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For charged particle beams that are wider in the dispersive plane compared to the
transverse plane it is cost efficient to utilize magnets that accept beams with elliptic
cross section. In this paper we presents the conceptual design of a quadrupole magnet
with elliptic cross section and with tunable higher order multipoles. The design consists
of 18 superconducting race-track coils placed on two hollow concentric rhombic prism
support structures.

To compute the magnetic field for the proposed design a new method of calculating
2D and 3D fields for the air core magnets based on differential algebra (DA) techniques
is developed. We will present the new method and discuss its implementation of new
numerical tools based on this method in the code COSY Infinity.

Keywords: Differential algebra; magnet design; beam physics.

PACS numbers: 29.30.Aj, 29.30.Ep, 41.85-p

1. Introduction

Next-generation radioactive beam facilities like the proposed AEBLY? facility in
US and the newly constructed BIGRips® facility in Japan, require the use of large
aperture superconducting multipole magnets. Since the charged particle beams used
in such facilities are wider in the dispersive plane than the transverse plane it
is cost efficient to utilize magnets with elliptic cross sections. Such elliptic cross
section design usually leads to generation of high order multipoles. In this paper
we present a new design for a quadrupole magnet with an elliptic cross-section
and with tunable higher order multipoles. The analysis of this design requires the
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development of new numerical tools to compute the multipole expansion of the
magnetic field starting from the Biot-Savart law and Ampere’s law. The Differential
Algebra (DA) techniques have been utilized to extract such multipole expansions
for the air-core magnets.

In sections 2 and 3 we will present the background and discuss the theory and
implementation of the new computational tools using the differential algebra (DA)
techniques. In section 4 we present the details of the design of the new quadrupole
magnet with tunable high order multipoles. We will discuss both the 2D and 3D
design and also discuss the practicle range of multipole field strengths that can be
achieved with this design.

2. Differential Algebra Techniques and Field Computations

In beam physics the DA techniques have traditionally been used for the computation
of the high-order Taylor expansion of the transfer maps and design and analysis
of accelerator lattices.>%7 In recent years the DA techniques have been applied
to solve DAEs, ODEs and PDEs.%:%10.11.12 For these applications the DA is used
to develop techniques and algorithms to use a truncated Taylor expansion of a
function on a computer. The numerical techniques based on DA have the unique
advantage of getting high accuracy at a very small cost of the execution time and
the computational resources compared to traditional techniques.

In the context of magnet design the DA techniques have so far been utilized
to obtain magnetic fields from the analytic model of the magnet, consisting of line
wire currents, obtained from codes like ROXIE.!® The details of the method and it
implementation are described in [14, 15]. The present work starts directly from the
geometric model of the magnet and computes the multipole expansion of the fields.
The method described in this paper is useful for both designing the magnets as well
as multipole extraction of the fields, which can then be combined with the existing
DA based transfer map computation tools. Hence, all the aspects from design of
the magnet, extraction of transfer maps and finally its use in beam optic design
and optimization can be performed in the same code.

3. Magnetic Field Due to Arbitrary Current Distribution

The Biot-Savart law and Ampere’s law can be utilized to compute the magnetic
field for an arbitrary current distribution. Usually, numerical integration is required
to find the total magnetic field at any point. Below we describe a new scheme to
perform such numerical integration using DA techniques.

For an arbitrary current distribution the proposed method discretizes the cur-
rent domain and expresses the integral over the current domain as the sum of
integrals over smaller intervals. For the line, surface or volume distribution we ex-
press the intervals in terms of one, two or three parameters and scale them such
that the new interval is a box [—1, 1]", where n € 1,2,3. We then Taylor expand
the kernel appearing in the Biot-Savart law and the Ampere law in terms of the
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observation point, 7, and previously defined parameters. Finally, we integrate in
parameters over the interval [—1,1]™ and then sum over all the intervals to get the
multipole expansion of the magnetic field about the observation point 7.

We now discuss the above scheme for computing the magnetic field by using
the example of the current in a straight wire with a finite rectangular cross section.
This particular case is of practical importance and we will use this to develop tools
to design new accelerator magnets. These tools will later be used to analyse the
proposed design of the quadrupole magnet in the section 4.

3.1. Magnetic field computation for a wire with a rectangular
cross section using DA

For the case of a rectangular box of length [, width w and breath b, let the cross
section be described by the unit vectors 7, along the width, and 7, along the
breath. The unit vector 7; = 7, X 7, then defines the cross section plane and is
along the direction of the length of the rectangular box. The central axis can be
described by ‘70 = V;o + A3ny;, where the vector ‘700 is the center of a face on the
rectangular box that is perpendicular to the unit vector 7;, and A3 € [0,1]. Any
point inside the box is given by

V’pbox ()\17 Ao, )\3) Vco + = (Albnw -+ )\anb) + A3y, (1)

where the parameters A1, A2 € [—1, 1]. The parameters (A1, A2, A3) then completely
describe a rectangular box. The equation (1) will be used in the next two sections
to express the Biot-Savart law and Ampere’s law in the DA framework.

3.1.1. Magnetic field of a wire with a rectangular cross section using the
Biot-Savart law and DA

We can choose the direction of the current flow in the wire to coincide with the
unit vector 7; and the magnitude to be Iy. Using the Biot-Savart law, we can write
the magnetic field at an observation point 7 as

) i x (7= Vbox
B p,o IO / / / ( p2 ))d/\S dAQd)\l, (2)

T Anbw S
o Vpbox‘

where g is the permeability of vacuum. In ST units, the value is exactly expressed
by g = 47 x 107" N A~2. To perform integration with respect to Az in the equation
(2), we first split the domain of integration into smaller intervals. Let the length [
be divided into N parts of the size h = [ N. Then the parameter A3 can be written
as

As (i) = (z + %v) h,



926 S. Manikonda et al.

Fig. 1. The schematic digram of a finite length current wire with rectangular cross section and
(a) straight ending (b) inclined ending.

where i = 0.5,...,(N — 0.5), and v € [—1, 1]. The position of a point inside the box
in terms of the new parameters (A1, A2, v) is given by

V;Dboz (i, A1, Ao, v) = VCO +ihn; + = ()\ﬂ)?h + Aownig + vhiy) . (3)

The equation (2) can now be written as

B 0_[01 N—05 an rivboz(‘))) }
B (7) —Mbw Z /// ‘2 Fdvdradri.  (4)

0:1: (Z)

The parameters (A1, A2, v) and the position 7 (x, y, x) become the DA variables with
respect to which the kernel of the integral in the equation (4) is expanded to a high
order. In the DA framework it is straightforward to perform the volume integral

over the resulting polynomial representation.

In the DA frame work it is also straightforward to treat the wires with rectan-
gular cross sections that have curved endings rather than the straight endings that
are perpendicular to the direction of the current flow. Let the two surfaces at the
start and the end of the wire carrying the current be expressed as A3 = g (A1, A2)
and A3 = f (A1, A2). We can use the equation (4) to find the magnetic field due to
this new configuration by noting

f(A1,22) — g (A1, A2)

h(AlaAZ) = N 5

where the step h is now a function of the parameters (A1, A2). The equation (3) can
be modified to express a point inside the rectangular box with curved endings as

VT (1,0, A0, 0) = Ve + (g (M Ae) i h (A, A2)) - iy (5)
+0.5~(/\1b~ﬁ1+/\2w'ﬁ2+v‘h(>\1,>\2)~ﬁl). (6)
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When the surfaces are just inclined planes, the functions f and g are just linear
combinations of the parameters A\; and \2. The Figure 1 shows the schematic dia-
gram of a wire with straight ending and inclined ending. The inclined ending case
is useful in the implementation of the numerical tool to compute the magnetic field
due to a current carrying coil with a rectangular cross section.

3.1.2. Magnetic field of an infinitely long wire with a rectangular cross
section using Ampere’s law and DA

Once again, we can choose the direction of the current in the infinitely long wire
with a rectangular cross section to coincide with the unit vector n; along the length
of the wire. Let the vector V}, defined by

- —» 1
Vp =V.+ 5 (Albﬁb + )\Qwﬁw) , (7)

describes a point inside a rectangle cross section with breath b and width w and
centered at a point V.. The closest distance r; between the observation point 7 and
the line passing through the point V}, and in the direction 7, is given by

=[5 - o (- )

where V;, is given by the equation (7). Ampere’s law can then be written as

)

(-

E(F)z/t/t@ fo (mxm>d)\1-d>\2. (8)

2w b-w T

I
N

The equation (8) can be used to compute the magnetic field of an infinitely
long wire with a rectangular cross section. The parameters (A1, A\2) become the
DA variables with respect to which the kernel of the integral in the equation (8)
is expanded to high order, and DA integration is performed over the resulting
polynomial representation.

3.1.3. COSY INFINITY tools for magnetic field computations

Due to their frequent use in the magnet design, a dedicated set of tools has
been written for the rectangular cross section wire and coil in the code COSY
INFINITY.!6:17 These tools use the differential algebraic framework available in
COSY to Taylor expand, integrate and evaluate the kernels appearing in the
equations(8) and (4).

For 2D design, a tool to compute the field for an infinitely long wire with a
rectangular cross section has been implemented. For 3D design, a tool to compute
the magnetic field of a finite length wire of a rectangular cross section has been
implemented. A finite length wire can have the current entrance and exit planes
inclined to the central axis or the direction of the current flow. By combining four
such current wires, as shown in Figure 2, a separate tool to compute the magnetic
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field of a current coil of a rectangular cross section has also been implemented. The
wires have current entrance and exit planes tilted by 45° in opposite directions.

Using orders around 10, accuracy of about 14 digits can be achieved using these
tools. In addition to providing highly accurate results in the form of the local
Taylor expansion of the magnetic field, the DA based implementation has a unique
advantage of easily obtaining the curl and divergence of the magnetic field at any
given point. This offers one way to quickly verify if the magnetic field satisfies
Maxwell’s equations.

4. The Conceptual Design of an Asymmetric-Aperture
Quadrupole Magnet with Adjustable Multipole Components

For charged particle beams that are wider in the dispersive plane than the trans-
verse plane it is cost efficient to utilize magnets that accept beams with elliptic
cross sections . In this section we present the conceptual design of a quadrupole
magnet with an elliptic cross section and with tunable high order multipoles. The
design consists of 18 superconducting racetrack coils placed on two hollow concen-
tric rhombic prism support structures. It would require 28 racetrack coils to create
the same number adjustable multipoles with circular aperture magnets (quadrupole
through decapole).

A combination of superconducting racetrack coils is used to produce the de-
sired magnetic field inside an elliptic cross section. By the proper choice of di-
mensions, current density, and placement of these coils, various combinations of
the quadrupole field and the higher order multipole fields can be achieved. In this
example, the support structure that holds these coils in place consists of two con-
centric hollow rhombic prisms, with the ratio of the diagonals of the rhombus is 2.
The cross section view showing the arrangement of the current coils on the support
structure is shown in Figure 3. The signs “+” and “—
current to produce a positive multipole term. The superconducting racetrack coils

”

indicate the direction of the

on the inner rhombic prism produce quadrupole and octupole fields. The racetrack

Fig. 2. The schematic digram of a current coil.
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Table 1. The center position of the current carrying coils in the first quadrant.

Coil Description Position of Coils Current
X y
Inner Coils
Quadrupole 0.4473 0.8222E-01 -QI1
Octupole 0.3473 0.1322 -QI2
Octupole 0.1973 0.2072 +QI2
Quadrupole 0.9736E-01 0.2572 +QI1
Outer Coils
Hexapole 0.5591 0.1604 +HI1
Decapole 0.4591 0.2104 +HI2
Decapole 0.3091 0.2854 -HI2
Hexapole 0.2091 0.3354 -HI1
Dipole Corrector 0.8385E-01 0.4172 -HI3

coils on the outer rhombic prism produce hexapole and decapole fields, and also
allow for a limited dipole field for correction purposes. The numerical example dis-
cussed here the coil cross section are arbitrarily chosen to be square with a peak
current density of 100 A/mm?. This analysis applies applies strictly to air core
magnets. In practice an external iron shield would most likely be used and field
analysis would be done numerically with a 3D numerical code such as ROXIE.

Due to symmetry in the design about the central axis, it is sufficient to describe
only one quarter of the magnet. Figure 4 shows one quarter of the cross section.
The positions and the direction of the coils in this quarter are specified in Table 1.
All the coils have square cross section with thickness of 0.1 m.

In Table 1 the quantities QI1,Q12, HI1, HI2, HI3 are the magnitude of the cur-
rents. For any given configuration of the inner current coils, the currents (QI1, Q12)
can be used as parameters to obtain different quadrupole and octupole strength.
Similarly, for any given configuration of the outer coils, the currents (HI1, HI2)
can be used as parameters to get the desired hexapole and decapole field strength.

From the construction point of view it is cost efficient if the same type of coils can
be used. We use current coils of the same shape and size to generate the quadrupole
and hexapole fields. Also, we use the same type of current coils for octupole and
decapole fields. For an optimized final design these arbitrary constraints can be
relaxed.

4.1. 2D design of the quadrupole magnet

For a 2D design the magnet is considered to be infinitely long, thus avoiding any
fringe field effects. This leads to purely transverse magnetic fields (2D fields). In
this case a coil can be viewed as two current wires of infinite length and finite cross
section which are separated by certain distance. The currents in these wires are
equal in magnitude but are opposite in direction. We can use Ampere’s law, given by
equation (8), to compute the magnetic field of individual wires. The total magnetic
field is then the superposition of the fields produced by these wires. Below we show
the results for two special cases that produce pure quadrupole and hexapole fields.
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Fig. 3. The cross section view of the asymmetric-aperture multipole.
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/

Fig. 4. The layout of the racetrack coils in the first quadrant.
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The amplitude of currents required for pure quadrupole and hexapole configurations.

Coil Description

Pure quadrupole
configuration (million Amps)

Pure hexapole
configuration (million Amps)

Inner Coils

QI1 3.965 0

QI2 0.080 0
Outer Coils

HI1 0 0.499

HI2 0 0.938

HI3 0 0.448

Current configuration required to generate a pure quadrupole component and
hexapole component are given in Table 2. The fifth order Taylor expansion of the
magnetic field about the point (0.0,0.0, 0.0), for each of these configurations is given
in Table 3 and Table 4. The entries in the first and second column provide the Taylor
expansion of x and y components of the magnetic field. Each row provides coefficient
in the expansion whose exponent is described in column three. In the notation for

the exponent the give expansion order with respect to x and y.

Table 3.

the current configuration producing a pure quadrupole field.

Bx

.4440892098501E-15
.000000000000
.09565826333
.7105427357601E-14
.1421085471520E-13
.000000000000
.000000000000
.7815970093361E-12
.1421085471520E-13
.000000000000
.2273736754432E-12
.4263256414561E-13
.000000000000
.67548511
.000000000000
.35097021
.000000000000
.535097021

By

.000000000000
.09565826333
.000000000000
.000000000000
.1421085471520E-13
.1136868377216E-12
.2842170943040E-13
.000000000000
.000000000000
.5684341886081E-13
.1705302565824E-12
.5684341886081E-13
.535097021
.000000000000
.35097021
.000000000000
.67548511
.000000000000

The fifth order Taylor expansion of the magnetic field about the point (0.0,0.0,0.0) for
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Table 4.

The fifth order Taylor expansion of the magnetic field about the point (0.0,0.0,0.0) for

the current configuration producing a pure hexapole field.

Bx By Xy
0.000000000000 -0.8604228440845E-15 00
-0.4718447854657E-15  0.000000000000 10
0.000000000000 -0.3885780586188E-15 01
0.000000000000 -18.24792017395 20
-36.49584034790 0.000000000000 11
0.000000000000 18.24792017395 02
-0.1776356839400E-14  0.000000000000 21
-0.1776356839400E-14  0.2664535259100E-14 12
0.2220446049250E-14 -0.4440892098501E-15 03
-0.1776356839400E-14 -0.3463895836830E-13 40
-0.2593480985524E-12  0.000000000000 31
0.000000000000 0.4547473508865E-12 22
0.1705302565824E-12  0.1953992523340E-13 13
0.4440892098501E-14 -0.4174438572591E-13 04
0.1776356839400E-14  0.8881784197001E-15 50
0.1421085471520E-13  0.1421085471520E-13 41
0.2842170943040E-13  0.3552713678801E-13 32
0.2131628207280E-13  0.000000000000 23
-0.5684341886081E-13 -0.7105427357601E-14 14
-0.4440892098501E-14 -0.3552713678801E-14 05

4.1.1. Operational plots

We now discuss the practical range of multipole field strength that can be
achieved with this numerical example. We have mentioned that the currents
(QI1,QI2,HI1,HI2) can be used as parameters to get the desired quadrupole
and higher order multipole strengths. However, there is a maximum limit on the
current density that the superconducting coils can support. This puts a limit on
the maximum quadrupole and other multipole field strength that can be achieved.
Because of the fact that each multipole is achieved by superimposing the fields of
several coils, this leads to operating diagrams showing achievable multipole settings.

To study this situation in detail, we now look at how the multipole strength
depends on the currents. The matrix given in the equation (9) relates the multipole
field strength at the horizontal half aperture to the currents in the coils for the
specific case of a horizontal half aperture of 0.5 m and a vertical half aperture of
0.25 m. In the notation Bg!nn)v
magnetic field and the subscript (1111) gives the exponent in transport notation.

Thus, Bg!nn)

the superscript denotes the “y” component of the

is the coefficient of z* in the Taylor expansion of the “y” component
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of the magnetic field, or the decapole term in the expansion. The equations (10)
provide relationships between the coefficients of other multipole terms in the Taylor
expansion of the field to the principle multipole coefficients BE’H), B?lll) and B?uu)'

Byg I 0 0 —0.25137 —0.04316 +0.37029 | or
B, +5.76974 +2.40063 0 0 0 ol
Bty | 0 0 ~3.89914 —2.08007 —1.45431 | | )
Bl | | —0.40613 +15.44685 0 0 0 o
Béjun) 0 0 +1.66569 —2.32478 +2.99743 HI3
B§/11111) | —31.32418 —12.0759 0 0 0 |
9)
Béjzz) - *Béju) (10)
Bé’m) = *335’111)
By
(1122)
T 6 = 3?2222) = Bg/nn)
Y
Bé) - B(1)
B(zm) - QBEJH)
Bx
(112)
3 = _3?222) = 3?111)

anz) = *Bzrlzzz) = 4B?un)

It can be seen from the coefficient of the two quadrupole coils (QI1 and QI2),
given in the equation 9, that the inner pair (QI2) produces mainly an octupole
term, whereas the outer pair (QI1) produces dominantly a quadrupole term. Then
coefficients can be tuned in an optimized design by variation of the zero order coil
geometry parameters.

4.1.2. Operational plot for the quadrupole and the octupole fields

From the equation (9) it can be seen that the quadrupole field strength and the
octupole field strength are coupled via the currents (QI1,QI2). We vary both
of these current densities in the range [7108, 108] A/m? and plot the resulting
octupole field strength and the quadrupole field strength; the results are shown
in Figure 5. This plot gives the possible values of the quadrupole and octupole
strength that can be achieved with the configuration of the coils described in the
section 4.

4.1.3. Operational plot for the hexapole and decapole fields

From the equation (9) it can also be seen that the dipole, hexapole and decapole
field strength are coupled via the currents (HI1, HI2, HI3). However, under normal
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Quadrupole VS Octupole
20 T T

Octupole Cofficient (x3) (Tesla)
o
T

_20 Il Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Quadrupole Cofficient (x) (Tesla)

Fig. 5. The operational plot for the quadrupole and the octupole. The coefficients are computed
at the horizontal half aperture.

Hexapole VS Decapole

Hexapole Coefficient (x°) (Tesla)

Fig. 6. The operational plot for the hexapole and the decapole. The coefficients are computed
at the horizontal half aperture.
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operation, we have a strict requirement of zero dipole field for this magnet. The
dipole field is set zero by the proper choice of the current HI13. Once again we vary
the current densities of all currents in the range [—1087 108] A/m? and plot the
decapole field strength versus the hexapole field strength; the results are shown in
Figure 6. This plot gives the possible values of the hexapole and decapole strength
that can be achieved with the configuration of the coils described in the section 4.

4.1.4. Optimization of the operational region

As mentioned above the details of terms in the matrix given in the equation (9) are
influenced by the geometrical design parameters of the system. In order to optimize
the operational region of the currents and the fields, we need to find the optimal
geometric configuration of the coils described in the section 4, where the optimal
design is defined as the one that would decouple the influence of the octupole
coil current on the quadrupole component of the field and vice versa. And, at the
same time maximize the coupling strength of the current in quadrupole coils on
the quadrupole component of the field, and maximize the coupling strength of the
current in octupole coils on the octupole component of the field. The same type
of optimization is also required for the hexapole and decapole components of the
field. Alternatively, for a specific optical system the zero order parameters can be
chosen to emphasize operation in a necessary region of the 2D operating diagram.
For example, this example is more effective in the upper right quadrant of Figure
5 than in the upper left quadrant.

==t ==
AT
T Nm—
4/% i///—\é\\é ﬁ\

Fig. 7. The three dimensional layout of quadrupole coils.
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By Vs x
15 T T T T
For Z= 000m and Y=0.0m ——
For Z=0.25m and Y=0.0m -~
For Z=0.50m and Y=0.0m ------
For Z=1.00m and Y=0.0m --&
10 ,
5 i
<
3
£ 0r ,
>
[
-5 -
-10 | 4
_15 1 1 1 1 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
X (m)
Fig. 8. The plot for By vs x on four planes.
Bz Vs x
15 :
For Z= 000m and Y=0.0m ——
For Z=0.25m and Y=0.0m -~
For Z=0.50m and Y=0.0m ------
For Z=1.00m and Y=0.0m --&
10
5 Horg
e
&) '*‘-xx*_*
[ K
N *;(%
@ TRk
5 Co¥y
-10
-15
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
X (m)

Fig. 9. The plot for B, vs x on four planes.
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By for Quadrupole at Y=0 plane

Fig. 10. The plot of Y component of magnetic field on the midplane, y = 0 m. Only the magnetic
field in the first quadrant is shown.

4.2. 3D design of the quadrupole and the fringe field analysis

We consider a magnet of length 1 m, extending from —0.5 m < z < 0.5 m, and cross-
section described by the design presented in the section 4.1. The 3D layout of the
quadrupole with four current coils is shown in Figure 7. We compute the magnetic
field generated by this coil configuration on four different planes, perpendicular to
the central axis, located at the center z = 0 m, quarter length z = 0.25 m, the
entrance of the magnet z = 0.5 m and out side the magnet z = 1.0 m. The DA
based tool to compute field for rectangular cross-section coils, described in section
3.1.3, is used to compute multipole expansion of the field. Figures 9 shows the z,y, z
components of the magnetic field on these planes. Note that since the length of the
magnet is large compared to the aperture of the magnet, the magnetic field in z,y
at the center of the magnet is nearly identical to the magnetic field obtained by
the 2D design in the section 4.1. In the z direction the magnitude of the magnetic
field is of the order ~ 1076, which is zero for all practical purposes. As we start
going away from the center, we observe deviation from the ideal behavior (z = 0).
We see that at z = 0.25 m there is no significant deviation from ideal behavior in
the z and y components of the magnetic field. In the z direction we notice that the
magnetic field is nonzero. However, the magnitude is still small compared to the
components B, and B,. At the entrance of the magnet we see that the magnetic
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By for the Quadrupole at X=0.25m and Y=0.05m

14 —
— — By

12 [ |

10 f i

By (Tesla)
o

Bz for the Quadrupole at X=0.25m and Y=0.05m

Bz (Tesla)
o
i
|
\
f
|

4 -

-6

-8
-15 -1 -05 0 0.5 1 15
Z (m)

Fig. 11. Upper plot shows the y component and the lower plot shows the z component of magnetic
field along the length of the magnet.
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field in x,y falls by a factor of five. But the z component is almost three times as
large as the field in « or y. On a plane 0.5 m away from the entrance of the magnet
the overall field falls off significantly and its magnitude is ~ 107! tesla.

The figure 10 shows the y-component of the magnetic field on the first quadrant
of the magnet on the y = 0 m plane. The region stretches from the center of the
magnet to 0.5m (half length of the magnet) outside the magnet in both x and z
directions. Here the fringe field fall off in the region can be clearly seen. Finally, in
figure 11 we show the plot of y and z component of the magnetic field along the
length of the magnet.

5. Summary

A new concept for a superconducting quadrupole with elliptic acceptance and tun-
able high order multipoles is presented. The DA techniques have been utilized to
design and optimize the magnet in a simple and efficient way. The DA based tech-
niques have the advantage of providing the complete multipole decomposition of
the field. From the detailed 3D analysis it is possible to construct the high order
transfer map for the magnet. And thus provide means to perform the integrated
simulations of both the design and optimization of accelerator magnets and also
the beam optics using such magnets in the same code.
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