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Abstract

We study single particle dynamics of the LHC in the map picture
with emphasis on fringe field effects. Using the results of our fringe field
map computation methods [1], it is rather easy to take into account in a
rigorous way the influence of fringe fields. As indicators of the nonlinear
dynamics we use tune footprints, tune shifts, resonance strengths and
resonance webs. A total of 10 situations are studied, from the simple
to the more complex. Comparisons are presented which are meant to
clarify topics like: is the exact shape of fringe fields important, relative
importance of individual multipole components in the fringe fields, and
relative importance of fringe fields with respect to body errors.

1 Introduction

Recently, many studies have been published on single particle dynamics in the
Large Hadron Collider to be built at CERN. See [2] and references therein.
Specifically, at collision energy it has been shown that the dynamics is dominated
by the interaction region’s high gradient quadrupole triplets. This is due to large
variations of the β functions across the quadrupoles. The studies concentrate
on many possible realizations of the LHC lattice, that is, on computing the
effects of the so-called systematic and random body errors, and perhaps other
effects like crossing angle, beam-beam interaction, misalignment, etc. The fringe
fields, traditionally, are taken into account at most at the level of lumped thin
lenses (kicks), characterized by integrated multipole strengths. However, it is
not obvious whether this simplistic approach is enough to give an accurate
account of the dynamics under the influence of fringe fields. The present paper
attempts to fill this gap by assessing the impact of fringe fields via very accurate
fringe field maps, at least for the LHC, and specifically for the low-β insertion
quadrupoles.
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The studies contained in the present paper are the follow-up of our results
on Differential Algebraic field computation. We showed in [1] how to take into
account the local structure of s-dependent fields, resulting in the computation
of very accurate fringe field maps. We use the fringe field maps computed with
the methods of [1] to study systematically their effect on the nonlinear dynamics
of the LHC. Starting from the ideal lattice, we gradually include more and more
effects and study their influence measured by tune-shifts, resonance strengths
and sometimes resonance webs. We keep an eye on the importance of the
exact shape of fringe fields and relative importance with respect to body errors.
Results concerning off-energy particles are included too.

2 Methods of analysis

We use as measures for the dynamics indicators that have been proven effec-
tive in predicting the performance of existing accelerators, and were useful for
construction of correction schemes for proposed machines. We will employ tune
footprint, tune shift, resonance strength and resonance web calculations. All of
them are based on normal forms of symplectic maps. We assume that the LHC
is accurately described by the n-th order Taylor expansion of the system’s true
map, M. Because hadron accelerators can be regarded as large Hamiltonian
systems, the truncated map will be symplectic to order n. It means that rela-
tive to some symplectic coordinates ~z its Jacobian, M , satisfies the symplectic
condition to order n

MT JM = J. (1)

The truncated map can be subjected to an order by order symplectic change
of variables that finally yields its normal form. That is, there exist symplectic
maps An such that

N = An◦M ◦A−1
n , (2)

The symplectic map N takes a particularly simple interpretation; it is a rotation
with radius dependent frequency. See [3] for details. The angles of advancement
of a point on a torus after one application of the map are called the tunes of the
respective particle. Its deviation from the tune of a particle with 0 amplitude
(the linear tune) is called the tune-shift. Due to the fact that the normal form
of a symplectic map is unique, also the tune-shifts are uniquely defined. We
compute these quantities for the various cases studied. In general, for good
performance of accelerators, large tune-shifts are to be avoided.

In this setting, the resonance condition is defined as

~k · ~µ
(

~J,~δ
)

= m (mod 2π) , (3)

for a vector of integers ~k and integer m. The tunes are denoted by ~µ, ~J represents
the action variables (the radii), and ~δ the parameters. Although the normal
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form transformation can be used to compute the tunes only in the non-resonant
case, it is our hope that extrapolation of the results close to the resonant case
can give insight into the dynamics of resonant orbits. For this purpose we
study eq. 3 as a function of ~J . By adding to the right hand side a small
quantity ε � 1, with fixed maximum value, we plot in action space the ~J ’s
that satisfy the resonant condition. This gives insight into the resonance orbit
structure of the phase space directly. This picture of the location and width
of resonance lines is called the resonance web. The intuitive interpretation of
the role of ε is that it translates a fixed, small distance in tune space around
exactly resonant orbits into oscillation of the action variables around exactly
resonant orbits. The amount of oscillation gives a measure of the width of the
resonance lines. Overlapping of resonance lines are considered signs of chaos,
which is not necessarily bad in theory, but in practice usually it is. Often, the
dynamic aperture is close to the chaotic boundary. Hence, the closeness of the
resonance lines to the origin in action space again can be a useful indicator.

It is not easy to explain the method of computing the resonance strengths
without getting into unnecessary details. This is partly due to the fact that the
resonance strengths are not defined uniquely. Usually it is based on the normal-
izing map, An, which is known to not be unique. Moreover, the manipulation
of the elements of An is somewhat arbitrary. Anyway, as a general rule, the res-
onance strengths are directly proportional to the nonlinearity of the underlying
map and its distance from resonances, measured by the resonance denominators,
which are the left hand sides of eq. 3. For more details of a method similar in
spirit to our calculation we refer the reader to [4]. The difference between the
two methods is that we do not use Lie algebraic techniques, but we work directly
with the Taylor expansions of the components of the normalizing map. Despite
all this, the correction of dominating resonances proved to be an effective tool
for improving the performance of accelerators. We could say, that although the
exact numerical values of the resonance strengths do not really have relevance
(as they are method dependent), the qualitative picture it is useful (for example
identifying the dominating resonances).

We mention that none of the above indicators have an absolute correlation
with the behavior of particles in accelerators. In some cases one of them can have
a better correlation with the dynamic aperture, in other cases another indicator,
or none. However, altogether probably they can reveal the gross features of the
dynamics, and can be useful in practice.

3 Cases studied

All maps, fringe field and rest of the lattice (LHC v.5.1), have been com-
puted at order 8 using the code COSY Infinity [5]. Due to sensitivity to
numerical errors, especially at high orders, of the tune-shift computation and
occurrence of large numbers in the maps, we performed all the calculations
in quadruple precision. The effects of RF cavities have been neglected, i.e.
we computed the maps in two transversal degrees of freedom, with energy
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as a parameter. At the specific location of the lattice where we fixed the
Poincare section, the r.m.s. beam sizes are σx = 1.267 · 10−4m and σy =
2.981 · 10−4m. It is also known from the design specifications that the r.m.s.
normalized emittance is εN = 3.75 · 10−6m · r and the r.m.s. energy deviation is
σE = 1.1 ·10−4. For body errors we used the Table MQXB (FNAL High Gradi-
ent Quad) Reference Harmonics at Collision v. 2.0, available on the WWW at
the address http://www.agsrhichome.bnl.gov/LHC/fnal/v2.0/hgq col v2p0.txt.
The detailed analysis of the body errors where not the main purpose of our stud-
ies, so we used only one seed for the random body errors, which gives ”average”
results in some sense (for example dynamic aperture). For the systematic part
of the errors we employed their full uncertainty, with the two possible signs.
That is, if we denote by 〈bn〉 the average value of a multipole, then the multi-
pole value due to uncertainty lies between −d (bn)+ 〈bn〉 ≤ bn ≤ +d (bn)+ 〈bn〉 .
Hereafter we will refer to the two cases of full uncertainty by their sign, (−) or
(+).

To assess the importance of fringe field shape, we use two different models.
One is the ”detailed” shape, based on the exact shape of the fringe field com-
puted using the model HGQS01 [6]. The other is a ”default” fringe field shape,
as implemented in the code COSY Infinity, based on the fall-off modeled by an
Enge function [5]. The detailed fringe fields detune the ideal lattice and also
introduce linear coupling between the planes. To obtain meaningful results we
have to retune and decouple the lattice. We achieve this in a rather elegant way
using an ideal local correction. Moreover, the method provides a way to keep
the design linear lattice completely unchanged. It is done by splitting the fringe
field maps in two parts

Mff = Lff + Nff , (4)

where Lff is the linear part and Nff is the nonlinear part. Application of the
inverse of the linear map, which can be thought of as the zero length insertion
ideal local corrector, we obtain for the fringe field map

M̃ff = I + L−1
ff ◦Nff , (5)

where I is the identity map. The identity as linear part ensures that the linear
layout of the lattice remains unchanged. Of course, we would get a slightly
different result if we were to apply L−1

ff from the right. However, Lff is close

to identity, so L−1

ff is also close to identity, and hence almost commutes with
the nonlinear part. Again, this is an ideal case, and it is very likely that any
real world correction scheme would introduce more nonlinearities in the map of
the system. As a final remark, we mention that it is enough to compute only
the exit focusing fringe field maps, and obtain the other variants by mirroring
operations and rotations. Also, we use the same symmetry based tricks to
get the correct maps for the proposed layout of the interaction regions, which
includes rotations of quadrupoles around their vertical axis. The respective
procedures are described in Appendix A.
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CASE SYSTEM

1
Interaction regions at order 8, rest linear

Fringe fields and body errors OFF

2
Interaction regions at order 8, rest linear

HGQ detailed fringe fields ON

3
Interaction regions at order 8, rest linear

Only quadrupole components of HGQ fringe fields ON

4
Interaction regions at order 8, rest linear

HGQ default fringe fields ON

5
Whole lattice at order 8

Fringe fields and body errors OFF

6
Whole lattice at order 8

detailed fringe fields for HGQ, and default fringe
fields for rest of ring ON; body errors OFF

7
Whole lattice at order 8

fringe fields OFF, body errors (−) ON

8
Whole lattice at order 8

fringe fields OFF, body errors (+) ON

9
Whole lattice at order 8

fringe fields from case 6 ON, and body errors (−) ON

10
Whole lattice at order 8

fringe fields from case 6 ON, and body errors (+) ON

Table 1: The various cases studied.

Table 1 contains all the cases studied, starting from the simple to the more
complex.

In the following section we describe the results obtained for each of them.
We will refer to the specific case by their number in the table.

4 Results and discussion

The results shed light on the relative importance of intrinsic nonlinearities of
the ideal lattice, the fringe field induced nonlinearities, and body errors induced
nonlinearities. The tunes are visualized in two different ways. The 2d pictures
represent the usual tune footprint style, and the 3d pictures show the tune shift
of particles as a function of initial amplitudes in geometric space, in units of
r.m.s. beam sizes, up to 6σ. The tune-shifts in the 3d pictures are all in units
of 10−4. The resonance strengths are computed close to the expected dynamic
aperture, along the diagonal in action space. The units are arbitrary, and we
denote ~k = (q, p). Also, for cases 9 and 10 we computed the resonance strengths
on a grid of points to identify the dominating resonances in different locations
of phase space. Every case is subdivided in 3 subcases according to energy:
δ = −2.5σE , 0, +2.5σE . For the computation of resonance webs we used a
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maximum value of ε = 10−3. The size of the beam at the expected dynamic
aperture is approximately Jx = Jy = 5 · 10−4m.

Let us start with the first, most simple case. Case 1 represents the linear LHC
lattice with only the intrinsic nonlinearities of the interaction region quadrupoles
added. As we expected, figures 1, 2 and 3 show that the nonlinearities are
insignificant.

The tune footprints have regular shapes, but practically vanishing size. For
off-energy particles the dominating resonance is (2, 0), which is 2 orders of mag-
nitude bigger than the dominating resonance for on-energy particles, (2,−2).

Case 2 is actually case 1, to which we add the detailed fringe fields of the High
Gradient Quadrupoles of the interaction regions. The acceptance guidelines
require a tune shift of less than 10−3 at 6σ.

We can see that the nonlinearities introduced by the fringe fields are con-
siderable. See figures 4, 5 and 6. However, tune shifts are still inside the safe
region. Also, the tune footprints get bigger and have highly irregular shapes.
Maximum values of tune shifts and size of tune footprints decrease as the energy
increases. The sharpest decrease with energy is experienced by particles with
small initial y and large initial x. Dominating resonances are the (2,−2), also
encountered in case 1, and a newly excited resonance, the (1,−1). There is an
increase in the absolute values of the resonance strengths, compared with case 1.
The resonances are almost invariant with respect to energy. Also, their magni-
tudes are slightly increasing with energy, an opposite tendency when compared
to tune shifts.

Next, we studied what is the relative importance of only the quadrupole
components. Therefore, case 3 is case 2 without the sextupole components in
the fringe fields. For the result see figures 7, 8 and 9.

We notice a 5 times decrease for the maximum tune shift for negative en-
ergy dispersion particles, and some more modest decreases for the other parti-
cles. The tune footprints are becoming a little bit smaller and regular, triangle
shaped, hence the irregularities of case 2 are caused by the sextupole compo-
nents in the fringe fields. Overall, the importance of the sextupole components
are decreasing as the energy increases. There are noticeable differences between
resonance strengths of cases 3 and 2. The magnitudes drop by 2 orders of mag-
nitude, and become comparable with off-energy particle’s resonance strengths of
case 1. Moreover, they are not invariant anymore with respect to energy. While
the dominating resonance, regardless of energy, is (2,−2), which we carried
along since case 1, again (2, 0) from case 1 makes its appearance for off-energy
particles, and (1,−1) completely disappears. We conclude that the intrinsic
nonlinearities of the quadrupoles excite the (2, 0) and (2,−2) resonances, all
components of the fringe fields contribute to the (2,−2) resonance, making it
the dominating one, and the (1,−1) resonance is excited only by the sextupole
components, which is comparable in magnitude with (2,−2). The magnitudes
of the resonance strengths keep they slightly increasing behavior with energy.

Now we turn our attention to the question of the exact shape of the fringe
fields. For easy comparison we created case 4, which is case 3 with the de-
tailed fringe fields, containing only the quadrupole components, replaced by a
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Figure 1: Tune footprints for case 1.
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Figure 2: Tune shifts for case 1.
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Figure 3: Resonance strengths for case 1.

generic fringe field shape, that has a fall-off modeled by an Enge function with
6 parameters.

As one can see, the differences between the set of figures of case 3, figures
7, 8 and 9, and the figures of case 4, figures 10, 11 and 12, are marginal. The
pictures are almost identical, with a small decrease in all the indicators for the
generic fringe field. We conclude that, at least for the main component of the
fringe fields, the exact shape is not critical.

As the next step, we studied the nonlinearities of the ideal lattice, that is
no errors at all, only the intrinsic nonlinearities of the whole ring up to order 8.
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Figure 4: Tune footprints for case 2.
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Figure 5: Tune shifts for case 2.
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Figure 6: Resonance strengths for case 2.

This is case 5, and the relevant figures are 13, 14, 15 and 16.
The effects of the intrinsic nonlinearities of the whole lattice are comparable

with those created by the fringe fields of the interaction regions. In the case
of δ < 0 the fringe fields cause a bigger maximum tune-shift, while for δ ≥ 0
the intrinsic nonlinearities are marginally bigger. Also, the tune footprints are
roughly the same, but in this case the shapes are regular, triangle shaped.
However, the resonance strengths are more than one order of magnitude smaller
than in case 2, and they are almost invariant with respect to energy. Many
more resonances are excited than sofar, with (2,−2) remaining the dominant
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Figure 7: Tune footprints for case 3.

0

2

4

6
0

2

4

6

0
0.2
0.4
0.6
0.8

0

2

4

6

0

2

4

6
0

2

4

6

00.10.20.30.4

0

2

4

6

0

2

4

6
0

2

4

6

00.10.20.30.4

0

2

4

6

Figure 8: Tune shifts for case 3.
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Figure 9: Resonance strengths for case 3.

one. Other excited resonances are (1, 2), (1, 0) and a few smaller: (1,−2), (3, 0)
and (2, 0). The (2, 0) is almost completely missing for δ = 0, hence it is excited
mostly by off-energy particles. The resonance web shows the chaotic boundary
to be at approximately 3 ·10−3m. A beam of ' 12σx,y occupies ' 4−5 ·10−4m

in this picture, therefore this region is completely free of low order resonances.
We estimated the following resonances to be the ”thickest”, in decreasing order:
(1,−1), (2,−2), (3,−3), (4,−4), (6, 1) and (8,−1) .

Case 6 represents case 2 and case 5 superimposed, and additionally generic
fringe fields are set on for the remaining of the ring.
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Figure 10: Tune footprints for case 4.
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Figure 11: Tune shifts for case 4.
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Figure 12: Resonance strengths for case 4.

Figures 17, 18 and 19 show that the tune shifts and footprints of case 6
are almost like adding up the corresponding pictures from cases 2 and 5. The
resonance strengths are looking similar to those of case 2. This proves that the
dominating fringe field effects are concentrated in the interaction regions, which
has been showed to hold for other effects too, which are limiting the dynamic
aperture.

The next two cases deal with the body errors. As mentioned in section 3,
we have two possible signs for the uncertainty part of the errors. We use the
same ”average” seed for the random part in both cases. Case 7 is the (−) case,
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Figure 13: Tune footprints for case 5.
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Figure 14: Tune shifts for case 5.
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Figure 15: Resonance strengths for case 5.

and case 8 is the (+) case.
For case 7, figures 20, 21 and 22 show a little bigger tune shifts and footprints

than for case 6, but still inside the safe region. The footprints are elongated
and curved, and even overlapping for δ = −2.5σE and δ = 0 respectively. On
the other hand, the resonance strengths are amplified by 3 orders of magnitude.
The new dominating resonance is (0, 3). The resonances due to fringe fields and
intrinsic nonlinearities are negligible.

Case 8 is the first situation where the maximum tune shift exceeds the ac-
ceptable level of 10−3 at 6σ (figure 24). See also figures 23 and 25.
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Figure 16: Resonance web for case 5, for δ = 0.

Comparison of cases 7 and 8 proves that the systematic errors are impor-
tant. However, notice that only a small fraction of the total particles, with
predominantly horizontal initial amplitude, have tune shifts bigger than 10−3.

The other tune shifts are still bigger than in case 7, but within acceptable limits.
The tune footprints are regular, triangle shaped, very elongated in one direc-
tion. The dominating resonance is still (0, 3), with an important contribution
from (1, 2). Despite the fact that the tune shifts are bigger than in case 7, the
magnitude of the resonance strengths are slightly smaller in case 8. Resonance
structure is invariant with respect to energy.

The last to cases are the cases closest to reality from all the cases studied. We
included the whole lattice at order 8, detailed fringe fields of the High Gradient
Quadrupoles in the interaction regions and generic fringe fields for the rest of
the ring, and body errors for interaction regions with the two possible signs.
So, case 9 is actually cases 6 and 7 superimposed, and case 10 is cases 6 and 8
superimposed, respectively.

Figures 26 and 27 show that the tune footprints are only slightly distorted
compared to case 7. The only case when the fringe fields clearly have a consid-
erable effect is for δ < 0 particles, but still inside acceptable limits. From figure
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Figure 17: Tune footprints for case 6.
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Figure 18: Tune shifts for case 6.

18



0
1

2
3

4
5

6
7

8
9

p
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

q0

1.85152·10-7

3.70304·10-7

5.55456·10-7

7.40608·10-7

Res. Str.

0
1

2
3

4
5

6
7

8
9

p

0
1

2
3

4
5

6
7

8
9

p
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

q0

1.92976·10-7

3.85952·10-7

5.78928·10-7

7.71904·10-7

Res. Str.

0
1

2
3

4
5

6
7

8
9

p

0
1

2
3

4
5

6
7

8
9

p
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

q0

2.27981·10-7

4.55961·10-7

6.83942·10-7

9.11923·10-7

Res. Str.

0
1

2
3

4
5

6
7

8
9

p

Figure 19: Resonance strengths for case 6.

28 it is obvious that the dominating resonances are excited by the body errors.
Hence, the body errors dominate the fringe field effects. Note that the fringe
fields alter the natural chromaticity (even change its sign). It is interesting to
compare figures 29 and 16. The resonance channels in this case move much
closer to the origin, inside the region occupied by the beam at target dynamic
aperture. The chaotic boundary is around the target dynamic aperture. The
thickest resonance channels remain (1,−1), (2,−2), (3,−3), (4,−4), (0, 3) and
(1, 2).

Beside the fact that the tune shifts for δ < 0 are much bigger in case 10,
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Figure 20: Tune footprints for case 7.
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Figure 21: Tune shifts for case 7.
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Figure 22: Resonance strengths for case 7.

figures 30, 31 and 32 tell the same story as case 9. Again, the situation resembles
case 8, only in this case the fringe fields have a little more influence than they
had in case 9.

We computed the resonance webs for δ = −2.5σE and δ = 0 to show a
general conclusion, that the resonance web structure is essentially invariant with
respect to energy. This is consistent with the invariance of resonance strengths
with energy. From figure 33 results that the closest resonance lines are slightly
farther away from the origin than in case 9. Also, in general the magnitudes
of the resonance strengths increase with energy, and the resonance strengths of

21



0.30975 0.31 0.31025 0.3105 0.31075 0.311 0.31125 0.3115

mx

0.3188

0.319

0.3192

0.3194

0.3196

m
y

d = -2.5 s

0.3098 0.31 0.3102 0.3104 0.3106

mx

0.31975

0.3198

0.31985

0.3199

0.31995

0.32

0.32005

0.3201

m
y

d = 0

0.3108 0.3109 0.311 0.3111 0.3112

mx

0.3205

0.32052

0.32054

0.32056

0.32058

0.3206

0.32062

m
y

d = 2.5 s

0.30975 0.31 0.31025 0.3105 0.31075 0.311 0.31125 0.3115

mx

0.31875

0.319

0.31925

0.3195

0.31975

0.32

0.32025

0.3205

m
y

d = 0,+� -2.5 s

Figure 23: Tune footprints for case 8.
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Figure 24: Tune shifts for case 8.
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Figure 25: Resonance strengths for case 8.

case 10 are smaller than the resonance strengths of case 9. It is exactly the
opposite for the tune shifts; the biggest are of case 10.

Finally, for cases 9 and 10 we computed the resonance strengths for δ = 0
on a grid in action space, to identify the dominating resonances at different
locations. See figure 34 for case 9 and figure 35 for case 10. Each picture
represents a point on the grid, which extends from the origin (lower left picture)
to 5 · 10−4m, in steps of 10−4m in both directions.

Due to lack of space, the pictures are so scaled down that it is not easy to
read them. Therefore, we summarized the conclusions in figure 36.
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Figure 26: Tune footprints for case 9.
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Figure 27: Tune shifts for case 9.
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Figure 28: Resonance strengths for case 9.

Obviously, (0, 3) is the dominating resonance in a major part of action space.
For exactly horizontal motion (3, 0) is the dominating one, and there is a narrow
region of predominantly horizontal motion for which (1,−1) for case 9, and
(1,−1) or (1, 2) for case 10 are the dominating resonances, respectively. As we
saw, the (1,−1) is excited by the quadrupole component of the fringe fields.
Hence, there is a small region where the dominating resonance is given by fringe
fields. However, the magnitudes of the respective resonances are very small.
Actually, the magnitude of the resonance strengths increase much more quickly
in the vertical direction. Also, from the resonance web pictures results that the

25



0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Figure 29: Resonance web for case 9, for δ = 0.

closest resonance line to the origin is always along the vertical.
In a final paragraph we draw a few general conclusions. While the fringe

fields generate important dynamical effects, as far tune shifts, footprints and
resonance strengths are concerned, they are dominated by body errors. If there
is a correlation between dynamic aperture and these quantities, than also the
DA is determined by body errors. This is checked by tracking; the loss in DA
due to fringe fields is at most 0.5σx,y. On the other hand, the DA cannot be
correlated exactly with both tune shifts and resonance strengths. This can be
seen from the fact that we do not get the largest tune footprints for the case with
the largest resonance strengths and vice versa. However, roughly it is correlated
with both indicators. The resonance strength and resonance web results are con-
sistent in the sense that resonance lines closer to the origin give larger resonance
strengths. Regarding the shape of fringe fields, we could conclude that the ex-
act shape does not matter. However, intrinsically the fringe field effects are not
very important for the LHC, and for other situations, like the proposed Muon
Collider, where the relative importance of the fringe fields are greater, it can
be expected that the shape of fringe field will be also important. For the LHC,
most of fringe field effects are generated by the High Gradient Quadrupoles.
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Figure 30: Tune footprints for case 10.
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Figure 31: Tune shifts for case 10.
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Figure 32: Resonance strengths for case 10.

The energy dependence of the tunes show that in general tune shifts are maxi-
mized for predominantly horizontal motion for δ < 0, and as energy increases,
the maximum decreases and shifts towards predominantly vertical motion. For
on-energy particles the tune shifts are approximately symmetric with respect to
diagonal, with minimums attained around the diagonal. This implies that, if
the tune shifts are correlated with the DA, the estimation of the DA using only
on-energy particles launched along the diagonal will result in an overestimation
of the DA. Resonance strengths and resonance webs are roughly invariant with
respect to energy. However, a marginal increase of the resonance strengths with
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Figure 33: Resonance web for case 10, for δ = −2.5σE and δ = 0.

energy is usually observed. The trend for the tune shifts is exactly opposite.
In some cases, a substantial decrease of the footprints is observed as energy
increases. Over a large portion of action space the dominant resonance is (0, 3).
The resonance strengths increase in magnitude faster in the vertical direction.
The magnitudes of the dominating resonances in the strip of predominantly hor-
izontal motion are much smaller than in the rest of action space. The biggest
jump in the magnitudes is observed at around 2 · 10−4 along the vertical, which
by coincidence or not is the location of the closest resonance line to the origin
in the resonance web pictures.
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Figure 34: Resonance strengths on a grid in action space for case 9.
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Figure 35: Resonance strengths on a grid in action space for case 10.
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Figure 36: Dominating resoances for cases 9 and 10.
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A Map Transformations Under Orientation Flips

Sometimes, orientation changes of particle optical elements in an accelerator
lattice are used as a mean to compensate or correct nonlinearities, improving
the characteristics of the accelerator. One specific case is the LHC HGQs in the
interaction regions [7]. We will study the problem of knowing the map of an
element in a ”default” orientation, what kind of transformations are necessary
in order to obtain the maps of the ”flipped” elements. Specifically, we need 3
different (similarity) transformations on the map, corresponding to mirroring
the ”default”, or ”forward” element with respect to a plane. Here we use W.
Wan’s nomenclature [8]. Mirroring the forward element with respect to the
x− y plane gives the ”reversed” element, with respect to the y − z plane gives
the ”switched” element, and with respect to the x− z plane gives the ”upside-
down” element. In [8] it is explained how to obtain the map of mirrored elements
knowing the map of the forward element.
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The map of the reversed element in the (x, a, y, b, l, δ) symplectic basis is
given by

MR = R ◦M−1 ◦R

where

R =

















1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

















is an involution: R ◦ R = I , I the identity, that is R−1 = R. M is the map
of the forward element.

Analogously, the switched map can be obtain from the forward map as

MS = S ◦M ◦ S

with

S =

















−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















possessing similar properties as R: S ◦ S = I , S−1 = S.
The last one is the upside-down transformation

MU = U ◦M ◦U

with

U =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















Again, U ◦ U = I , U−1 = U .
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It is well known that an element satisfying midplane symmetry is invariant
under the upside-down transformation. Next, we will show under what condi-
tions an element is invariant with respect to reversion.

The conditions can be deduced from Hamilton’s equations. In the case of
planar reference orbit, no electric fields, and s-independent magnetic fields (in
which case the fields are derivable from the vector potential component As,
and Ax = Ay = 0), the most general Hamiltonian [9] is invariant under the
transformation R. Moreover, the canonical equations of motion and hence the
map of a such an element in invariant under the transformation Rα, where α

means that it inverts the sign of the independent variable s, when acting on a
map.

Rα ◦M = M ◦Rα

In the Lie Algebraic notation, the map can be written in the form

M = e−∆s:H:

where : H : is the Poisson bracket operator attached to the Hamiltonian of
the system. Hence, α(M) = M−1, since : H : commutes with itself.

Inserting it in the invariance relation we obtain

R ◦M−1 = M ◦R

⇓

M = R ◦M−1 ◦R

Comparison with the map of the reversed element gives the result

MR ≡ M

In the specific case of the LHC, 180 degree rotations of quadrupoles around
the y axis are performed. This transformation is equivalent to mirroring the
forward element with respect to the x − y plane, and then with respect to the
y−z plane. In other words, we obtain a ”combined” element as the combination
of the reversed and switched element. Finally, we can identify the combined
element’s map with the map of the ”opposite” quadrupole’s map. For details,
see [7].

Now we can show that the combined element is unique, that is the reversed
and switched, and switched and reversed elements have the same map.

1) Reversed and Switched

MC = S ◦
(

R ◦M−1 ◦R
)

◦ S
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2) Switched and Reversed

M
′

C = R ◦ (S ◦M ◦ S)
−1 ◦R

= R ◦ S ◦M−1 ◦ S ◦R

= S ◦R ◦M−1 ◦R ◦ S

= S ◦
(

R ◦M−1 ◦R
)

◦ S

= MC

We used the fact that S−1 = S, and being diagonal matrices [R, S] = R ◦
S−S ◦R = 0. Actually, all the individual transformations commute due to the
fact that they are generated by diagonal matrices.

So we have an easy procedure to compute the maps of arbitrary ”opposite”
elements from the ”default” ones. Moreover, the map approach is valid for ar-
bitrary field configurations, including detailed fringe fields and compositions of
several maps. In the case of s−independent elements, we obtain simplifications
due to invariance under reversion. This property is relevant for the implemen-
tation of the body errors, in which case we can get the map of the opposite
quadrupole by switching the default map. Of course, in the case of detailed
fringe field maps, one needs to perform the reversion too.

To compare the above results with the rules for multipole sign changes due to
orientation changes [7], we derive the results based on field multipole expansion.
Suppose that eq.6 gives the multipole expansion in the default reference frame.

By + iBx =
∑

n

(bn + ian) (x + iy)
n

(6)

As a contrast with the map methods, this formula and hence the derivation is
valid only for s-independent elements, or the integrated strengths in the end
regions. In the same way, we assume that the expansion in the opposite frame
is

By
′ + iBx

′ =
∑

n

(

b
′

n + ia
′

n

) (

x
′

+ iy
′

)n

First, the reversion consists of the following transformations

x′ → x y′ → y z′ → −z

Bx′ → −Bx By′ → −By′

Inserting them in the expansion gives

By + iBx =
∑

n

−
(

b
′

n + ia
′

n

)

(x + iy)n
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Comparing coefficients with eq.6 we obtain

b
′

n ≡ −bn

a
′

n ≡ −an

The switching can be cast in a similar way to correspond to the following
transformations

x′ → −x y′ → y z′ → z

Bx′ → Bx By′ → −By′

−By + iBx =
∑

n

(

b
′

n + ia
′

n

)

(−x + iy)n

Taking the complex conjugate of the above expression we arrive to

−By − iBx =
∑

n

(

b
′

n − ia
′

n

)

(−x− iy)
n

By + iBx =
∑

n

(−1)n
(

−b
′

n + ia
′

n

)

(x + iy)
n

Comparing coefficients with eq.6 we obtain

b
′

n ≡ (−1)n+1bn

a
′

n ≡ (−1)nan

The upside-down transformation can be expressed as

x′ → x y′ → −y z′ → z

Bx′ → −Bx By′ → By′

By − iBx =
∑

n

(

b
′

n + ia
′

n

)

(x− iy)n

Taking the complex conjugate expression we arrive to

By + iBx =
∑

n

(

b
′

n − ia
′

n

)

(x + iy)n

36



which gives the relation between multipole coefficients

b
′

n ≡ bn

a
′

n ≡ −an

Finally, we get the rule for the combined (opposite) element as the com-
mutable product of the reversion and switching transformation

b
′

n ≡ (−1)nbn

a
′

n ≡ (−1)n+1an

in agreement with [7]. Direct calculation shows that the above results are
in complete agreement with [7] for every case, after the polarity is changed
following the transformation such that the fundamental term remains positive;
in case it is necessary.

As a conclusion, the above map manipulations based on the matrices R,
S, and U form a complete set of commutable transformations to perform any
flip scenario, including arbitrary s-dependent fields, and maps of composed el-
ements. All the necessary map computations, compositions and inversions are
easily performed in the Differential Algebra based code COSY Infinity.
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