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Abstract—Knowledge about stable and unstable manifolds of hyperbolic fixed points of certain
maps is desirable in many fields of research, both in pure mathematics as well as in applications,
ranging from forced oscillations to celestial mechanics and space mission design. We present a
technique to find highly accurate polynomial approximations of local invariant manifolds for
sufficiently smooth planar maps and rigorously enclose them with sharp interval remainder
bounds using Taylor model techniques. Iteratively, significant portions of the global manifold
tangle can be enclosed with high accuracy. Numerical examples are provided.
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1. INTRODUCTION

One of the richest questions that can be asked about an arbitrary given dynamical system (for
brevity, we will only consider maps from now on) concerns the existence of hyperbolic fixed and
periodic points and the structure of their respective stable and unstable manifolds. Knowledge
about if and how these manifolds intersect yields insight into many telling characteristics of the
system, such as homo- and heteroclinic phenomena, topological entropy and horseshoe dynamics.
The manifold structure can be arguably complicated and it has long been a challenge to develop
quality numerical tools to investigate it.

By their very nature, these invariant manifolds are transports under the map (or its respective
inverse) of local invariant manifolds which can be shown to exist near a fixed point by virtue
of the Invariant Manifold Theorem (Hadamard–Perron Theorem). We present a technique based
on Taylor model arithmetic which allows, under quite general assumptions, to compute very
accurate high-order polynomial approximations of the local manifolds using nonlinear normal form
transformations, and to outfit these polynomials in a subsequent step with interval remainder
bounds which rigorously enclose the local manifolds.
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1.1. Invariant Manifolds

Let f : R
ν −→ R

ν be a Cr-diffeomorphism and let p0 be a periodic point of f . We may assume
that p0 is actually a fixed point of f by taking an appropriate power of the map. Further assume
that p0 is hyperbolic, i.e. that the Df(p0) does not have any eigenvalues of norm 1. More specifically,
let λu

1 , . . . , λu
k be the k unstable eigenvalues (|λu

i | > 1 for 1 � i � k) and λs
1, . . . , λ

s
l be the l stable

eigenvalues (|λs
i | < 1 for 1 � i � l). There exists a direct sum decomposition R

ν = Eu
p0

⊕ Es
p0

of
unstable and stable subspaces at p0 such that Df |Eu,s

p0
has eigenvalues λu,s

j .

Consider the stable and unstable sets
Ws(p0) = {x ∈ R

ν : fk(x) −→ p0 as k → ∞},
Wu(p0) = {x ∈ R

ν : f−k(x) −→ p0 as k → ∞}.

The following theorem states that Ws(p0) and Wu(p0) are actually manifolds with inherited
smoothness from f .

Theorem 1 (Invariant manifold theorem). Under the above assumptions, Ws(p0) and Wu(p0)
are Cr-injectively immersed copies of Es

p0
and Eu

p0
respectively. Furthermore, Ws(p0) (Wu(p0)) is

tangent to Es
p0

(
Eu

p0

)
at p0.

1.2. Taylor Models

We begin with a brief review of some elements of Taylor model methods that are needed in
the ensuing discussion, and we restrict ourselves to the plane. More details about the underlying
methods can be found in [9, 11] and references therein.

Definition 1 (Taylor Model). Let D ⊂ R
2 be an interval box, let P : R

2 → R be a polynomial of
order n in two variables, and let I ⊂ R be an interval. We call the pair (P, I) a Taylor Model of order
n. Let f : D → R be a function. We say the Taylor Model (P, I) is a Taylor Model representation
of f on D if

f(x) ∈ P (x) + I ∀x ∈ D.

We then say that (P, I) encloses f over D, or that (P, I) is a Taylor Model enclosure of f , or that
f is contained in (P, I). The interval I is often referred to as the remainder interval of (P, I).

We also use the intuitive notational convention P + I for (P, I).

Thus the polynomial P is used to “model” the behavior of the function f over the domain D.
Furthermore, and importantly for our further arguments, the range of f over D is enclosed in the
set theoretical sum of the set describing the range of P over D and the set I. The elementary
theory of Taylor’s formula with remainder entails that such approximations can be quite accurate
in practice. Indeed, letting |A| = sup

x,y∈A
(|x − y|) denote the diameter of the compact set A, we have

the following

Remark 1. If f is at least (n + 1) times continuously differentiable, z ∈ D, and P is the n−th
order Taylor polynomial of f centered at z, then one can choose an interval ID such that (P, ID) is
a Taylor Model enclosure of f on D and

|I| = O(|D|n+1) as |D| → 0.

For practical calculations, the question now is how do we arrive at a suitable P for a given f of
interest. If f is given by elementary arithmetic operations, as is the case with the Hénon map which
we introduce as an example later, it is possible to build up Taylor models for more complicated
objects from those of simpler ingredients by use of purely arithmetic operations. To this end we
introduce various definitions. First, for real intervals I1 and I2 and the real number c, we define
“interval arithmetic” I1 + I2 and I1 · I2 as well as c · I1 in the conventional set theoretical sense (see
e.g. [14]). We are then ready for the following
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RIGOROUS AND ACCURATE ENCLOSURE OF INVARIANT MANIFOLDS 109

Definition 2 (Elementary Taylor Model Arithmetic). Let (P1, I1) and (P2, I2) be Taylor
models of order n ∈ N over the domain D. We define addition, scalar multiplication, and mul-
tiplication of Taylor models as follows:

(P1, I1) + (P2, I2) = (P1 + P2, I1 + I2)
c · (P, I) = (c · P, c · I) for any c ∈ R, and

(P1, I1) · (P2, I2) = (P1·2, I1·2)

where P1·2 is the part of the polynomial P1 · P2 up to order n, Pe is the part of the polynomial P1 ·P2

of order (n + 1) to 2n, and

I1·2 = I1 · I2 + B(Pe) + B(P1) · I2 + B(P2) · I1.

B(P ) denotes an interval range bound for the polynomial P , i.e.

P (x) ∈ B(P )∀x ∈ D.

Several remarks are in order. First, we note that while there may be many choices for obtaining
a “bound” B of a given polynomial P, for our purposes we merely require that the bound is at least
as sharp as what is obtained by evaluating P in interval arithmetic over the domain interval D.
Furthermore, we extend the definitions to vector-valued functions in a similar way, where the
corresponding Taylor model arithmetic operations happen componentwise. Finally, the question
arises what these definitions on Taylor models have to do with the functions they describe. This is
addressed by the following

Proposition 1. Let f1, f2 : D ⊂ R
2 → R be functions. If (P1, I1) and (P2, I2) are Taylor Model

representations of f1 and f2 over the domain D, respectively. then (P1, I1) + (P2, I2) is a Taylor
model representation of f1 + f2, over D, (P1, I1) · (P2, I2) is a Taylor model representation of f1 · f2,
over D, and for any scalar c, c · (P1, I1) is a Taylor model representation of c · f1 over D.

The details of the proofs rest on elementary set theoretical operations; they can be found for
example in [9–11]. These references also contain information on more advanced operations, including
common intrinsic functions and implicit functions. It is also possible to obtain rigorous enclosures
of flows of ODEs [2, 3, 12, 13].

Thus, the proposition provides a simple mechanism to determine Taylor models for complicated
functions from those comprising parts of these functions. Furthermore, the operations are particu-
larly suitable for automated execution on a computer, since they involve only finitely many steps
of elementary operations of coefficients. Based on this operation, we use the following notation:
Definition 3. Let F be a function comprised of finitely many operations supported in Taylor model
arithmetic. Let (P, I) be a Taylor model. Then we define

F ((P, I))
to be the Taylor model obtained by executing the individual arithmetic steps of F in Taylor model
arithmetic.

Apparently, if (P, I) is a Taylor model of a function f, then the Taylor model F ((P, I)) so
obtained is a Taylor model for the function composition F ◦ f.

To conclude, we note that since computers are not able to represent real numbers accurately
because of finite significant (mantissa) length, in order to maintain mathematical rigor, it is
important to account for round-off errors:
Remark 2 (Rigorous Computer Arithmetic). By careful consideration of the mathematical
requirements of rounding properties of floating point computer arithmetic, it is possible to obtain
rigorous Taylor model enclosures for sums, products and scalar products of functions by accounting
for all round-off errors in the remainder intervals of the Taylor models.

Complete details on this topic can be found in [11, 15].
To conclude our introductory description of Taylor models, we remark that for a complicated

function or a large domain D, one single Taylor model will not be able to describe its behavior with
sufficient accuracy because of inefficient convergence properties of the Taylor expansion. So for this
purpose it is important to split the actual domain D into a suitable finite collection of subdomains
Di such that D lies in the union of these Di, and apply the methods on these subdomains.
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2. HIGH-ORDER APPROXIMATION OF THE LOCAL MANIFOLD
A technique for the explicit construction of polynomial approximations of invariant manifolds

can be obtained from the fact that the manifold parametrizations can be chosen in such a way that
they obey an eigenvalue scaling law, described below in (2.2). In the planar case, one can relatively
simply derive the coefficients of the polynomial expansions of the manifolds. These techniques are
standard and are covered in great detail in [4–8].

For ease of notation, let fn denote the Taylor expansion of a sufficiently differentiable function f
around (0, 0) to order n, and let f =n g for two sufficiently differentiable functions f and g denote
agreement of their Taylor expansions around (0, 0) up to order n. Note that =n is an equivalence
relation.

In the following, let g : R
2 ⊇ D −→ R

2 denote a planar Cr+1 diffeomorphism for some r > 1 with
a hyperbolic fixed point p ∈ D, here assumed to be at the origin. We further assume that the map
g has a diagonal linear part, the eigenvector corresponding to the unstable eigenvalue λu, satisfying
|λu| > 1 coincides with the x1-axis, and the eigenvector corresponding to the stable eigenvalue λs,
satisfying |λs| < 1 coincides with the x2-axis.

We define the diffeomorphism f to be a polynomial approximation of g to order r, satisfying
f =r g. Thus, f can be written as

f1(x1, x2) = λux1 + f̃1(x1, x2),

f2(x1, x2) = λsx2 + f̃2(x1, x2),

where f̃ =
(
f̃1, f̃2

)
is a polynomial containing only terms of order 2 or higher.

It is well known that the unstable manifold of f can be parameterized by a curve γu : R −→ R
2

satisfying

f(γu(t)) = γu(λut). (2.1)

The following induction provides a constructive algorithm to generate an nth order polynomial
curve satisfying (2.1) up to some order n � r, thus approximating γu. An analogous algorithm can
be performed for the stable manifold.

Denote by

γu,n
1 (t) =

n∑
i=1

αit
i = γu,n−1

1 (t) + αntn,

γu,n
2 (t) =

n∑
i=1

βit
i = γu,n−1

2 (t) + βntn,

the components of the nth order polynomial approximation of γu. We claim that for n � 1 the αn,
βn can be chosen so that

f(γu,n(t)) =n γu,n(λut). (2.2)

For n = 1, let α1 = 1 and β1 = 0. Thus, γu,1
1 (t) = t, and γu,1

2 (t) = 0. We see that in fact
γ̇u,n(0) = (1, 0)T is tangent to the x1-axis at the origin for every n ∈ N. Furthermore, we have
that

f1(γu,1(t)) = f1(t, 0) = λut + f̃1(γu,1(t)) =1 λut,

f2(γu,1(t)) = f2(t, 0) = f̃2(γu,1(t)) =1 0,

since f̃ has no linear part, and thus f(γu,1(t)) =1 γu,1(λut).
For the induction step, assume αj, βj , 1 � j � n − 1 have been chosen so that

f(γu,n−1(t)) =n−1 γu,n−1(λut). (2.3)

Observe that

f̃ (γu,n
1 (t) , γu,n

2 (t)) =n f̃
(
γu,n−1
1 (t) , γu,n−1

2 (t)
)

. (2.4)
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Indeed this is the case since f̃ is a polynomial with terms of order 2 and higher, so the nth order
terms of γu,n do not contribute to the terms of f̃ (γu,n

1 (t) , γu,n
2 (t)) of order n or lower, since γu,n

has no constant part.
By inserting γu,n into condition (2.2), and using (2.4) we thus find

λuγu,n−1
1 (t) + λuαntn + f̃1

(
γu,n−1
1 (t) , γu,n−1

2 (t)
)

=n γu,n−1
1 (λut) + λn

uαntn

λsγ
u,n−1
2 (t) + λsβntn + f̃2

(
γu,n−1
1 (t) , γu,n−1

2 (t)
)

=n γu,n−1
2 (λut) + λn

uβntn.

By the induction assumption (2.3), all terms of order up to n− 1 in the left and right expressions
are equal, so we may cancel them. Rearranging the remaining terms of exact order n, and denoting
by S

(n)
1 and S

(n)
2 the sum of the coefficients of terms of exact order n in f̃1

(
γu,n−1
1 (t) , γu,n−1

2 (t)
)

and f̃2

(
γu,n−1
1 (t) , γu,n−1

2 (t)
)
, we obtain

(λu − λn
u) · αntn = −S

(n)
1 tn,

(λs − λn
u) · βntn = −S

(n)
2 tn,

and hence, because (λσ − λn
u) 
= 0 ∀n = 2, 3, 4 . . . , σ = u, s due to hyperbolicity, we can set

αn = − S
(n)
1

(λu−λn
u) , βn = − S

(n)
2

(λs−λn
u) .

(2.5)

With those coefficients, γu,n also satisfies condition (2.2), and the induction is complete.
The construction (2.5) is fully explicit and inductive, since computation of αn and βn only

requires knowledge of the αi, βi for 1 � i � n − 1. The method is furthermore particularly easy to
carry out on a computer in that it only requires the availability of polynomial arithmetic.
Also note that for eigenvalues sufficiently different from unity the construction is also numerically
stable, since then λu − λn

u and λs − λn
u are never close to zero.

3. VERIFIED ENCLOSURE OF THE LOCAL MANIFOLD

3.1. Construction of Verified Local Invariant Curve Enclosures

In the previous section a technique to find a polynomial approximation for a local part of the
unstable curve near a hyperbolic fixed point was introduced.

In the following we describe how such a polynomial approximation can be extended to a two-
dimensional Taylor Model “tube” that rigorously encloses the true invariant manifold.

Throughout this section let R
2 denote the Euclidean plane with coordinates (x1, x2) and let

f : R
2 ⊃ D −→ R

2 be a C1 diffeomorphism with a hyperbolic fixed point at the origin (0, 0). We
assume that the dominating eigenvector with eigenvalue λu with |λu| > 1 lies in the direction of
the positive x1-axis, and the minor one with eigenvalue λs (|λs| < 1) lies in the direction of the
positive x2-axis. Replacing f by f2 if necessary, we may assume that λu and λs is positive.

Given a neighborhood V of the origin (0, 0), we let W u
V denote the connected component (i.e.,

largest connected subset) of W u((0, 0))
⋂

V which contains (0, 0).
It will be convenient to consider the notion of slopes:

Definition 4. A differentiable curve γ ⊂ R
2 parametrized as γ(t) = (γ1(t), γ2(t)), with t in some

closed interval I ⊂ R, such that γ̇1(t) 
= 0 ∀t ∈ I is called regular. For regular curves, we define the
slope sγ as

sγ(t) =
γ̇2(t)
γ̇1(t)

.
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112 WITTIG et al.

There is a simple transformation law describing how the derivatives and the slope of a regular
curve change under iteration by a C1 diffeomorphism f : R

2 → R
2. For an initial curve γ = (γ1, γ2),

we denote the transformed curve η := f(γ) = (η1, η2) and observe that

η̇(t) = Df(γ(t)) · γ̇(t)

or componentwise

η̇k(t) = ∂1fk(γ(t)) · γ̇1(t) + ∂2fk(γ(t)) · γ̇2(t) (3.1)
= (∂1fk(γ(t)) + ∂2fk(γ(t)) · sγ(t)) · γ̇1(t) for k = 1, 2

We thus obtain the new slope

sη(t) =
∂1f2(γ(t)) · γ̇1(t) + ∂2f2(γ(t)) · γ̇2(t)
∂1f1(γ(t)) · γ̇1(t) + ∂2f1(γ(t)) · γ̇2(t)

(3.2)

=
∂1f2(γ(t)) + ∂2f2(γ(t)) · sγ(t)
∂1f1(γ(t)) + ∂2f1(γ(t)) · sγ(t)

.

Let E be a parameterized curvilinear rectangle, i.e. the image of the unit square under a
polynomial embedding P : [−1, 1]2 −→ R

2. Sometimes we abuse the language, and simply refer
to E as a rectangle.

We denote the left and right boundaries ∂lE and ∂rE of E by ∂lE = P ({−1} × [−1, 1]) and
∂rE = P ({1} × [−1, 1]), and call ∂vE := ∂lE ∪ ∂rE the vertical boundary of E.

Likewise we introduce the horizontal boundary ∂hE := P ([−1, 1] × ({−1} ∪ {1})) of E. These
notions may be visualized in Fig. 1.

A full-width curve in E is a the image J of an embedding γ : [−1, 1] → E such that J is disjoint
from ∂hE and meets each of ∂lE and ∂rE in single points.

We are interested in obtaining a rectangle E which forms a tight enclosure of the local unstable
manifold W u

E and for which W u
E is a full-width curve.

The following theorem gives sufficient conditions for this.

Fig. 1. A parameterized rectangle E (black, dashed), and its image (blue, dotted). In the situation of
Theorem 2, the true local unstable manifold U (red, dash-dotted) is narrowly bounded in its transverse
direction by both E and f(E).

Theorem 2. Let γ(t) = (γ1(t), γ2(t)), t ∈ [−1, 1] be a regular curve with γi(0) = 0 for i = 1, 2.
For ε > 0, let P (x, y) = (γ1(x), γ2(x) + εy), x, y ∈ [−1, 1] and E be the image of P . Furthermore,
let f : E → R

2 be a planar diffeomorphism as in Section 2.
If

f (E) ∩ ∂hE = ∅, (3.3)

then W u
E is disjoint from ∂hE.
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If, in addition, there exists M > 1 and S > 0 such that, for all z ∈ E and for all s ∈ [−S, S] we
have both

|∂1f2 (z) + ∂2f2 (z) · s| � S and |∂1f1 (z) + ∂2f1 (z) · s| � M (3.4)

then W u
E is a full-width curve in E.

Proof. Let γ(t), t ∈ [−1, 1], be some parametrization of W u
E with γ(0) = (0, 0). Suppose W u

E
intersects ∂hE. Let K = {t ∈ [−1, 1] | γ(t) ∈ ∂hE}. Then, by continuity of W u

E , there is a minimum
t0 ∈ K such that |t0| � |t| for all t ∈ K.

Let p = γ(t0). Then the open arc A ⊂ W u
E connecting (0, 0) and p lies in the interior of E. Since

the unstable eigenvalue λu is positive, it follows that f−1(p) lies in the interior of A which, of course,
is in E. This implies that p is in f(E) which contradicts assumption (3.3).

To prove the second claim, let η0(t) = (η0
1(t), η

0
2(t)), t ∈ [0, 1] be a parametrization of a piece of

the unstable manifold satisfying the following conditions for all t ∈ [0, 1]:

η0(0) = (0, 0) (3.5)∣∣sη0(t)
∣∣ < S

η̇0
1(t) > 0.

Note that such an η0 certainly exists due to continuity in some small neighborhood around the
fixed point, where the unstable manifold is tangent to the x-axis.

Let η1(t) = (η1
1(t), η

1
2(t)) = f(η0(t)). We claim that if η0(t) ∈ E ∀t ∈ [0, 1], then η1 again satisfies

properties (3.5) and, furthermore, η1
1(t) � Mη0

1(t) for all t ∈ [0, 1].

Clearly, η1 is again a piece of the unstable manifold, and η1(0) = (0, 0). By the slope
transformation law (3.2) and the conditions (3.4), we have that

∣∣sη1(t)
∣∣ < S ∀t ∈ [0, 1]. Finally,

by inserting η0(0) = (0, 0) and sη0(0) = 0 into the derivative transformation law (3.1), we have
η̇1
1(0) = ∂1f1(0) · η̇0

1(0) = λu · η̇0
1(0) > 0 since both λu and η̇0

1(0) are positive. As η1 has bounded
slope, η̇1

1 is continuous and never zero, and thus has to be positive for all t ∈ [0, 1].
As for the last claim, by the derivative transformation law (3.1) and the second condition (3.4),

we have that
∣∣η̇1

1(t)
∣∣ > M

∣∣η̇0
1(t)

∣∣. But since both η̇1
1(t) and η̇0

1(t) are positive for all t ∈ [0, 1], we
can drop the absolute values to find η̇1

1(t) > Mη̇0
1(t) ∀t ∈ [0, 1]. Applying the fundamental theorem

of calculus then yields

η1
1(t) =

t∫
0

η̇1
1(τ) dτ �

t∫
0

Mη̇0
1(τ) dτ = Mη0

1(t).

It follows that there exists some k0 ∈ N such that fk0(η0) is not entirely in E any more. For
assume no such k0 existed. Then, by repeated application of the above, fk(η0

1(1)) � Mkη0
1(1) ∀k ∈

N. But since M > 1, and by assumption fk(η0
1(1)) ∈ E ∀k ∈ N, this contradicts the compactness

of E, as Mkη0
1(1) tends towards infinity for k → ∞.

Let k̄ ∈ N be the smallest such k0. By the above then ηk̄ = f k̄(η0) satisfies η̇k̄
1 (t) > 0 ∀t ∈ [0, 1]

and ηk̄(1) /∈ E. Consequently, the unstable manifold has to leave E through ∂rE since it cannot
leave E through the horizontal boundaries. A similar argument holds for ∂lE, i.e. the unstable
manifold also leaves E through ∂lE.

Let now γ0 : [−1, 1] −→ R
2 be a polynomial curve approximating W u

E near the origin, γ0(0) =
(0, 0), and assume that γ0 is regular, a natural condition which can easily be checked rigorously. We
will now use γ0 to construct a suitable polynomial for the preceding theorem, and employ Taylor
Model arithmetic to rigorously check the assumptions in guaranteeing the valid unstable curve
enclosure.
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114 WITTIG et al.

Fig. 2. The parameterized rectangle E (blue, dashed) is constructed around its center curve γ0. The difference
between γ0 (black) and the iterate f(E) (red, dotted) can be bounded by the interval box D = (D1, D2) (green)
such that f(E) ⊂ γ0([−1, 1]) + D.

Lemma 1. For ε > 0, define the polynomial P : [−1, 1]2 −→ R
2 as

P (t, s) :=
(

γ0,1 (t)
γ0,2 (t) + ε · s

)
, (3.6)

and let Is,D1,D2 ⊂ R be closed intervals such that

sγ0 ([−1, 1]) ⊂ Is, (3.7)

as well as (cf. Fig. 2)

f (P (t, s)) ∈ γ0 (λut) + D1 × D2 ∀ (t, s) ∈ [−1, 1]
λu

× [−1, 1] (3.8)

Consider then the parameterized rectangle E := P
(

[−1,1]
λu

, [−1, 1]
)
. If

Is · D1 − D2 ⊂ (−ε, ε) (3.9)

holds, then f (E) ∩ ∂hE = ∅ and condition (3.3) is satisfied if γ(t) = γ0( t
λu

) is used in Theorem 2.

Remark 3. The intuition behind the lemma is the following: if a polynomial curve γ0 approximates
the true local unstable manifold W u

E well, then by thickening it slightly by a width ε, which in
practice will be very small (10−12 and smaller), we obtain a thin parameterized rectangle P which
has a chance to rigorously contain U . P mirrors the functional equation f(W u

E(t)) = W u
E(λut) of

the true local manifold W u
E = W u

E(t), i.e.

f(P (t, s)) ≈ γ0(λut),

up to some small contributions of size less than ε, and the difference bounds Di in (3.8) can be
very sharp.

Proof. First note that E is indeed an embedded rectangle, since P is bijective and smooth and since
E contains the fixed point, it also contains W u

E. Now let p0 be any point in E. Then p0 = P (t0, s0)
for some (t0, s0) ∈ [−1,1]

λu
× [−1, 1]. We want to show that f(p0) cannot be in the top boundary of E.

By condition 3.8 we have that

f1(p0) = f1(P (t0, s0)) ∈ γ0,1(λut0) + D1.
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Consider now the restricted top boundary of E with x-coordinates in the interval γ0,1(λut0) + D1.
Due to the bounded slope of γ0, this restricted top boundary is a single connected curve segment,
or the empty set.

Integrating the slope along this curve segment one finds, again by virtue of the bounded slope
of γ0, that the y-coordinates of the restricted top boundary lie within the interval γ0,2(λut0) + ε +
Is · D1.

Thus, the difference between the y-coordinates of the restricted top boundary and f2(p0) is in
the interval

γ0,2(λut0) + ε + Is · D1 − (γ0,2(λut0) + D2) = ε + Is · D1 − D2.

Thus, if Is · D1 − D2 ⊂ (−ε,∞), then f(p0) cannot be in the top boundary of E.
An analogous argument holds for the bottom boundary of E, assuming the condition Is · D1 −

D2 ⊂ (−∞, ε), thus completing the proof.

With the last result we are now ready to verify the conditions in Theorem 2 using Taylor Model
methods:

Corollary 1. Let ε, γ0, P and E as in Lemma 1, and consider the Taylor Models

T (t, s) := P (t, s) +
(

[0, 0]
[0, 0]

)
=

(
γ0,1 (t)

γ0,2 (t) + ε · s

)
+

(
[0, 0]
[0, 0]

)
.

Let Γ̇i (t) := γ̃i (t) + Ii be a Taylor Model enclosure of the derivative γ̇0,i(t) for i = 1, 2, such that
0 /∈ Γ̇1([−1, 1]).

Furthermore, let I∗s ,D∗
1,D

∗
2 ⊂ R be intervals such that

Γ̇2 ([−1, 1])
Γ̇1 ([−1, 1])

⊂ I∗s ,

fi

(
T

(
[−1, 1]

λu
, [−1, 1]

))
− γ0 ([−1, 1]) ⊂ D∗

i for i = 1, 2.

If

I∗s · D∗
1 − D∗

2 ⊂ (−ε, ε)

then f (E) ∩ ∂hE = ∅.

Proof. First note that T (t, s) is an exact Taylor Model representation of the parameterized
rectangle generating E as in Lemma 1. Further, the Γ̇i (t) can be obtained by Taylor Model
derivation, as the test curve γ0 is constructed as a finite order polynomial. The rest follows directly
from applying Lemma 1 using Taylor Model arithmetic.

Proposition 2. In the setting of Theorem 2, let

T (t, s) := P (t, s) +
(

[0, 0]
[0, 0]

)
=

(
γ0,1 (t)

γ0,2 (t) + ε · s

)
+

(
[0, 0]
[0, 0]

)
,

be a Taylor Model representation generating the rectangle E as in Lemma 1. Assume that there are
S > 0 and M > 1 such that there are interval range bounds on the derivatives over T given by

max
(∣∣∣∣∂1f2

(
T

(
x

λu
, y

))
− ∂2f2

(
T

(
x

λu
, y

))
· [−S, S]

∣∣∣∣
)

< S,

min
(∣∣∣∣∂1f1

(
T

(
x

λu
, y

))
− ∂2f1

(
T

(
x

λu
, y

))
· [−S, S]

∣∣∣∣
)

> M,

for all (x, y) ∈ [−1, 1] × [−1, 1] and where |I| for an interval I denotes the interval containing the
absolute values of each element of I. Then conditions (3.4) hold.

Proof. Straightforward application of Taylor Model arithmetic on (3.4).
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Remark 4. Finding a suitable slope bound S is not hard in practice. Due to the hyperbolic
structure in the vicinity of the fixed point the derivative ∂1f1 typically is large, and ∂2f2 typically
is small in absolute value, so that the relations (3.4) may hold true even for large test values S. A
good algorithm for finding S is to start with S = max I∗s (cf. Corollary 1) and inflating that value
by some factor greater than one until the conditions are satisfied.

Summing up this section, given an approximate test polynomial γ0 and a thickening ε > 0 such
that the Taylor Model interval range bounds in Corollary 1 and Proposition 2 are satisfied, then the
true unstable curve leaves the thin parameterized rectangle E constructed as in Lemma 1 through
its vertical, and not its horizontal boundary.

3.2. Example: the Hénon map

As an example for the constructions we have developed so far we consider the Hénon map

Ha,b(x1, x2) :=
(
1 + x2 − ax2

1, bx1

)
. (3.10)

Depending on the parameter choices for a and b, the map exhibits a wide range of dynamics (e.g.,
since det(DH) = −b everywhere, the parameter b determines volume contraction or expansion). The
standard parameter values proposed by Hénon originally are a = 1.4 and b = 0.3. In this situation,
H exhibits seemingly complicated dynamics and a strange attractor. There are two hyperbolic
saddle points p1 and p2, and we consider the invariant manifold structure near p1 ≈ (0.63, 0.18).

Subsequently we consider the conjugated Hénon map

H̃a,b(t1, t2) = L−1 ◦ Ha,b ◦ L(t1, t2) (3.11)

where L is an affine transformation taking (0, 0) to p1 and diagonalizing the Jacobian of H̃a,b at
the origin.

L can be found analytically by considering the eigenvalues of DHa,b at p1,

λ1,2 = −a p1,1 ∓
√

(a p1,1)
2 + b =⇒ λ1 ≈ −1.92 , λ2 ≈ 0.156

and their corresponding eigenvectors

ei =
(

λi

b
, 1

)T

, i = 1, 2.

With these, we can set up the transformation matrix Ma,b =
(
e1 e2

)
and the complete transfor-

mation L(t1, t2) = p1 + Ma,b · (t1, t2)T .
Carrying out the computation of L, and evaluating equation (3.11) with our parameters yields

the approximate linearly diagonalized Hénon map in the new coordinates as

H̃a,b(t1, t2) ≈

⎛
⎝−1.92 0

0 0.156

⎞
⎠ ·

⎛
⎝t1

t2

⎞
⎠ −

⎛
⎝ 1.30t21 + 2.60t1t2 + 1.30t22

0.105t21 + 0.21t1t2 + 0.105t22

⎞
⎠ .

In the code, all computations are carried out using verified computations, yielding a rigorous
enclosure of the transformed map. Similarly, we can derive rigorous enclosures for the Jacobian of
H̃a,b to be used in the cone argument.

Computing the local unstable and stable manifold TM-enclosures of order 20 as outlined in
Section 4, and affinely transforming back into the natural coordinate system, yields TM-enclosures
as depicted in Figure 3. The width of these enclosures is on the order of 10−12 for both the unstable
and stable manifolds.

To demonstrate the effect of the computation order of the polynomials used, Tables 1 and 2
show the size of ε used in the construction to successfully produce a verified enclosure of fixed arc
length. The width of the resulting enclosure in each case is of the same order of magnitude as ε. For
orders 1 and 2 of the stable manifold the desired length could not be obtained with any epsilon.
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Fig. 3. Top: the enclosures of the local unstable (thin red) and stable (think green) manifold near the origin.
Bottom: The same local manifold enclosures, but shifted around the fixed point p0 ≈ (0.63, 0.18) and re-
transformed into the original coordinate system.

This is caused by failure to verify the conditions of Proposition 2 in those cases. The only way to
mitigate this is to reduce the length of the enclosure.

Conversely, in Tables 3 and 4 we fix ε and reduce the length of the enclosure until the verification
succeeds.

Both tables show that the quality of the attainable enclosures increases vastly for orders up to
about 10. Between orders 15 and 20, on the other hand, there is no improvement at all. This effect
is caused by the errors due to limited floating point accuracy. For lower orders, the main source of
errors is the poor approximation of the manifold by the polynomials. At higher orders, however,
these approximation errors become so small, that the limited floating point accuracy becomes the
main source for errors.

To obtain even better enclosures, high precision computations become necessary to reduce the
size of the floating point errors.

4. GLOBAL MANIFOLD TANGLES

In the previous section we have demonstrated how the local invariant manifolds near a hyperbolic
fixed point can be enclosed sharply using Taylor Model approximations. We can now proceed to
generate significant pieces of the global manifold structure simply by iteration. Iterating the Taylor
Model enclosures of the unstable manifold through the map f or the stable manifold enclosures
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Table 1. Unstable manifold enclosures
of fixed length (in natural coordinates)
and the associated achievable width ε at
different computation orders.

Order Length ε

1 0.59 1.38 · 10−2

2 0.59 3.31 · 10−3

3 0.59 7.93 · 10−4

4 0.59 7.32 · 10−5

5 0.59 6.14 · 10−6

6 0.59 5.67 · 10−7

7 0.59 4.32 · 10−8

8 0.59 2.25 · 10−9

9 0.59 1.17 · 10−10

10 0.59 6.73 · 10−12

15 0.59 10−12

20 0.59 10−12

Table 2. Stable manifold enclosures of
fixed length (in natural coordinates) and
the associated achievable width ε at dif-
ferent computation orders.

Order Length ε

1 0.16 0.14

2 0.19 6.4 · 10−2

3 0.21 2.5 · 10−3

4 0.21 5.5 · 10−5

5 0.21 3.5 · 10−7

6 0.21 3.3 · 10−9

7 0.21 1.2 · 10−11

8 0.21 1.3 · 10−12

9 0.21 1.2 · 10−12

10 0.21 1.2 · 10−12

15 0.21 1.2 · 10−12

20 0.21 1.2 · 10−12

Table 3. Unstable manifold enclosures of
fixed epsilon and the associated achievable
length (in natural coordinates) at different
computation orders.

Order Length ε

1 0.55 · 10−5 10−12

2 0.48 · 10−3 10−12

3 0.44 · 10−2 10−12

4 0.18 · 10−1 10−12

5 0.48 · 10−1 10−12

6 0.99 · 10−1 10−12

7 0.17 10−12

8 0.26 10−12

9 0.38 10−12

10 0.48 10−12

15 0.59 10−12

20 0.59 10−12

Table 4. Stable manifold enclosures of
fixed epsilon and the approximate achiev-
able length (in natural coordinates) at
different computation orders.

Order Length ε

1 0.56 · 10−6 10−12

2 0.90 · 10−4 10−12

3 0.15 · 10−2 10−12

4 0.91 · 10−2 10−12

5 0.33 · 10−1 10−12

6 0.83 · 10−1 10−12

7 0.16 10−12

8 0.20 10−12

9 0.20 10−12

10 0.20 10−12

15 0.20 10−12

20 0.20 10−12
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Fig. 4. 1st, 3rd, 5th, 7th, 9th, and 11th preimage of a local stable manifold enclosure (red) of the Hénon map
Ha,b for a = 1.4, b = 0.3, together with the unstable manifold (green). The actual Taylor Model enclosures are
below printer resolution in width.

through the inverse f−1 in Taylor Model arithmetic will yield valid Taylor Model enclosures of
successively larger global manifold pieces.

In practice, this approach requires a more involved and subtle treatment of the manifold pieces,
even though the initial basic premise is retained in spirit. The fundamental problem is the quick
blow-up of the remainder bound size under iteration. This is caused by two main factors.

Firstly, the remainder bound grows unproportionally if the truncation error between the true
manifold and the polynomial part of the Taylor model enclosure becomes large. This is the case
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when the manifold parametrization can only unsatisfactorily be modeled by a polynomial of fixed
finite order, for instance when the true manifold grows exponentially in length under iteration,
or if it makes sharp turns. Thus, the truncation error is primarily scaling with the longitudinally
parameterizing variable of the Taylor model. The solution to keeping the truncation error size
in check is to replace the single polynomial P by several polynomials obtained by bisection and
rescaling as follows.

Algorithm 1. Let τ = Pτ (t, s) + Iτ be a Taylor Model enclosure containing W u
E, parameterized

longitudinally by the variable t. Let δ > 0 be the desired threshold of the C0-approximation of f(Eu
E)

by the TM-enclosures, i.e. the maximal size of the remainder bounds. Let M ∈ N be the maximal
number of bisection steps (typically M < 10). To generate TM-enclosures of new pieces of unstable
manifold, execute the following algorithm:

1. Compute f (τ) =: Pf(τ) + If(τ) in Taylor Model arithmetic. If
∣∣If(τ)

∣∣ � δ, the iteration is
successful.

2. If
∣∣If(τ)

∣∣ > δ, split and respirometric the TM τ as τ1 := Pτ

(
−1

2 + t
2

)
+ Iτ and τ2 :=

Pτ

(
1
2 + t

2

)
+ Iτ , with t ∈ [−1, 1].

3. Compute f (τ1) =: Pf(τ1) (t, s) + If(τ1) and f (τ2) =: Pf(τ2) (t, s) + If(τ2). If
∣∣If(τ1)

∣∣ � δ and∣∣If(τ2)

∣∣ � δ, the iteration is successful.

4. If
∣∣If(τ1)

∣∣ > δ or
∣∣If(τ2)

∣∣ > δ, repeat iteration from step 2.

5. If after M subdivisions not all remainder bounds are of width less than δ, either stop iteration
or increase δ.

The algorithm can be performed analogously for the stable manifold enclosures with the inverse
map.

This algorithm generates an ordered list of local Taylor Model enclosures, the union of which
still contains the true manifold, instead of one big Taylor Model which fails to sharply enclose the
entire manifold iterate. While this particular algorithm only factors in the remainder bound size
of the iterated manifold enclosures as the benchmark of where and how to bisect and reexpand
the Taylor Model pieces, more sophisticated bisection methods can be implemented that take into
account information like length, length growth or curvature.

Tables 5 and 6 illustrate the performance of this algorithm. For each iteration step performed,
only pieces intersecting the box [−1.5, 1.5]× [−0.5, 0.5], which contains the attractor, are considered.
The number of pieces, total length and the largest width are shown for the unstable and stable
manifold respectively. All computations were done with Taylor Models of order 20.

While the number of pieces grows quickly to almost 4500 after 12 iterations of the stable manifold,
this method still produces relatively sharp enclosures of a very long piece of the manifold. The
cutting and re-expansion is crucial to obtain global manifold tangles. Increasing the computation
order to try to cover the same manifold piece with one single Taylor Model is futile. The order
required to achieve the same accuracy would be extremely high and since the coefficients get small
rapidly, also very high precision would be needed.

However, even cutting and re-expansion cannot prevent the remainder bound from growing as
can be seen in Tables 5 and 6. If the manifold enclosed by the Taylor Model is repelling, this causes
the entire neighborhood contained in the Taylor model enclosure to expand, and consequently the
Taylor Model along with it. There really is no way to control this expansion and loss of accuracy
is unavoidable. The only remedy to still obtain sharp results for high iterates is to have higher
accuracy in the local approximation to start out with.
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Table 5. Largest width and number of pieces
for the first 12 iterates of the unstable mani-
fold. Computations are performed at order 20.

Iteration Pieces Length Largest width

1 8 1.10 6.30 · 10−14

2 16 1.89 1.44 · 10−13

3 31 3.05 2.65 · 10−13

4 58 5.86 7.29 · 10−13

5 112 10.2 1.76 · 10−12

6 212 15.4 3.67 · 10−12

7 369 23.0 7.45 · 10−12

8 619 35.0 1.45 · 10−11

9 1004 55.0 3.24 · 10−12

10 1579 90.4 6.32 · 10−11

11 2583 143 1.42 · 10−10

12 4116 231 2.90 · 10−10

Table 6. Largest width and number of pieces
for the first 12 iterates of the stable manifold.
Computations are performed at order 20.

Iteration Pieces Length Largest width

1 9 0.91 7.63 · 10−14

2 31 2.60 5.26 · 10−13

3 64 4.86 5.00 · 10−12

4 98 9.03 3.26 · 10−11

5 145 14.4 3.74 · 10−10

6 261 23.8 4.11 · 10−9

7 451 38.4 4.69 · 10−8

8 695 58.7 4.95 · 10−7

9 1120 93.4 5.72 · 10−6

10 1763 150 6.40 · 10−5

11 2805 243 7.23 · 10−4

12 4532 392 8.10 · 10−3

5. COMPUTATION OF HOMOCLINIC POINT ENCLOSURES

In the preceding sections we have presented a technique to get verified TM-enclosures of the
invariant manifolds near a hyperbolic fixed point p, as well as a propagation scheme which yields an
ordered list of TMs which rigorously enclose finite forward (inverse) images of the unstable (stable)
manifold pieces at p, up to a finite number of iterates.

In the following we will describe a simple way of computing sharp interval bounds of the
homoclinic intersection points of these parts of the invariant manifolds of p, with the added
advantage that the computation can be automated in a straightforward fashion. In other words,
we are confident that this technique is suitable to compute all intersection points of fairly long
pieces of the invariant manifolds of p. Naturally, the approach can readily be extended to compute
heteroclinic intersection points of two stable and unstable manifold pieces belonging to two different
hyperbolic fixed points, but for brevity we will only consider homoclinic intersections of the manifold
tangle of a single fixed point p.

The knowledge about homoclinic points is of course valuable in itself, since there are numerous
aspects in the study of hyperbolic and chaotic dynamics directly related to their existence,
abundance and mapping properties. But for the purpose of this presentation, the added benefit
is that the quality of a numerical approximation of a homoclinic point can readily be checked
through various quantitative techniques, which will give us good tests to assess the accuracy of the
TM-manifold-enclosures that are used to compute the homoclinic points in the first place.

5.1. Verification of Existence of Homoclinic Points

Assume we are given TM-enclosures of two pieces of the planar unstable and stable manifold
which are known to intersect. Let these TMs be parameterized as T1(t, s) = P1(t, s) + I1 and
T2(t, s) = P2(t, s) + I2, with t and s as longitudinal parameters respectively, where (t, s) ∈ [−1, 1]2.

We note that as representations of two-dimensional sets, P1 and P2 overlap over a range of
parameters, as depicted in Fig. 5. However, as the Taylor Models enclosing the manifold pieces are
very thin (i.e. the transverse width is several orders of magnitudes smaller than the length), as
a first step we may assume there is a pair of parameters (t0, s0) for which P1(t0, s0) ≈ P2(t0, s0).
There are straightforward ways how (s0, t0) can be determined sharply, for example making use
of a two-dimensional global optimization problem minimizing the distance between T1 and T2, or
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Fig. 5. Transverse crossing of two Taylor Models T1 (dash-dotted) and T2 (dashed). Their intersection can
be enclosed into an interval box B (red, solid) which contains the homoclinic intersection of the true manifold
pieces contained in T1 and T2.

a suitable Newton-type iteration once one is near the intersection point of the polynomial parts.
Note that (t0, s0) need not be known rigorously.

Let us furthermore assume that T1 and T2 have been reexpanded around (t0, s0), so that their
intersection point is close to the origin, and that we have performed a linear transformation on
T1 and T2 with their inverse linear parts, which means that T1 and T2 are tangent to the x1- and
x2-axes at the origin, respectively.

For easy of notation we also assume orientation such that
T1,1(−1, s0) < T1,1(t0, s0) < T1,1(1, s0),
T2,2(t0,−1) < T2,2(t0, s0) < T2,2(t0, 1),

but the following algorithm can easily be generalized to arbitrary orientations. We use Ti,j for the
jth component of the TM Ti, i.e. Ti,j = Pi,j (t, s) + Ii,j.

Algorithm 2. First check that(
max (T1,1 ({−1} × [−1, 1])) < min

(
T2,1

(
[−1, 1]2

)))
∧

(
max

(
T2,1

(
[−1, 1]2

))
< min (T1,1 ({1} × [−1, 1]))

)
and that (

max (T2,2 ([−1, 1] × {−1})) < min
(
T1,2

(
[−1, 1]2

)))
∧

(
max

(
T1,2

(
[−1, 1]2

))
< min (T2,2 ([−1, 1] × {1}))

)
Then the intersection contains a homoclinic point h. Furthermore, we can sharpen the interval
enclosure of h by iterating the following algorithm:

1. Compute the range bound in x1-direction T2,1

(
[−1, 1]2

)
.

2. If there are −1 < θl < θu < 1 such that(
max (T1,1 ([−1, θl] × [−1, 1])) < min

(
T2,1

(
[−1, 1]2

)))
∧

(
max

(
T2,1

(
[−1, 1]2

))
< min (T1,1 ([θu, 1] × [−1, 1]))

)
reexpand T1 around t1 −→ θu−θl

2 + θu−θl
4 t1.

3. Repeat from step 1, but switch the indices 1 and 2 in both the TMs T1, T2 and their
components, and the variables t and s.

4. Stop the algorithm if step 2 cannot be performed successfully or if the widths of T1,1

(
[−1, 1]2

)
and T2,2

(
[−1, 1]2

)
undercut the desired accuracy threshold.

REGULAR AND CHAOTIC DYNAMICS Vol. 15 Nos. 2–3 2010



RIGOROUS AND ACCURATE ENCLOSURE OF INVARIANT MANIFOLDS 123

It is of note that the heuristic determination of θl,u in step 2 can be done very elegantly by using
the map inversion tools which are available in the COSY implementation of DA-arithmetic [1]. The
values

θl ≈ P−1
1,1

(
min(T2,1([−1, 1])2), 0

)
,

θu ≈ P−1
1,1

(
max(T2,1([−1, 1])2), 0

)
are a good initial guess for θl,u, possibly after a slight inflation by 10 percent or so.

As a side note, the algorithm can be extended to determine the parametrization orientation of
the manifolds at a given homoclinic point, which, while not relevant for the results published in
this paper, can be used for more advanced studies of homoclinic tangles.

To give an example for the performance of the last algorithm we return to the Hénon map. We
can enclose specific homoclinic points as follows:
In the global manifold tangle constructed in the previous section we see that successive iteration
of the TM-enclosures of the local stable and unstable manifolds at the fixed point p1 through the
map Ha,b or the inverse H−1

a,b seems to generate the “first” (in the sense of arclength) homoclinic
intersection point of the iterated TM-enclosures, which we call q1, at about (0.33,−0.25). Applying
the above sharpening algorithm, we are able to assert existence of such a point in a quite sharp
interval box enclosure of width ≈ 10−12:
Theorem 3. In the standard Hénon map (3.10), the transverse homoclinic intersection q1 of W u

and W s of the hyperbolic fixed point p1 ≈ (0.63, 0.18) is contained within the interval box

([0.338852549387, 0.33885254939] , [−0.255112629783,−0.2551126297832]) . (5.1)

5.2. Numerical Tests

The rigorous homoclinic point enclosures from the last section serve as an excellent litmus test
for the claimed accuracy of the manifold enclosure themselves, and various a posteriori tests to
check the quality of the homoclinic point enclosure can be performed to support the sharpness of the
interval enclosure. Unfortunately, no analytic formula for the coordinates of the true homoclinic
point of the Hénon map near (0.35,−0.25) exist, so we have to resort to some nonverified, but
quantitative numerical experiments to corroborate the statement 3.

In the following we assume that p is a hyperbolic fixed point of a planar diffeomorphism
f : R

2 −→ R
2 with eigenvalues 0 < |λ2| < 1 < |λ1| of Dfp(0), ht is a true homoclinic point in

W s
p ∩W u

p , and hc is a computed numerical approximation of ht. It is clear that there are completely
analogous method to estimate the displacement of hc from the unstable manifold by correspondingly
using f−1 instead of f .

Theorem 3 must hold true by virtue of every step in algorithm (2) having been performed in
Taylor Model arithmetic. However, there are nonverified numerical techniques that can substantiate
the claim of the theorem in an intuitive manner. Define the midpoint of the homoclinic point
enclosure (5.1) as

hc := (0.3388525493875,−0.25511262978315) , (5.2)

and let ht be a the true homoclinic point q1 contained in (5.1).

5.2.1. Number of Forward Iterates Near Fixed Point as a Measure
The first very simple and straightforward method to measure the quality of hc is the number of

forward iterates that stay within a neighborhood of p. Since hc is close to ht, the images fk(hc) first
converge to p1 along the stable manifold and, once near p1, get pulled away from p1 again along
W u

p with a factor of ≈ |λ1| in every iteration for the distance to W s
p . If we consider the maximal

number K of iterations such that the forward iterates fk(hc) do not leave a ball Bδ(p) for k � K
(where δ is reasonably small, say δ ≈ 0.1), then we know that the original displacement of hc from
W s

p , or from ht respectively, can be approximately be expressed as

d(hc, ht) ≈ dist (hc,W
s
p ) ≈ δ

|λ1|K
. (5.3)
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In the example above with f = Ha,b , |λ1| ≈ 1.92 and δ = 0.1, we get K = 40, i.e.

d(hc, ht) ≈ 0.1/(1.92)40 ≈ .4655 · 10−13 (5.4)

which is compatible with the claimed sharpness of the enclosure from Theorem 3.

5.2.2. Monitoring of Distance to Stable Manifold Under Forward Iteration

The second method is very much similar in spirit to the first one, but with a more accurate
numerical result for the original displacement of hc from W s

p , and hence ht. The reason why the
first method only gives a rough estimate about d(hc, ht) is that the expansion of the distance of
fk(hc) to the stable manifold only goes with a factor of |λ1| in the higher iterates where k ≈ K,
i.e. where fk(hc) is near p. For the lower iterates with small k, while there still is expansion of
dist(fk(hc),W s

p ) in principle due to the hyperbolic structure of the system near W s
p , that expansion

factor need not be |λ1|, which when combined as in eq.(5.3) can produce errors in the range of one
order of magnitude.

The approach for a more plausible estimate of d(hc, ht) is to monitor the contraction of
dist(fk(hc),W s

p ) for every iterate 0 � k � K, and keep track of all shrinking factors. In the following
we outline the algorithm:

1. Let γ(t) be the polynomial part of the TM-enclosure of W s
p between ht and p. Define h0 := hc.

2. For 0 � n � K − 1: Let hn := f(hn−1). Compute the perpendicular unit vector un from hn

to γ by minimizing the scalar product |〈γ̇(t), γ(t) − hn〉| over the parameter t at tn. Set
un := (γ(tn) − hn) · (|γ(tn) − hn|)−1. Evaluate the Jacobian Df(hn) and compute the length
growth factor kn := |Df(hn) · un|.

3. Approximate d(hc, ht) ≈ dist(hK ,W s
p ) ·

(
K−1∏
n=0

kn

)−1

.

In our present case with hc as in (5.2), ht = q1 and K = 40 we obtain a numerical value

d(hc, ht) ≈ 0.897 · 10−13

which is again in agreement with the previous rigorous claim.

5.2.3. Mapping to Different Sides of the Stable Manifold

Considering the computed point hc and the tangent direction of the stable manifold near hc, we
can construct another point h̃c that has been translated perpendicularly to the manifold tangent
from hc by a small (positive or negative) length l roughly of the size of the expected displacement
dist(hc,W

s
p ). If indeed the points hc and h̃c lie on different sides of the manifold, then so will all their

forward iterates. In other words, once the points fk(hc) and fk(h̃c) get near p, their images slowly
drift away from each other to follow different branches of the unstable manifold under subsequent
iteration, which can be observed by simply printing the iterates of both points to the screen. If this
diverging behavior of fk(hc) and fk(h̃c) persists, the true set W s

p has to be within |l| of hc.

Returning to the claimed homoclinic point interval enclosure in Theorem 3, its top left and
right cornerpoints were mapped successively by the squared Hénon map H2

a,b (to avoid confusing
switching of sides of the iterates) as depicted in Fig. 6a. Likewise, Fig. 6b) shows the iterates by H−2

a,b

of the right top and bottom cornerpoints of the interval box. In both cases we see that the iterates
follow different branches of the unstable and stable manifold near the fixed point, respectively,
which is again compatible with the claim of Theorem 3.
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a)

b)

Fig. 6. (a) The first 20 iterates of H2 of the left (plus) and right (x) top cornerpoints of the claimed homoclinic

point interval enclosure from Theorem (3) are plotted. (b) The first 10 iterates of H−2 of the top (plus) and
bottom (x) right cornerpoint of the same interval box enclosure are plotted. The unstable manifold is drawn
solid, the stable manifold dashed.
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