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Abstract: For many practical problems, numerical methods to solve partial differential equations (PDEs)
are required. Conventional finite element or finite difference codes have a difficulty to obtain precise
solutions because of the need for an exceedingly fine mesh which leads to often prohibitive CPU time.
While conventional methods exhibit such a difficulty, some practical problems even require solutions
guaranteed. The Laplace equation is one of the important PDEs in physics and engineering, describing
the phenomenology of electrostatics and magnetostatics among others, and various problems for the
Laplace equation require highly precise and verified solutions.

We present an alternative approach based on high-order quadrature and a high-order finite element
method utilizing Taylor model methods. An n-th order Taylor model of a multivariate function f consists
of an n-th order multivariate Taylor polynomial, representing a high order approximation of the underlying
function f, and a remainder error bound interval for verification, width of which scales in (n+1) st order.

The solution of the Laplace equation in space is first represented as a Helmholtz integral over the
two-dimensional surface. The latter is executed by evaluating the kernel of the integral as a Taylor model
of both the two surface variables and the three volume variables inside the cell of interest. Finally, the
integration over the surface variables is executed, resulting in a local Taylor model of the solution within
one cell. Examples of the method will be given, demonstrating achieved accuracy with verification.

Key-Words: Laplace equation, PDE solver, Helmholtz method, verified computation, Taylor model,
differential algebra, interval arithmetic.

1 Introduction
Many problems in physics and engineering require
the solution of the three dimensional Laplace equa-
tion

∆ψ (~r) = 0 in the bounded volume Ω ⊂ R3 (1)

It is well known that under mild smoothness con-
ditions for the boundary ∂Ω of Ω, the Laplace
equation admits unique solutions if either ψ or
its derivative normal to ∂Ω are specified on the
entire boundary surface ∂Ω. In many typical ap-
plications, not only the normal derivative of ψ but
indeed the entire gradient ~∇ψ is known on the sur-
face; for example, in the magnetostatic case the
entire field ~B = ~∇ψ is measured, and not merely

whatever component happens to be normal to the
surface under consideration. The corresponding
problem of determining ψ based on the knowledge
of the field ~∇ψ (~r) = ~f (~r) on the surface ∂Ω is
referred to as the Helmholtz problem.

Analytic closed form solutions for the 3D case
can usually only be found for special problems
with certain regular geometries where a separa-
tion of variables can be performed. However, in
most practical 3D cases, numerical methods are
the only way to proceed. Frequently the finite dif-
ference or finite element approaches are used to
find the approximations of the solution on a set
of points in the region of interest. But because of
their relatively low approximation order, for the



problem of precise solution of partial differential
equations (PDEs), the methods have very limited
success because of the prohibitively large number
of mesh points required. For reference, codes like
the frequently used TOSCA [1, 2] can usually solve
3D Laplace problems with a relative accuracy of
10−4 with meshes of size about 10−6[3]. Further-
more, direct solution verification of such methods
is often very difficult.

In the following we develop a new method
based on the Helmholtz theorem and the Taylor
model methods[4, 5] utilizing the corresponding
tools in the code COSY INFINITY [6, 7] to find
a verified solution of the Laplace equation starting
from the field boundary data. The final solution
is provided as a set of local Taylor models, each of
which represents an enclosure of a solution for a
sub-box of the volume of interest.

2 Theory and Implementation

2.1 The Helmholtz Approach
We begin by representing the solution of the
Laplace equation via the Helmholtz vector decom-
position theorem [8, 9, 10, 11, 12, 13], which states
that any vector field ~B which vanishes at infin-
ity can inside an arbitrary boundary region Ω be
written as the sum of two terms

~B (~x) = ~∇× ~At (~x) + ~∇φn (~x) , (2)

where

φn (~x) =
1

4π

∫

∂Ω

~n (~xs) · ~B (~xs)

|~x− ~xs|
ds

− 1

4π

∫

Ω

~∇ · ~B (~xv)

|~x− ~xv|
dV

~At (~x) =− 1

4π

∫

∂Ω

~n (~xs)× ~B (~xs)

|~x− ~xs|
ds

+
1

4π

∫

Ω

~∇× ~B (~xv)

|~x− ~xv|
dV.

Here ∂Ω is the surface which bounds the volume
Ω. ~xs denotes points on the surface ∂Ω, and ~xv

denotes points within Ω. ~n is the unit vector per-
pendicular to ∂Ω that points away from Ω, and ~∇
denotes the gradient with respect to ~xv.

The first term is usually referred to as the
solenoidal term, and the second term as the ir-
rotational term. Because of the apparent similar-
ity of these two terms to the well-known vector-
and scalar potentials to ~B, we note that in the
above representation, it is in general not possible
to utilize only one of them; for a given problem, in
general both φn and ~At will be nonzero.

For the special case that ~B = ~∇V, we have
~∇ × ~B = 0; furthermore, if V is a solution of
the Laplace equation ∆V = ~∇2V = 0, we have
~∇ · ~B = 0. Thus in this case, all the volume inte-
gral terms vanish, and φn (~x) and ~At (~x) are com-
pletely determined from the normal and the tan-
gential components of ~B on the surface ∂Ω via

φn (~x) =
1

4π

∫

∂Ω

~n (~xs) · ~B (~xs)

|~x− ~xs|
ds

~At (~x) = − 1

4π

∫

∂Ω

~n (~xs)× ~B (~xs)

|~x− ~xs|
ds.

For any point within the volume Ω, the scalar
and vector potentials and consequently the solu-
tion of the Laplace equation depend only on the
field on the surface ∂Ω.

Using the fact that if ~x 6= ~xs, we have
~∇ (1/ |~x− ~xs|) = − (~x− ~xs) / |~x− ~xs|3 , and sim-
ilar relationships, it is possible to explicitly obtain
the gradient of the scalar potential, and with some
more work the curl of the vector potential; the re-
sults have the explicit form

~∇φn (~x)

= − 1

4π

∫

∂Ω

(~x− ~xs)
(
~n (~xs) · ~B (~xs)

)

|~x− ~xs|3
ds (3)

~∇× ~At (~x)

=
1

4π

∫

∂Ω

(~x− ~xs)×
(
~n (~xs)× ~B (~xs)

)

|~x− ~xs|3
ds. (4)

From (2) we know that the field inside the vol-
ume of interest is just a sum of the irrotational
and the solenoidal part, (3) and (4) respectively.



This is then the solution for the magnetic field
as surface integrals. But to numerically integrate
the kernel and get the verified solution as the lo-
cal Taylor model we need a specialized numerical
scheme. In the following subsections we introduce
one such scheme based on the Taylor models[4, 5]
of the code COSY INFINITY[6, 7]. First, we intro-
duce the definition of the Taylor model and the an-
tiderivation operation on the Taylor models which
will be extensively used in implementation of the
scheme. We then proceed to explain the numerical
scheme to perform the surface integration.

2.2 Taylor Models and the Antideriva-
tion

Let us begin with the definition of Taylor mod-
els.

Definition (Taylor Model) Let f : D ⊂ Rv −→
R be a function that is (n+ 1) times continuously
partially differentiable on an open set containing
the v-dimensional domain D. Let x0 be a point
in D and P the n-th order Taylor polynomial of f
around x0. Let I be an interval such that

f(x) ∈ P (x− x0) + I for all x ∈ D

and that has the property that I scales with the
(n+1)st power of the width of D. Then we call the
pair (P, I) an n-th order Taylor model of f around
x0 on D.

A full theory of Taylor model arithmetic for
elementary operations, intrinsic functions, initial
value problems and functional inversion problems
has been developed; see [5, 4, 14, 15] and refer-
ences therein. A verified implementation of Tay-
lor models and the arithmetic operations exists in
the code COSY INFINITY[6, 7] having the Tay-
lor polynomial coefficients represented by floating
point numbers, and the details about the imple-
mentation can be found in [16, 4].

For the purposes of the further discussion, one
particular “intrinsic” function, the so-called an-
tiderivation, plays an important role. We note
that a Taylor model for the integral with respect to
variable i of a function f can be obtained from the

Taylor model (P, I) of the function by merely inte-
grating the part Pn−1 of order up to order n−1 of
the polynomial, and bounding the n-th order into
the new remainder bound[5, 14, 15].

Specifically, we define the antiderivation oper-
ation ∂−1

i on an n-th order Taylor model (P, I) as

∂−1
i (P, I) =

(
P∂−1

i
, I∂−1

i

)
=

(∫ xi

0
Pn−1 (x) dxi, (B (P − Pn−1) + I) ·B(xi)

)
.

Here B (P − Pn−1) is a bound for the part of P
that is of exact order n, and B(xi) is an interval
bound for the variable xi obtained from the range
of definition of xi.

With this definition, a bound for a definite in-
tegral with respect to the variable xi from xil to xiu
both in the domain of validity of the Taylor model
(P, I) enclosing a function f can be obtained as

∫ xiu

xil

fdxi ∈
(
P∂−1

i
|xi=xiu−xi0 − P∂−1

i
|xi=xil−xi0 , I∂−1

i

)
.

2.3 Solution of the Helmholtz Problem
using Taylor Models
In this subsection, we develop a verified method to
determine sharp enclosures of the field ~B and the
potential ψ with the Helmholtz method. Utilizing
Taylor model arithmetic introduced above, the fol-
lowing algorithm now allows to solve the Laplace
equation for the Helmholtz problem.

Algorithm

1) Discretize the surface ∂Ω into individual sur-
face cells Si with centers si and the volume Ω into
volume cells Vj with centers vj .

2) Pick a volume cell Vj .

3) For each surface cell Si, evaluate the integrands
(3) and (4), the so-called “kernels”, in Taylor
model arithmetic to obtain a Taylor model repre-
sentations in both the surface variables of Si and
the volume variables of Vj , i.e. in a total of five
variables.



4) Use the Taylor model antiderivation operation
twice to perform integration over the surface vari-
ables of each cell Si.

5) Add up all results to obtain a three dimensional
Taylor model enclosing the field ~B over the volume
cell Vj .

6) If a verified enclosure of the potential ψ to ~B
over the volume cell Vj is desired, integrate the

Taylor model represented field ~B over any path
using the Taylor model antiderivation operation.

As a result, for each of the volume cells Vj , Tay-

lor model enclosures for the fields ~B and potentials
ψ are obtained. All the mathematical operations
to evaluate these Taylor models and surface inte-
gration are implemented using the Taylor model
tools available in the code COSY INFINITY[6, 7].

Apparently the computational expense scales
with the product of the number of volume elements
and the number of surface elements; of these, the
number of volume elements is more significant be-
cause of their larger number. In practice one ob-
serves that when using high-order Taylor models,
a rather small number of volume elements is re-
quired, in particular compared to the situation in

conventional field solvers discussed earlier.

3 An Example: the Bar Magnet

3.1 The Example Field
As a reference problem to study the behavior of the
method, we consider the magnetic field of rectan-
gular iron bars of a uniformly magnetized mate-
rial with inner surfaces (y = ±y0) parallel to the
mid-plane y = 0 as shown in Fig. 1. The ge-
ometry of these uniformly magnetized bars, which
are assumed to be infinitely extended in the ±y
directions, is defined by: x1 ≤ x ≤ x2, |y| ≥ y0,
and z1 ≤ z ≤ z2. From this bar magnet one can
obtain an analytic solution for the magnetic field
~B (x, y, z) [17, 18, 19], and the result is given by

By (x, y, z) =
B0

4π

2∑

i,j=1

(−1)i+j
[

arctan

(
Xi · Zj
Y+ ·R+

ij

)

+ arctan

(
Xi · Zj
Y− ·R−ij

)]

(a)
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Figure 1: (a) Geometric layout of the bar magnet, consisting of two bars of magnetized material. (b)
Magnetic field By on the center plane (y = 0) of the bar magnet. B0 = 1 Tesla and the interior of this
magnet is defined by −0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5, and −0.5 ≤ z ≤ 0.5.



Bx (x, y, z) =
B0

4π

2∑

i,j=1

(−1)i+j
[

ln

(
Zj +R−ij
Zj +R+

ij

)]

Bz (x, y, z) =
B0

4π

2∑

i,j=1

(−1)i+j
[

ln

(
Xj +R−ij
Xj +R+

ij

)]

(5)

where Xi = x − xi, Y± = y0 ± y, Zi = z − zi, and

R±ij =
√
X2
i + Y 2

j + Z2
±, and B0 specifies the field

strength.

3.2 Setup of Example Computations
As an example case, we define a test bar magnet by
[x1, x2] = [−0.5, 0.5], [z1, z2] = [−0.5, 0.5], y0 = 0.5
and B0 = 1 Tesla. The y component of the mag-
netic field, By, of the test bar magnet on the center
plane y = 0 is shown in Fig. 1.

According to the recipe described in the previ-
ous section, we performed the magnetic field and
the magnetic potential computations with verifi-
cation. The program coded in COSY language[6],
enabling the full usage of Taylor model arithmetic,
was run on a Pentium IV, 2 GHz, 512 MB Ram,
Linux machine with COSY INFINITY compiled
using the GNU Fortran compiler.

First we will see the performance of the method
at the step 4), then at the step 5), as described in
the algorithm.

3.3 Analysis on Surface Element Dis-
cretization
As a first step in the analysis of the influence of
the discretization of the surface and volume on the
result, we study the contributions of the surface el-
ements towards the Taylor model remainder inter-
val part of the total integral. The volume expan-
sion point is chosen as ~r = (0.1, 0.1, 0.1) , avoiding
the trivial choice of (0, 0, 0) where all the odd or-
der terms in the expressions of the bar magnet (5)
vanish. The size of the volume box around the
volume expansion point is chosen zero. Thus af-
ter the surface integration, the polynomial part of
the dependence on volume vanishes except for the

constant term, and the accuracy is only limited by
the width of the surface element, which after in-
tegration over the surface variables influences the
width of the remainder bound.

We plot the width of the remainder interval
versus surface element length for the scalar poten-
tial ψ for different orders of computation in Fig.
2. Here the center of the surface element is chosen
as ~rs = (0.034, 0.011, 0.5) , more or less randomly.
It is observed that for high orders, the method
quickly reaches an accuracy of around 10−16 for
about 25 surface subdivisions, which correspond
to about 210 ≈ 1000 surface element cells per sur-
face. Under the assumption that each of these sur-
face cells brings a similar contribution, the accu-
racy due to the surface discretization will be in the
range of approximately 6 · 1000 · 10−16 < 10−12.

3.4 Analysis on Volume Element Dis-
cretization

We now study the dependency of the polyno-
mial part and width of the remainder interval of
the magnetic field on the volume element length.
Now the surface element length is kept fixed at
1/128. Fig. 3 shows the remainder interval width
for By versus volume element lengths for different
orders of computation. The other components of
the magnetic field Bx and Bz exhibit a similar be-
havior.

We see that a verified accuracy in the range of
10−4 can be achieved for a volume element width
of around 10−1, corresponding to a total of around
1000 volume elements. This number compares
very favorably to the earlier mentioned numbers
for the commercial code TOSCA [1, 2]. An accu-
racy in the range of 10−7 can be achieved for a
width of around 10−1.4, corresponding to a total
of around 200, 000 volume elements. The typical
computation time for such 8th order computations
is about 1000 seconds in the above mentioned com-
putational environment.

4 Conclusion
Overall, we see that the method of simultane-

ous surface and volume expansion of the Helmholtz



integrals leads to verified tools for the solutions of
PDEs which when executed in Taylor model arith-
metic can lead to very sharp enclosures. It is ob-

vious that the method can be generalized to other
surface-integral based approaches to the solution
of PDEs.
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Figure 2: Remainder interval width (vertically in log10) versus surface element length (horizontally in
log2) for integration for the scalar potential ψ over a single surface element and vanishing volume size.
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