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A B S T R A C T

For high-resolution separators like the projected Super-FRS at FAIR, an adapted and accurate ion-optical
model considering realistic 𝐵-dependent magnet parameters is crucial in achieving the desired parameters (e.g.
resolution) and to enable a fast optimization. Starting from the magnetic field measurements and simulations,
rigidity-dependent Taylor transfer maps are generated for the Super-FRS preseparator dipole magnets. The
effects of the magnetic saturation in the steel yoke on the image aberrations are analyzed.

1. Introduction

The growing demand in the field of discovering and investigating
rare isotopes by means of fragment separators yields challenging re-
strictions on future facilities. The main task of a fragment separator is
an in-flight separation of many different species of nuclides, produced
from a primary ion beam behind a target. The Super-FRS, an in-
flight projectile fragment separator, being built for the FAIR project
at GSI [1], is an example of combining high flexibility with ambitious
design parameters.

Due to its high design momentum resolution together with large
angular and momentum acceptance (horizontal angular acceptance
𝐴ℎ = ±40 mrad, vertical angular acceptance 𝐴𝑣 = ±20 mrad, and
momentum acceptance 𝛥𝑝∕𝑝 = ±2.5%) the dipole magnets of the Super-
FRS have large usable apertures of 120 cm×14 cm for radiation resistant
preseparator dipoles and 38 cm×14 cm for the superconducting main
separator dipoles. The actual vertical air gap is in both cases as large as
19 cm. The design range of the particle magnetic rigidity 𝐵𝜌 of 2–20 Tm
requires the variation of the main dipole magnetic field 𝐵0 from 0.15 T
to 1.6 T and of the coil current 𝐼 from 60 A to 643 A. In the upper third
of the field range, magnetic saturation effects are significant, leading
to local changes of the magnetic flux density �⃗� and the corresponding
particle orbits.

For the Super-FRS and similar separators and spectrometers, where
frequent changes of 𝐵𝜌 during operation is required for tuning and
selection of different nuclides, it is important to have a fast ion-optical
model with good predictability, especially for investigations involving
rare nuclei with low production rates at high 𝐵𝜌. Thus, to maintain
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the predictability of the ion-optical codes it is important to consider
magnetic saturation effects in the underlying model.

To obtain a fast and accurate ion-optical model for the Super-FRS,
we have developed a general approach for polynomial representation
of the magnetic field while exactly preserving its harmonic properties
and computation of accurate transfer maps of arbitrary order starting
from a 3D magnetic field distribution �⃗�(𝑟, 𝐼). Here 𝑟 = (𝑋, 𝑌 ,𝑍) is the
position in the right-handed coordinate system of the magnet with the
origin in the center, longitudinal direction 𝑍 and vertical direction 𝑌 .
This method is robust against the noisy data and allows for the use
of measured magnetic field data as input. COSY INFINITY [2] and the
Python 2.7 programming language [3] were used for the computations.
The approach has been applied to the normal conducting radiation-
resistant dipole magnet of the Super-FRS preseparator with design
deflection angle 𝜃0 = 11◦ and design radius 𝑅0 = 12.5m [4]. The
schematic layout of the preseparator and a photo of the dipole magnet
are shown in Fig. 1. The effects of the magnetic saturation in the yoke
of the dipole are analyzed in detail in this paper.

2. From magnetic field to transfer maps: a step by step description

Our approach to compute realistic high-order transfer maps can be
divided into the following four steps:

1. Measurements or simulations of the magnetic field.
2. Determination of the reference trajectory.
3. Construction of the 𝐵 field as smooth functions of coordinates 𝑟

and excitation currents 𝐼 .
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Fig. 1. Schematic layout of the Super-FRS preseparator. The first normal conducting dipole magnet is illustrated by a photo of its prototype.

4. Computation of transfer maps in the differential algebraic (DA)
framework.

The details of each step will be discussed in the following subsections
for the example of the normal conducting Super-FRS preseparator
dipole magnet depicted in Fig. 1. All 3D simulations of the dipole
were performed using the finite element method (FEM) in the CST EMS
magnetostatics solver [5].

2.1. Magnetic field measurements and simulations

In order to obtain a reliable transfer map of an ion-optical element,
accurate magnetic field information from measurements or simulations
is crucial in the complete region of the usable aperture. However, the
magnetization of ferromagnetics used for most accelerator magnets is a
complicated stochastic hysteretic process with a nonlinear dependency
on a variety of parameters such as the magnetic field strength, ramping
rate, mechanical stress and temperature. This causes problems for both
simulations and measurements.

To partially resolve the hysteresis issue, the following rules for
measurements and operation are commonly used in the accelerator
community:

1. Only one hysteresis branch is used.
2. The ramp rate of the coil current is set slow enough to grant a

quasistatic behavior of the hysteresis curve.
3. The cycle of the magnetization is repeated until the resulting 𝐵

field becomes reproducible.
4. The coils are cooled to provide a stable operation temperature.

Following these rules, the �⃗�(𝐼) dependence becomes unambiguous
down to the noise level (defined e.g. by the current stability of the
power supply) and it allows usage of simplified non-hysteretic simula-
tion methods. The most commonly used 3D magnetostatics simulation
codes in the accelerator community such as CST EMS [5], Opera
Tosca [6], COMSOL AC/DC [7] and Ansys Maxwell [8], are based on
approaches using the so-called virgin curve.1 The virgin 𝐵-𝐻 curve
starts at the point of the fully demagnetized state (𝐻 = 0, 𝐵 = 0) and
ends at one of the points of maximal absolute magnetization (𝐻max,
𝐵max) or (−𝐻max, −𝐵max). This approach is sufficient for many appli-
cations with soft magnetic materials because of their narrow hysteresis
curve. For the yoke material of the considered dipole the virgin curve
was measured using a permeameter [9] at GSI. The measurement result
and the corresponding relative permeability are plotted in Fig. 2.

Since the dipole is powered by a unipolar current source, the
physical magnetization of the yoke proceeds along hysteresis sub-
branches with non-zero 𝐵 field (remanent field) at 𝐻 = 0. Therefore, a

1 Transient hysteresis simulation module available e.g. in Opera, is im-
practical for magnetostatic simulations due to much larger computational
times.

Fig. 2. The magnetization curve of the yoke steel (a) and the corresponding relative
permeability 𝜇𝑟 (b) dependent on the magnetic field strength 𝐻 .

considerable difference between the measurements and simulations of
the 3D magnetic field distribution can be expected for low currents.

The measured and simulated integral excitation curves are shown
in Fig. 3(a) and appear nearly identical. Only after the normalization
to 𝐼 the expected deviation of the simulated to the measured data is
visible as depicted in Fig. 3(b). This difference is maximal (≈ 0.8%) for
𝐼 = 40A and is significantly lower for higher currents. The slight shape
deviation of the curves originates from the difference of the real and
simulated magnetization processes.

The distributions of the 𝐵 field along the 𝑍 axis for various 𝐼 values
are depicted in Fig. 4(a). The relative difference between the measured
𝐵𝑚 and simulated 𝐵𝑠 field in Fig. 4(b) in the main field region (−80 cm
to 80 cm) originates mainly from the absence of the remanence in the
simulations. The non-uniformity of the relative difference along the 𝑍
axis can be explained by the different magnetization curves and an
unknown inhomogeneity of the magnetic properties of the yoke of the
real dipole.

Nonetheless, despite deviations of up to 1.8% on the fringes in the
longitudinal distributions, the simulated transversal field distributions
for higher currents are in good agreement with the measurements as
shown in Fig. 5 for 320 A and 640 A. The discrepancy of several units
of 10−4 is mostly a parallel shift. The ripples in measured data spread
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Fig. 3. Integral excitation curve ∫ 𝐵𝑌 (0, 0, 𝑍, 𝐼)𝑑𝑍 (a) and normalized integral
excitation curve ∫ 𝐵𝑌 (0, 0, 𝑍, 𝐼)𝑑𝑍∕𝐼 (b) derived from simulations and measurements.

Fig. 4. Simulated 𝐵𝑌 ,s and measured 𝐵𝑌 ,m magnetic field along the 𝑍 axis (a) and
relative error (𝐵𝑌 ,m − 𝐵𝑌 ,s)∕𝐵𝑌 ,m(0, 0, 0) (b) for excitation currents of 40 A, 320 A and
640 A.

along the entire 𝑍 axis and correspond to a systematic measurement
error. After removing the ripples (black line in (b)), the measured and
simulated field distribution along the 𝑋 axis (transverse direction) in
the middle of the magnet have a similar shape.

Fig. 5. Measured and simulated magnetic field along the 𝑋 axis (transverse direction)
for coil currents of 320 A (a) and 640 A (b). The ripples in measured data correspond
to a systematic measurement error. The thin black line in (b) is a result of removing
the ripples from the measurement data.

2.2. Setting the reference trajectory in a dipole

An essential step for the ion-optical simulation of a dipole using
measured or simulated fields is to set up the realistic reference tra-
jectory in the magnet coordinates. This means to assign one of the
possible realistic trajectories of a particle with central value of 𝐵𝜌 as
the reference. This trajectory should be as close as possible to the ideal
one and located centrally in a good field area. One issue which leads to
changing of the particle trajectories with saturation of the yokes of the
magnetic elements is the shortening of the effective length of a dipole

𝐿eff ∶=
∫ ∞
−∞ 𝐵(𝑆)𝑑𝑆

𝐵0
. (1)

For the considered magnet, the 𝐿eff drops by about 1 cm between 2 Tm
and 20 Tm as shown in Fig. 6. Under the condition

𝐵𝜌 = 𝐵0 ⋅ 𝑅0, (2)

the shortening of 𝐿eff leads to a decrease of the deflection angle
of reference particle. In general, changing the effective length while
keeping 𝐵0 = 𝐵𝜌∕𝑅0 will lead to various deflecting angles, which might
differ from the design value, as shown in Fig. 7(a). The situation can
be improved using the equivalent (hard-edge) length

𝐿eq ∶=
∫ ∞
−∞ 𝐵(𝑆)𝑑𝑆

𝐵eff
= ∫

∞

−∞

𝐵(𝑆)
𝐵𝜌

𝑑𝑆 ⋅ 𝑅0 = 𝜃𝑅0, (3)

which is equal to the path arc length in a homogeneous sector magnet
with a constant field 𝐵eff = 𝐵𝜌∕𝑅0, deflection radius 𝑅0 and deflection
angle 𝜃. 𝐿eq was introduced as an alternative to 𝐿eff in [10].2 Unlike

2 In [10] the traditional effective length is named 𝐿eff0 and the equivalent
length is named 𝐿eff.
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Fig. 6. Calculated effective 𝐿eff and equivalent 𝐿eq lengths versus the magnetic rigidity.

Fig. 7. Particle trajectories in sector dipoles with different effective lengths 𝐿eff. In (a)
the trajectories are set so that 𝐵𝜌 = 𝐵0𝑅0, whereas in (b) 𝐵𝜌 = ∫ ∞

−∞ 𝐵𝑑𝑠∕𝜃0 is fulfilled.

𝐿eff, 𝐿eq is an adjustable parameter, which can be set to a predefined
value to achieve the design deflecting angle

𝜃0 = ∫𝑆
𝐵𝑌 (𝐼)
𝐵𝜌

𝑑𝑠 (4)

when varying the coil current. In Fig. 6 𝐿eq(𝐵𝜌) is set to a constant
value of 𝑅0𝜃0. For different relations between effective and equivalent
lengths this leads to a fixed deflection angle and slightly different
curvatures for the reference particle as depicted in Fig. 7(b).

For sector dipoles 𝐿eq can also be tuned by varying the position of
the reference particle 𝑋i at the entrance of the magnet well outside of
the field, where 𝐵(𝑋i, 0, 𝑍i) ≈ 0. This might be performed by shifting
the dipole, which in general can be done only before the first operation
of the machine. By tuning both 𝐼 and 𝑋i, one can achieve 𝐿eff(𝐵𝜌) =
𝐿eq at maximum two values of the magnetic rigidity3 implying the
simultaneous fulfillment of Eq. (4) and

𝐵0(𝐼) = 𝐵(𝑋0, 𝑌 = 0, 𝑍 = 0, 𝐼) =
𝐵𝜌
𝑅0

, (5)

where 𝑋0 corresponds to the position of the reference trajectory in the
longitudinal center of the magnet.

2.3. CaLculation of the DA representation of the magnetic field

For large aperture machines with wide rigidity ranges it is advanta-
geous to have a quick model of the detailed magnetic field information

3 One for a monotone 𝐿eff(𝐵𝜌) and two, if it has a local extremum.

for any coil current. For that, a magnetic field distribution �⃗�(𝑋, 𝑌 ,𝑍, 𝐼)
can be described using a set of 4-variable polynomials for its approx-
imation. In addition, the polynomial field representation saves time
for accessing and evaluation as well as storage space in comparison
to usual 3D arrays of field values. These polynomials can be obtained
with the surface integration Helmholtz method (SIHM) in the DA frame-
work [11,12]. SIHM finds a harmonic vector field inside of a source-free
simply-connected volume, given the vector field on the surface of the
volume. In our case the volume was chosen as a rectangular box. The
resulting magnetic field components are DA vectors, i.e., they represent
the Taylor expansion coefficients of 𝐵𝑋,𝑌 ,𝑍 in 𝑋, 𝑌 and 𝑍 up to a
predefined order [13]. The integration over the surface in SIHM makes
the method robust against the random input errors, e.g. measurement
errors. Besides that, even if the errors in the initial magnetic field
break its harmonic property, SIHM enforces that 𝛥�⃗� = 0 holds for the
resulting magnetic field up to machine accuracy.

To take the current dependency of the 𝐵 field into account, the field
components can be decomposed into a superposition

𝐵𝛼(𝐼) ≈ 𝑏𝛼0 + 𝑏𝛼1 (𝐼 − 𝐼0) + 𝑏𝛼2 (𝐼 − 𝐼0)2 +⋯ + 𝑏𝛼𝑛 (𝐼 − 𝐼0)𝑛, (6)

where 𝛼 ∈ {𝑋, 𝑌 ,𝑍} and 𝐼0 is the expansion point in 𝐼 . The coeffi-
cients 𝑏𝛼0,1,2,…,𝑛 can be used as input for the SIHM procedure in COSY
INFINITY. The output DA vectors can be recombined using Eq. (6)
yielding �⃗�(𝑋, 𝑌 ,𝑍, 𝐼) inside the volume of interest with the DA variable
(𝐼 − 𝐼0). In case of midplane symmetry it is possible to obtain a 3D �⃗�
distribution from a 2D 𝐵𝑌 distribution in plane 𝑌 = 0 using DA fixed
point theorem,4 reducing the number of fitted coefficients 𝑁𝑐 from
(𝑛 + 3)!∕(𝑛! 3!) in 3D to (𝑛 + 2)!∕(𝑛! 2!) in 2D.

Although SIHM computes the field and its derivatives very accu-
rately, for relatively flat volumes (i.e. where one dimension is signif-
icantly smaller than the others) it is not well suited for obtaining a
high-order polynomial, which would represent the field in the entire
transversal cut of volume of interest. This is due to the fact, that in DA
SIHM routine, the integrand 1∕|𝑟𝑣 − 𝑟𝑠| [11,12] is expanded in a volume
expansion point 𝑟𝑣 and a surface expansion point 𝑟𝑠. This integrand is
not analytical for 𝑟𝑣 = 𝑟𝑠. Thus, the Taylor expansions do not converge
for |𝑟 − 𝑟𝑣| > |𝑟𝑣 − 𝑟𝑠|. For the Super-FRS preseparator dipole magnet
the physical vertical aperture is 18 cm, which is smaller than the used
horizontal aperture of ±19 cm [15] and in order to obtain the Taylor
polynomials, we combine SIHM with a least squares fit. The second
order DA vectors of the 𝐵 field5 were calculated in a set of points
in plane 𝑌 =0 covering the area of interest. The least squares fit was
used to obtain higher order polynomials in the set of points along the
reference path. The polynomials describe the initial 𝐵 field in the whole
transversal area of interest and in the longitudinal direction on a length
equal to the vertical aperture.

Using the methods described in this section, we obtained the �⃗�
(𝑋, 𝑌 ,𝑍, 𝐼) polynomials for the considered dipole. In Fig. 8 the relative
error of the resulting field is depicted in the area of interest along
the reference path, where 10th order polynomials are used for the
approximation. The coil current of 575 A was used since it roughly
corresponds to the current where the error is maximal. The resulting
polynomials are in a good agreement with initial field from FEM
simulation. The highest error values are located on the fringes, where
the field changes rapidly.

In Fig. 9 the relative error integrated along the reference path is
shown for different orders of the 𝐵(𝑋, 𝑌 ,𝑍) approximation. The error
originates mostly from the fringe field region and is oscillating along
the transverse 𝑥-axis, where the oscillation amplitude decreases as the
order increases. The non-zero mean value of the error results from

4 The method is available in the beam physics package of COSY
INFINITY [14].

5 First and mixed second order partial derivatives are still accurate for a
small convergence radius.

59



E. Kazantseva, H. Weick, M. Berz et al. Nuclear Inst. and Methods in Physics Research, A 935 (2019) 56–64

Fig. 8. (Color online) Relative difference 𝛥𝐵∕𝐵(0, 0, 0) between the initial magnetic
field obtained from a FEM simulation and the 10th order polynomial approximations
along the reference path in curvilinear coordinates for a coil current of 575 A. Black
lines indicate the physical borders of the dipole.

Fig. 9. (Color online) Relative integral error ∫
(

𝐵𝑌 (𝑥, 𝑠) − 𝐵𝑌 0(𝑥, 𝑠)
)

𝑑𝑠∕ ∫ 𝐵𝑌 0(𝑥, 𝑠)𝑑𝑠 ⋅
104 with the initial magnetic field from a FEM simulation 𝐵𝑌 0 and the magnetic
field from polynomial approximations 𝐵𝑌 calculated for different orders against the
transverse curvilinear coordinate 𝑥 for a coil current of 575 A. The integration is
performed along the path length 𝑠.

the limited accuracy of the 𝐵-𝐼-polynomial approximation and the
accuracy of FEM-simulations (10−6 in our case).

Practically, the choice of the order of approximation requires insight
into the beam dynamics of the particular application. Another aspect is
the computational time cost. For example, increasing of the order from
the 10th to the 12th leads to a growth of the required time by a factor
of 1.4 for the computation of the polynomial field representation and
by a factor of 4.2 for the ion-optical computations with 6 variables.
Nevertheless, the absolute computation times are still moderate for the
12th order and a modern desktop PC: it takes 0.23 s to compute one
polynomial and 40 s to compute the transfer map of the Super-FRS
preseparator given the transfer maps of each element.6

2.4. Finding the optimal current and obtaining Taylor transfer maps

Using polynomial representation of the magnetic field 𝐵(𝑋, 𝑌 ,𝑍, 𝐼)
it is possible to obtain transfer maps for any required rigidity. We
used two different methods of the transfer map calculation: one gen-
eral method, and one method which treats the main field region and
fringe fields separately. The general method is based on application
of the 8th Runge–Kutta DA integrator in COSY INFINITY [16] on a

6 The computation of a single transfer map via numerical integration of the
beam physics equations of motion in the DA framework requires much more
time (measured in hours for 10th order and a modern desktop PC) and hence
should be done only once with following storage and reuse of the maps.

set of canonical beam physics equations of motion [17]. The magnetic
field used in these equations is given as DA vectors in each point of
integration. The spatial expansion of these DA vectors is valid in the
whole transversal aperture cut and only a part of longitudinal aperture
size. This longitudinal length of the expansion validity was roughly
equal to the horizontal aperture in our case. In this paper we denote
these general maps as ‘‘3D maps’’. With the other method, the maps
are calculated using the thick multipole representation for transversal
non-uniformities via the procedure MS (an inhomogeneous combined
function bending magnet) in COSY INFINITY together with the Enge-
function approximation for the fringe fields (‘‘MS + Enge FF’’). Both
methods require the knowledge of the relation between the coil current
and the magnetic rigidity, which we obtained as follows. The function

𝐼(𝐵𝜌) = 𝐶𝐼
0 + 𝐶𝐼

1 (𝐵𝜌 − 𝐵𝜌0) + 𝐶𝐼
2 (𝐵𝜌 − 𝐵𝜌0)2 +⋯𝐶𝐼

𝑁 (𝐵𝜌 − 𝐵𝜌0)𝑁

should provide a correct deflection angle, which reduces to an opti-
mization problem 𝜃

!
= 𝜃0. We used the shooting method to solve this

problem. Due to the linear independence of different order monomials
in the DA framework, the coefficients 𝐶𝐼

i can be fitted individually
starting with 𝐶0 and ending with 𝐶𝑁 .

The 3D maps can be computed using 𝐵(𝑋, 𝑌 ,𝑍, 𝐼) and taking
𝐼(𝐵𝜌) into account directly in the equations of motion resulting in 𝐵𝜌-
dependent transfer maps. For the MS+Enge FF maps, the integral field
harmonics and Enge coefficients were evaluated for a set of rigidity
values using simulated magnetic field distributions.

3. Application: Super-FRS preseparator optics with high-order 𝑩𝝆-
dependent maps

The Super-FRS preseparator is a 𝐵𝜌-𝛥𝐸-𝐵𝜌 separator with two
deflecting stages and a wedge energy degrader between them with its
layout shown in Fig. 10. Each deflecting stage has a triplet of similar
11◦ dipoles. There are four focal planes in the Super-FRS presepara-
tor. The most interesting planes are the dispersive focal plane FPF2,
where the degrader can be placed, and the achromatic focal plane
FPF4 at the end. The detailed description of the ion-optical layout
of the preseparator can be found in [18]. Quadrupoles, sextupoles,
and octupoles are used for focusing and correction of geometric and
chromatic aberrations.

To study the impact of the 𝐵𝜌-dependency and high-order aberra-
tions on the resolution of the Super-FRS preseparator the maps of the
dipoles obtained in this work were inserted into the ion-optical model
in COSY INFINITY. Within this section only 3D maps were used. For
the multipole elements we used standard COSY Enge fringe fields in
this study.

There are two modes of the operation of the Super-FRS preseparator:
separator mode and spectrometer mode. In the separator mode, the full
layout of the preseparator is achromatic for the nuclei to be selected
(see rays in Fig. 10). The wedge degrader, placed in the dispersive FPF2,
reduces the energy of the nuclei depending on their atomic number and
hence grants the spatial separation of the nuclei with different atomic
numbers at the FPF4.

For a successful operation of the Super-FRS in the separator mode,
the beam has to be centralized for all rigidities. Therefore, the reference
path in dipoles needs to be set up in a way to preserve the deflection
angle, as described in Section 2.2. Otherwise changing 𝐿eff would lead
to shifting of the horizontal position of the beam by about 1 cm at the
FPF2.

For the best separation, the beam spot at FPF4 has to be mini-
mized, which can be performed by reducing first and second order
geometric (primarily horizontal) and chromatic aberrations in the focal
planes via fitting of the multipole strengths. We tuned all multipoles
of the preseparator (12 quadrupoles, 10 sextupoles and 4 octupoles)
to achieve optimal settings for the rigidity range from 2 Tm to 20 Tm
and to preserve the first order ion-optical layout described in [18]. The
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Fig. 10. Ion-optical layout of the Super-FRS preseparator with production target at FPF0 and focal planes FPF1-4. The wedge energy degrader can be placed in the FPF2 plane.
The gray sectors denote dipole magnets, blue-marked elements denote quadrupoles (sometimes with octupole correctors), and light green-marked elements denote sextupoles. The
rays produced for 5 initial angles and 3 initial energies demonstrate the achromatic layout of the Super-FRS preseparator. More labels are used for further discussion in this paper.

Fig. 11. Horizontal phase space images at FPF4 for different order transfer maps. Initial coordinates are given by phase space ellipses with half-axes of 𝑥𝑘 and 𝑎𝑘, where 𝑥𝑘 ∈
{0.25 mm, 0.5 mm, 0.75 mm, 1 mm} and 𝑎𝑘 ∈ {10 mrad, 20 mrad, 30 mrad, 38 mrad}.

horizontal beam width inside the dipoles was kept constant, preserving
the first order resolving power at FPF2

𝑅1,FPF2 = |(𝑥, 𝛿𝑝)|∕((𝑥, 𝑥)𝛥𝑥i) ≈ 2.6∕(1.65𝛥𝑥i), (7)

which corresponds to 𝑝∕𝛥𝑝 ≈ 1576 for 𝛥𝑥i = 1mm. Here, (𝑥, 𝑥) and
(𝑥, 𝛿𝑝) are transfer map elements corresponding to horizontal magnifi-
cation and momentum dispersion in COSY INFINITY notation [19]. The
other fit conditions were to improve the preseparator transmission or
to limit the multipole coil currents for the high rigidities. The same fit
conditions were used for all rigidities. Due to the linear independence
of the different order multipoles, the optimization could be performed
gradually starting from optimization of the gradients of the first three
quadrupoles in order to achieve the goal parameters at the focal plane
FPF1 and ending with the optimization of the last three octupole gradi-
ents. In total 12 ordered optimization loops were used with maximum
of 5 optimized parameters in each.

Before proceeding with ion-optical studies, it is important to know
the polynomial order of the transfer maps of the dipole that is sufficient
for the Super-FRS application. Therefore, we compare the horizontal
phase space images at FPF4 for different orders and the same initial
coordinates, as shown in Fig. 11. For simplicity we consider the image

aberrations of particles with initial distributions laying on concentric
ellipses in horizontal phase space. Fig. 11 shows that for an emittance of
up to 22.5 mm⋅mrad, the resulting image does not change significantly
beyond the 7th order. For an emittance of 38 mm⋅mrad, corresponding
to the maximal acceptance of the Super-FRS, the image stabilizes only
after the 12th order, since the lower orders display incorrect behavior
of the top and bottom ends of the final phase space.

Using the 12th order dipole transfer maps we found the optimal
multipole settings for the rigidity range of 2–20 Tm using the mul-
tiparametric fit-procedure in COSY INFINITY. The relative change of
the optimal multipole settings for the preseparator optics in Fig. 12
have shapes very similar to the changes of corresponding integral non-
uniformities in the dipole magnet field distribution in Fig. 13, although
with a different sign to compensate for the effect from the dipole.
The magnets chosen for comparison are labeled in Fig. 10. The curve
for the octupole FPF3KO13 in Fig. 12(c) has different shape which is
likely influenced by the vertical octupole component of the dipole and
corresponding fit conditions.

To study possible changes that the magnetic saturation introduces
into the predicted separation, we performed a numerical experiment
by tracking two fragments of 238U from a carbon target, namely 216Pa
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Fig. 12. Relative optimal multipole strengths versus the particle rigidity 𝐵𝜌 for two
quadrupoles (a), two sextupoles (b) and two octupoles (c) labeled in Fig. 10.

Fig. 13. Normalized relative integral non-uniformities of (a) 1st (quadrupole), (b) 2nd
(sextupole) and (c) 3rd (octupole) orders versus the particle rigidity 𝐵𝜌.

and 215Th with a rigidity of 20 Tm, through the preseparator including
the energy loss in the copper wedge degrader, slowing the reference
particle (216Pa) down to 14 Tm. In this case the resolution is limited

Fig. 14. (Color online) Horizontal phase space images of the separation of fully-
stripped 20 Tm 216Pa and 215Th after the preseparator including the copper wedge
degrader, which slows the reference particle (216Pa) down to 14 Tm. In the preseparator
optics the transfer maps of the dipole magnets for 2 Tm and 20 Tm were used to identify
the maximal effect of the magnetic saturation on the separation.

by the inevitable energy-loss straggling in the degrader, which was
taken into account using the theory in [20]. The average energy loss
was calculated using the Bethe–Bloch formula. For the computational
convenience, all tracking simulations were performed using the rigid-
ity of 20 Tm, whereas the energy/momentum deviations were scaled
appropriately. The transfer maps were also scaled using the SYSCA
method in COSY INFINITY [21]. The particles that exceeded the local
acceptance in the phase space were excluded from further tracking. To
observe the maximal possible change in the separation caused by the
magnetic saturation, we compared the images on the horizontal phase
space, which are produced with transfer maps for 2 Tm and 20 Tm. The
resulting phase space distribution is shown in Fig. 14, where dark blue
and dark green dots correspond to 2 Tm and light blue and light green
dots correspond to 20 Tm. In both cases, the initial beam phase space
after the production target was the same: (𝑥, 𝑎, 𝑦, 𝑏, 𝛿) = ±(0.5 mm,
38 mrad, 2 mm, 20 mrad, 2.5%). Although the effect of the saturation
on the images of the 216Pa and 215Th on the achromatic focal plane
FPF4 can be distinguished in Fig. 14, its magnitude is small, thus it has
no meaningful effect on resolution.

Besides as a separator, the Super-FRS can be used as a high-
resolution spectrometer. In spectrometer mode, the dispersions of many
stages are added. We have simulated such a case with 4 stages to see
the effect of saturation on resolution. For this simulation we repeated
the first stage of the Super-FRS preseparators 4 times. The optimal
multipole settings for 16 Tm were used for all rigidities. To distin-
guish the saturation-caused aberrations we artificially compensated
magnification at all stages except for the last stage. In Fig. 15(a) the
resulting horizontal phase space is shown for 9 monoenergetic slices,
evenly distributed within 𝛥𝑝∕𝑝 = ±4.8 × 10−3, and having the same
initial distributions in geometrical phase volume. The largest deviation
occurs between 16 Tm (green dots) and 20 Tm (red dots), whereas the
difference between the distributions from 2 Tm to 16 Tm is relatively
small. The histogram in Fig. 15(b) reveals a slight broadening of the
peaks introduced by the non-compensated saturation. If the optimal
settings for each rigidity are used, the difference practically vanishes
as shown in Fig. 15(c).

To conclude, the saturation in the dipole magnets does not have
significant impact on the resolution of the Super-FRS. On the other
hand, taking the higher orders into account is crucial if the design
geometrical acceptance of the Super-FRS is going to be used.
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Fig. 15. (Color online) The horizontal phase space at the dispersive focal plane after
passing through 4 dipole stages in the spectrometer mode for rigidities of 16 Tm and
20 Tm. (a) the optimal multipole setting for 16 Tm is taken for both cases. (b) The
number of counts along the 𝑥-axis for the phase space. (c) Individual optimal multipole
settings were used.

4. Comparison of 3D and MS+enge FF maps.

For a comparison between 3D and MS+Enge FF maps, we inserted
both into the Super-FRS preseparator optics and studied the differences
in phase space distribution in the focal planes and in the optimal
multipole settings.

In Fig. 16 the horizontal phase space at the dispersive focal plane
FPF2 is compared for both approaches for the particles with 𝛥𝑝∕𝑝 =
−2.5% (right), 0 (middle) and +2.5% (left) and initial coordinates at the

Fig. 17. Dependence of the relative optimal multipole strengths on the particle rigidity
𝐵𝜌 for the four quadrupoles (a), two sextupoles (b), and two octupoles (c), by
comparing 3D maps and MS+Enge FF. In (a) the curves FPF1QT13, FPF1QT11 and
FPF4QT11 for 3D map as well as the curves FPF1QT13 and FPF1QT11 for MS+Enge
FF maps are overlapping and practically cannot be distinguished in this plot.

target distributed over 4 concentric ellipses

𝑥𝑖 ∈ {0.25𝑥max, 0.5𝑥max, 0.75𝑥max, 𝑥max}

and

𝑎𝑖 ∈ {0.25𝑎max, 0.5𝑎max, 0.75𝑎max, 𝑎max}.

Here 𝑥max = 0.5mm is the beam half width and 𝑎max = 38mrad is a
horizontal angle, which is limited by the angular acceptance of the
system. In both cases, the optimal setting for 3D maps at 16 Tm were
used. For 𝛥𝑝∕𝑝 = 0 a difference in 𝑥 of about 1 mm is observable
for 𝑎max. For 𝛥𝑝∕𝑝 = ±2.5% the main effect is a shift of the phase

Fig. 16. The horizontal phase space at FPF2 using 3D map versus MS+Enge FF. In both cases the optimal setting for 3D maps on 16 Tm were used. Left, middle and right spot
positions correspond to 𝛥𝑝∕𝑝 equal +2.5%, 0 and −2.5%, respectively.
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Fig. 18. The horizontal phase space at FPF4 for 𝛿𝑝∕𝑝 = 0 using 3D maps of 12th order
and differently optimized multipole settings. While Optimum 1 was obtained by fitting
the preseparator optics with 3D maps, Optimum 2 was obtained by fitting the optics
with MS+Enge FF maps. The same initial coordinates as in Fig. 11 were used.

space images by about 0.5 mm towards larger absolute values of 𝑥
for MS+Enge FF. This shift originates from the difference of 2% in
dispersion element (𝑥, 𝛿𝑝) of both transfer maps.

In Fig. 17 we show the normalized relative multipole strength
changes for four quadrupoles, two sextupoles, and two octupoles. The
3D map and MS+Enge FF map curves for each multipole have almost
identical shapes. However, the entire curves are shifted with respect to
each other along the ordinate axis. These shifts arise from the inequality
in the lower order terms for 3D and MS+Enge FF of up to 2% for the
first order elements and up to 10% for the second order elements. This
results in different optimal multipole settings. Fig. 18 shows the impact
of this difference on the horizontal phase space image at FPF4. These
images were produced using the optics with 3D maps and differently
derived optimum multipole settings. Optimum 1 was obtained with 3D
maps and Optimum 2 with MS+Enge FF maps. The resulting images
are nearly identical for small emmittances and differ significantly for
the 𝑎 values larger than 20 mrad where the Optimum 2 appears to be
even slightly better. All this indicates that MS+Enge FF is valid to find
almost optimal operation settings quickly. Nevertheless, further study
is required to confirm this statement also for the short superconducting
quadrupoles of the Super-FRS and the whole length of the Super-FRS.

5. Conclusion and outlook

We have developed a universal approach for the computation of
high-order Taylor transfer maps with rigidity dependence and applied
it to the Super-FRS preseparator dipole magnet. The effects of higher
orders and magnetic saturation on the images in the separation and in
the high dispersion modes were studied. The saturation effects of the
dipole magnets occur primarily beyond the rigidity of 16 Tm and can
be well compensated by tuning available multipoles.

Including terms up to the 12th order is required for the large
acceptance Super-FRS dipole magnets. The saturation effects should be
studied further for the Super-FRS quadrupoles as their pole tip field

varies from 0.4 T up to 4 T. Thus, we expect much larger changes in
transfer maps than for the case of the dipole with maximal field 1.6 T.

Having the rigidity dependent transfer maps together with the mea-
sured integral excitation curves for all types of the Super-FRS magnets
will allow us to build a fast and precise ion-optical model. This model
will make it possible to predict all possible aberrations and optimize
the machine performance for arbitrary beam parameters.
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