197E-1 δr2δv2r -1.2767853819E-3 δr2δv2r 4.3510170764E-3 δr2δv2r
3.2588030248E-3 δr δv3r 4.8840508681E-6 δr δv3r -1.6620822490E-5 δr δv3r
-4.2102771185E-1 δv4r -6.7615375665E-4 δv4r 2.3012846046E-3 δv4r
5.3296708512E-5 δr5 -8.5361818612E-7 δr5 2.9106874222E-6 δr5

1.1479942296E-3 δr4δvr 1.1114750753E-6 δr4δvr -3.7786851190E-6 δr4δvr
-9.9457284340E-1 δr3δv2r -1.6127866072E-3 δr3δv2r 5.4891974164E-3 δr3δv2r
7.6517126873E-3 δr2δv3r 9.5062863039E-6 δr2δv3r -3.2338572336E-5 δr2δv3r
-1.4753238358 δr δv4r -2.3800404966E-3 δr δv4r 8.1005129960E-3 δr δv4r

-5.5446717999E-4 δv5r -1.7558606800E-7 δv5r 5.9349288723E-7 δv5r
1.2006391180E-2 δr6 -3.2152251564E-4 δr6 -7.6284413577E-4 δr6

-2.5005721597E-4 δr5δvr 5.3360769861E-6 δr5δvr 1.2414431752E-5 δr5δvr
-3.8565227237E-1 δr4δv2r -2.1308049099E-3 δr4δv2r -9.8983836538E-4 δr4δv2r
5.1584440984E-3 δr3δv3r 2.1555520544E-5 δr3δv3r 1.7119203210E-5 δr3δv3r
-1.8753261947 δr2δv4r -5.2239394828E-3 δr2δv4r 5.5870497891E-3 δr2δv4r

1.5773977140E-3 δr δv5r 7.5955181780E-6 δr δv5r 4.1101990637E-5 δr δv5r
2.2859265131E-2 δv6r -1.0143226872E-3 δv6r -2.5600523798E-3 δv6r
6.0713391366E-4 δr7 -2.4661573276E-6 δr7 3.9324207326E-6 δr7

4.9036075395E-4 δr6δvr 7.2335652786E-7 δr6δvr 1.0107195473E-5 δr6δvr
9.8757718346E-2 δr5δv2r -2.5182470248E-3 δr5δv2r -5.9231114988E-3 δr5δv2r
8.3522148387E-3 δr4δv3r 2.1754808590E-5 δr4δv3r 1.1940354770E-4 δr4δv3r
-8.5652517585E-1 δr3δv4r -9.2396202491E-3 δr3δv4r -1.1406051362E-2 δr3δv4r
1.2155084948E-2 δr2δv5r 2.4336407071E-5 δr2δv5r 1.7183641063E-4 δr2δv5r
1.7508601740E-1 δr δv6r -5.4192366146E-3 δr δv6r -1.3244933287E-2 δr δv6r
4.0490586333E-4 δv7r -1.1465875978E-7 δv7r -5.5789205714E-6 δv7r
-1.9751493775E-1 δr8 -2.1784073425E-4 δr8 -3.5077526079E-2 δr8

5.6598747773E-2 δr7δvr -4.6568312775E-5 δr7δvr 9.4554103578E-4 δr7δvr
-8.9728839877E-1 δr6δv2r -2.6114623325E-3 δr6δv2r -2.0942480939E-1 δr6δv2r
6.0889800088E-1 δr5δv3r -5.4402884938E-4 δr5δv3r 5.4819391867E-3 δr5δv3r
-1.6147223214 δr4δv4r -1.3798967828E-2 δr4δv4r -4.7972933756E-1 δr4δv4r

8.4167866086E-1 δr3δv5r -7.3058424456E-4 δr3δv5r 8.0440665070E-3 δr3δv5r
-1.6958330478 δr2δv6r -1.5049181672E-2 δr2δv6r -4.8203078233E-1 δr2δv6r

1.6954015086E-1 δr δv7r -1.5319707238E-4 δr δv7r 3.0418294254E-3 δr δv7r
-9.3649998622E-1 δv8r -9.4506128288E-4 δv8r -1.6822632355E-1 δv8r
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Table 10 Expansion of Hz(δr, δvr), E(δr, δvr) and ωp(δr, δvr) for relative bounded motion
MEOs with an average nodal period of Td = 53.5395648 and an average node drift of
∆Ω = −3.35410945E-4. The expansion is relative to the pseudo-circular MEO from Ref. [6].

Hz(δr, δvr) E(δr, δvr) ωp(δr, δvr)
1.1686339046 -1.1984817518E-1 2.9699499717E-5

-1.6787983206E-1 δr2 -1.1295791560E-6 δr2 -1.4137545122E-5 δr2

1.3342239890E-3 δr δvr 8.9773237739E-9 δr δvr 1.1235805765E-7 δr δvr
-1.2189364572E+1 δv2r -8.2016118180E-5 δv2r -1.0264943057E-3 δv2r
-5.7819536291E-6 δr3 -3.8903864869E-11 δr3 -4.8691155645E-10 δr3

5.5689675634E-5 δr2δvr 3.7470788498E-10 δr2δvr 4.6897551209E-9 δr2δvr
-5.8443574309 δr δv2r -3.9323748740E-5 δr δv2r -4.9216672351E-4 δr δv2r

-7.7797135408E-3 δv3r -5.2345788936E-8 δv3r -6.5514749372E-7 δv3r
7.2342680379E-3 δr4 -1.6786160778E-8 δr4 -2.2644327385E-7 δr4

-1.1500726262E-4 δr3δvr 2.6669030149E-10 δr3δvr 3.5977421466E-9 δr3δvr
3.5031191471E-1 δr2δv2r -7.1490069659E-6 δr2δv2r -9.1849791034E-5 δr2δv2r
-1.1982869040E-2 δr δv3r -5.0772301302E-9 δr δv3r -4.4673986032E-8 δr δv3r
3.8164854125E+1 δv4r -8.8314890017E-5 δv4r -1.1915321562E-3 δv4r
1.6208616867E-7 δr5 -3.4176381515E-12 δr5 -4.3912159712E-11 δr5

5.4753976404E-6 δr4δvr 8.0307545937E-11 δr4δvr 1.0159676936E-9 δr4δvr
5.0373886197E-1 δr3δv2r -1.1687397163E-6 δr3δv2r -1.5766243706E-5 δr3δv2r
-2.7527359710E-3 δr2δv3r 1.4787704059E-8 δr2δv3r 1.9339974052E-7 δr2δv3r
3.6589109533E+1 δr δv4r -8.4742769860E-5 δr δv4r -1.1432837098E-3 δr δv4r
9.3576736519E-2 δv5r 1.8911016883E-7 δv5r 2.2568208756E-6 δv5r
-6.9493130031E-5 δr6 -2.8279909120E-9 δr6 -1.0717279620E-6 δr6

2.3385438767E-6 δr5δvr 7.1999781407E-11 δr5δvr 2.5609892337E-8 δr5δvr
4.5226980389E-2 δr4δv2r -7.5607303531E-7 δr4δv2r -2.3533677301E-4 δr4δv2r
6.7961378985E-4 δr3δv3r 1.5761907545E-8 δr3δv3r 3.7861181611E-6 δr3δv3r
1.2052914532E+1 δr2δv4r -7.5196738345E-5 δr2δv4r -1.7361135689E-2 δr2δv4r
1.0389806611E-1 δr δv5r 5.7862696294E-7 δr δv5r 1.3739926570E-4 δr δv5r
-2.6707716993E+1 δv6r -1.0817040896E-3 δv6r -4.1022423482E-1 δv6r
1.1561377525E-7 δr7 2.7190622349E-13 δr7 -1.0374072827E-10 δr7

-8.7868671051E-6 δr6δvr -4.8751278075E-11 δr6δvr 4.2487380838E-10 δr6δvr
-7.2609140661E-3 δr5δv2r -2.9543475477E-7 δr5δv2r -1.1194599896E-4 δr5δv2r
-1.6645289639E-3 δr4δv3r -5.7816877703E-9 δr4δv3r 1.6541829873E-6 δr4δv3r
1.0461502123 δr3δv4r -4.7756319077E-5 δr3δv4r -1.6320091398E-2 δr3δv4r

-9.9919952032E-2 δr2δv5r -4.5957378496E-7 δr2δv5r 1.0366553960E-4 δr2δv5r
-3.8390048458E+1 δr δv6r -1.5562024115E-3 δr δv6r -5.9006641394E-1 δr δv6r
-3.6187464250 δv7r -2.3535624140E-5 δv7r -1.0534715934E-3 δv7r

5.4888816840E-5 δr8 -5.1224107952E-11 δr8 2.3789771986E-6 δr8

4.6990757819E-5 δr7δvr 3.3007650529E-10 δr7δvr -7.1516993302E-8 δr7δvr
1.5245781793E-2 δr6δv2r -4.9119391706E-8 δr6δv2r 6.7752547593E-4 δr6δv2r
5.3207572498E-3 δr5δv3r 4.0112437043E-8 δr5δv3r -1.5764983305E-5 δr5δv3r
1.5026257881 δr4δv4r -1.7197346477E-5 δr4δv4r 6.9403908576E-2 δr4δv4r

2.0615928316E-1 δr3δv5r 1.7629677019E-6 δr3δv5r -1.1440214732E-3 δr3δv5r
6.2069578823E+1 δr2δv6r -1.0040207097E-3 δr2δv6r 3.2890386698 δr2δv6r
1.3723342586 δr δv7r 1.5880673461E-5 δr δv7r -2.9840367707E-2 δr δv7r

1.5451220239E+3 δv8r -1.2823463590E-3 δv8r 6.6122487369E+1 δv8r


