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1. Introduction

In this paper we apply methods to transform the differential equations of mo-
tion to relative coordinates measured along a reference curve, so-called curvi-
linear coordinates derived in a companion paper [1] to the transformation of
Lagrangians and Hamiltonians under preservation of the underlying canonical
structure, and illustrate the method with the Lagrangians and Hamiltonians
for gravitation and electrodynamics. We begin by summarizing a few central
results of [1] relating to the transformation of various ingredients of the right
hand side of a differential equation to curvilinear coordinates. Assume the
transformation between these basis vectors and the old ones is described by
the matrix O(s) which has the form
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It is seen that the matrix 7 = O - d@/ ds is antisymmetric; we describe it in
terms of its three free elements via

A 0 —1T3 T2
A d N
t. O =T = 73 0 —T1 . (2)
ds
—T3 1 0

The three elements we group into the vector 7, which has the form 7 =
(7'1, 79,73)". We observe that for any vector @, we then have the relation T-d=
7 x d. The quantity 71 describes the current rate of rotation of Dreibein around
the reference curve R(s); 7, describes the current amount curvature of E(s)
in the plane spanned by €, and €;; and 73 similarly describes the curvature of
R(s) in the plane spanned by &, and &,.

The velocity expressed in terms of curvilinear coordinates is given by

Vs 5+ (1 — 1z + ™y) S
“ =1 v |= T — STy =| —-sny |, (3)
Uy Y+ smx Y+ smx

where o = 1 — 132 + 7»y. We also note that because of the orthonormality of
O, we also have the relationships

v o= ot gt =g¢ o (4)
—'ct.jzfct — ECEC (5)
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2. The Lagrangian and Lagrange’s Equations

Now we are ready to develop Lagrangian and Hamiltonian methods in curvilin-
ear coordinates. Following the transformation properties of Lagrangians, it is
conceptually directly possible, albeit practically somewhat involved, to obtain
the Lagrangian in curvilinear coordinates. To this end, we merely have to take
the Lagrangian describing the motion in Cartesian coordinates and express all
Cartesian quantities in terms of the curvilinear quantities, if this inversion is
possible. The particular case of interest is the Lagrangian of the form

2
v —
L. . . 2 t t
L(xy,x9, x3; @1, Eg, T3;t) = —mcy ) 1 — i ed + etv™ - A? |

where m is the mass of the particle, and in the electromagnetic case e is its
charge, in the gravitational case its mass; in the latter case At = 0. For more
details see for example [2], [3], [4]: In this context, it is very convenient that
the scalar product of the velocity with itself and with Ais just the same in the
Cartesian and curvilinear systems, according to (4) and (5). So the Lagrangian
in the curvilinear system is obtained straightforwardly as

7C2 -
L(s,x,y;8,@,9;t) = —mc*y /1 — = e®d + et - A, (6)

1702:v§+v§+1)§, and 77C~AC:USAS+vaz+vyAy.

where

Here ® and A€ are dependent on the position, i.e. {s,z,y} and the time ¢.
The quantities O, T, and hence 71, 75, 73 used below are dependent on s.

The derivatives of vs, v,, v, with respect to s,z,y, 3,2,y are useful in order
to determine the explicit form of Lagrange’s equations,

3’03 a'Us . a’Us o

95 9 oy~
Ov, . v, 1 v, 0

aas - 1y7 aal‘ - 9 aay - 9

Uy Uy Uy
—J = —2 = — =1

8 b 90 oy

(7)

8’05_3(_@x+@ ) avs——éT aUS—ST
s ds sV or By T
Ovy _5@ v, 0 v, _sn
aas - dS Y, aal' — Y aay - 1,
duy _ o dn Oy _ep O

8s  ds or Y oy =0
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The Lagrange equation for z is derived as follows. Using the derivatives of

Vs, Uy, Uy in (7), we have

ov? ov ov ov
=+ 20— + 20, —2 =2
ar s T ar e T
A(TC - AC) v v v
— = A4+ A——+A—L=A
o o ver T var Tt
ov? v, v, v, ) )
e = 20,— 9 + 2v, "D + 2y (7 = —2045T3 + 20,57
= —25 (T30, — T1v,) = —25 [F x T%)s.
So altogether we have
(8)

oL
Lvm—'—eAz :pz+eAm>

e V1—0v%/c?
where p* = m“/,/1 — v2/c? and correspondingly p¢ 7 /\/1 — v2/c® was

used. We also have
aL m . —C' a —C' —‘C
b S N P e (d—F . A
Oz \/Tz/czs[””]2 o 2T A
B .
1= O ~C  JC
= — —e—(®—v" - A"%).
S[Txp-la—e 83:( 0] )
Thus, the Lagrange equation for x is
dp, .. dA, 0 .
CZ—FS[TxﬁC]g:e [— = —%(CI)—?EC-AC)]. 9)
The Lagrange equation for y is derived in the same way, and it is
d o dA, 0
ﬁ‘i‘S[TXpC]g =€ [—W—a—y(q) _C AC):| (10)

dt
It is a little more complicated to derive the Lagrange equation for s. Using

the derivatives of vy, v, v, in (7), we obtain

ov?
e = v, — 20,1y + 20Ty T

A(TC - A€

7( 9% ):Asa—Amy—i—Ayﬁx
8’02 d7'3 dT2 d7'1 dT1
LR aty gy, 9y 5 T
95 US( dsij dsy) vsd8y+ VyS dsx

= —2%x [d—Txﬁc] — 25y {d—TxaC] ,
ds 9 ds 3
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and so
oL m
9% \/ﬁ (vsa — v,y +vymix) + e (Asa — Aymy + Aymix)
= (ps + eAs) o — (py + eAy) my + (py + eAy) mz, (11)
as well as
oL m . AT o . dT o o
—e%(@—ﬁcﬁo)
= — — — — —e—(® -0~ - A%).
sx[dSXpL sy{dSXpL 685( U )

Thus, the Lagrange equation for s is

d ) dr ) dr
—(psa = pomiy + pymiz) + 2 [E XP{’YLJrSy {E XP{JL
= —i(Aa—AT +Am)—3(q>—q70 A©) (12)
- dt s zT1Y yl1l Os .
The left hand side is modified as follows
dps dp, d . . . )
a (Z — le% + Tll'% + ps(—T3& + T2Y) — Py + Py E
+ (_ d_ + @) @ + @
Ps de Sdsy pxsdsy pysdszc
S J7
i oo v [
dps dp, o .
= CZ —leCZ + 7 %—ﬂTXﬁC]z—Z/[TXﬁC]:s

where (3) is used from the second step to the third step, and

V[T X PCN1 + valF X P72 + 0y [F X ps = 7 (Fx p7) =0
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is used in the last step. So, the Lagrange equation for s simplifies to

dps .. dp, .. d o
a( P —I—S[Txﬁc]l)—ﬁy( P —f-S[TXﬁC]g)—f-Tl:L‘(%—I—S[TXﬁC]g)

dt
{ dA, dA, dA, d
=e |-«

7 + le% —nr—— + A;— (T30 — Toy)

d d -
+A$%(ﬁy) + Ay%(—ﬁl‘) — —(®— - AC)} .

The equations for z and y, (9) and (10), can be used to simplify the above
equation. Doing this, we obtain

= e |:—O[dAS . aﬁ _|_ leﬁ — TlfL'g) (CD - ?70 ° /YC)

dt s ox dy
d d d
+As%(739€ oY) + Az%(le) + Ay%(—ﬁx)] ;

and with the above requirement that z and y are small enough such that
a=1—mx+ 1y > 0, the equation can be written as

dps ... ¢ dA, 1 (0 0 d o
=e|— -—— | = ——nz— | (P—-7 - A
dt Felrxrh { dt « (83 +T1y8x Tlx@y) ( ! )

1 d d d
+a {ASE(T&% — Toy) + Az%(le) + Ay%(—ﬁx)H :

Thus the set of three Lagrange equations can be summarized as below; it
apparently agrees with Newton’s equations in curvilinear coordinates derived
in [1],

d Ds T Ps
E Dz + 5 - T2 X Dz
y 73 Dy
0 0 0
A %‘f‘ 1y%—719€a—y
——% ed, |- = &g_ (@ — €. A°)
e A, 57
“ oy

L {As—m )+ ALy + A —<—m~>} ‘. (13)



PRESERVATION OF CANONICAL STRUCTURE IN... 407

3. The Hamiltonian and Hamilton’s Equations

To obtain the Hamiltonian now is also conceptually standard fare, although
practically it gets rather involved. We adopt the curvilinear coordinates {s, x, y }
as generalized coordinates, and we denote the corresponding generalized mo-
mentum by PC = (PE, PE, Pf). The generalized momentum is obtained via
the partials of L with respect to the generalized velocities; using (8) and (11),
we obtain

oL
Pe = 55 = s+ ed)a— (po+ eA)ny + (py + eAy)ni,
L
Py = —gi = ps +eAy,
oL
PG = Gy =Pt e (14)

It is worthwhile to express the mechanical momentum ¢}, ,, namely p¢, in
terms of the generalized momentum P% = (PSG , PS, PyG ) By combining the
above expressions (14), we have

sz(ps—l—eAs)a—Pley—i—PyGﬁx,

and so 1
ps+ A, = o (PSG + Pfﬁy — PyGTlx) ,
and altogether
1
- - — (PSG + PxGle — PyGTlfL‘) — eA,
Pireen =0 = | @ PO e, : (15)
PyG —eA,
Squaring p¢ = ym@© = mv®/{/1 — (7°)%/c? and reorganizing yields
(,176')2 _ 02(]50)2

() + m2e

and because ¢ and p¢ are parallel we even have

_C
i = L . (16)
G+ e

We also observe that
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The Hamiltonian in the curvilinear system H is defined from the La-
grangian L (6) and the generalized momentum PY (14) via the Legendre
transformation

H=3P% +iPy +yPS — L
. G . G .G 2 (T C
= s$P, + 1P +yb, +mc 1———|—e<I>—ev <A

and the subsequent expression in terms of only s, z, y, PS¢, PY, PyG and t, if
this is possible. Using (15), (16) and (17), we have from (3) that

.11 (1
=2 - 2 {— (Pf—l—Pley—Pfﬁx) —eAS},
a mya o

T = Uy + ST1Y

1 1
= _— [PG eA, + Y {— (PE + Pémy — PyGTlx) - eASH

o
:m—”yﬁ lePG—i— (a —|—le ) Pf—fofo—eﬁyaAs—eazAx} ,
Y =1, — ST|T
1 1

_ G G 4 (a2 4 7242) PO 2
_m7a2{ —nx PY — tlxy PS (04 + 1w )Py +enzra A, —exa Ay},

where we used the abbreviation 7 from (17), which is in terms of the generalized
coordinates and the generalized momenta

1 B c

my \/(PSGJrPxGﬁy*PfTII*aeAs)Q + (PG —eA,)? + (PyG _ eAy)Z + m2c?

o2

We also have

woqe- Lo g

mry
1 1

= —[{— (PSG + PSmy — PyGTlfL‘) — eAs} A,
my| |«

+ (Pf —eA,)A, + (PyG —eAy))A,

and in particular it proved possible to invert the relationships between gener-
alized velocities and generalized momenta. Hence the Hamiltonian H can be
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expressed in curvilinear coordinates, and it is given by

11
H=— { (PS + PEriy — Pyma) PY + 2 POPS
mry

{ } PG) TleGPG {1 I (713;")2} (PG)2
2

o
1
- PyGeAy - (PE + PSry — PyGTlfL’) eA, + e* A

1
TlffoPG ~Pfed, - lePGA — PCed, + L PGA
(6]

— PG—eA eA, — —eA cA, +m?c| + ed
x Yy

= L { 1 (PG—I—PGT Yy — P 7'117)2 - 2l (PSG +PxG7'1y - PyGTlfL’> eA,
my o

+ A2+ (PY — eA,)? + (PyG —eA,)* + mQCQ] +ed

1 2

mry

{1 (PG + PGle P Tlx) —eA, }

+ (PS —eA,)? + (PyG —eA,)” + mzcﬂ +ed

1
= m—fy(mc*y)2 + e® = mc’y + ed.

Explicitly, the Hamiltonian in curvilinear coordinates is

H—

PG 4+ PGy — PSrix — aeA,)?
C\/( SRR " 1 ) +(PF —edy)? + (P —edy)? +m?c?
+ed, (19)

where again o = 1 — 7132+ 7y. Thus we derive Hamilton’s equations as follows

C0H 11 (1, 4 .
S:@:m—va{a(& —|—Pm7'1y—Py7'1x)—eA5 ,
_ 0OH

~ OPS

1 1
_ [M {— (PS+ Pimy — Pimix) — eAs} +PF - eAz} . (20)
my | a |«



410 M. Berz, K. Makino

1 1
- |:_M{_(PSG—}—PIG’7'1y—PyGTll')—€A5}+Pf_€Ay:| ) (21)

o (%

OH 1 1
—_— = {— {— (PSG + PxGle — PyGTlfL‘) — eAs}
~ «

S 9s  m

1 [/d d
. {—2 (%2 - 22 (55 + Py - B

ds d
dr dr 0A
GYi1 GWi1 s
(Px EEAR S ) “ s }
0A, 0A, 0P
G _ _ 2=
+e(P; —eA,) B (P —eAy))—— B ] ea (22)
po— OH L1 L poy pory _ pGra) ea,
dr  my Q@ Y
73 (pG G G G 8AS
X {? (Ps + Pny — P, TlfL‘) - EPy € }
0A, 0A 0P
¢ G v| 9%
+e(P, —eA,) e (P, —eAy) pe ] e (23)
. OH 1 1
a e e e
Py:—a—y:m—v{—{a(Ps —I—Pley—PyTlfL')_eAs}

Jy
0A, 0P
oy € oy’

T: T 0A,
X {—a—z (PS¢ + PSmiy — Pimix) + —1Pf — e—}

DA,
+e(PY —eA,)——= + e(P —eA))—

o (24

where the abbreviation (18) is used.

To verify the derivations, we check Hamilton’s equations to agree with
previous results. It is shown easily that the first three equations agree with
(3). The last three equations are shown to agree with Lagrange’s equations

(9), (10) and (12). We have from (23)

: 1
PY = ——, {B (PSG + PSy — PyGTll') - TlP?JG}
a la
N 0A; 8Az 0A, 8@)
evs ev,—~ — e—
Ox Ox Vor  “ox
= 20pe PN IpG g (2R 1) PO
a
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Expressing the equation in terms of the mechanical momentum p¢ rather than
the generalized momentum P¢ according to (14) and using (7), we have

dA,
dt

= 8;3 (ps + eAg)ar — (py + eAy)Tiy + (py + eAy)Tia}

Pa

ST1T3Y

(px + €Ay) + 57 <—+1> +eA,)

(py
0 Vg vy v,
_ e%(@ — Vv Ag — U Ay — —e (AS o _|_ A, o )

- A9),

= =5 (7‘3])8 - Tlpy) - 6%(@

which is in agreement with the first Lagrange equation (9). The Hamilton
equation for y is similarly modified from (24),

87'2 2y

2Pt in (——1)135—
(6% (8%
. (acb 0A, A, aAy>

STIToX
2ne” pG

"G _
P Y

y
— Vg — Up—— — Uy——
Ay Ay gy 7y
In terms of the mechanical momentum p¢, we have

dA, ) 0 -
py + GW = _S(Tlpx - 7-2ps> - e—((I) - 170 ’ AC)?

and it again agrees with the second Lagrange equation (10). Similarly, the
Hamilton equation for s is modified from (22),

. S dr dr S dr dr dmy
PC = o (—d—jx—l— d—;y) PE + {a ( d33 x + d—Qy) Y — sd—y} PY

$ d7'3 dr, .dn G
—— — —x 7 P
+{ a( Is +d y>7'1x+sdsx} Y

(oA oA oA,
“Nos  "os  "os  Wos )

In terms of the mechanical momentum p<, it takes the form

d
i {(ps =+ eAs)oz - (pz + eAz)le + (py + eAy)Tlx}
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5 drs dry
- E (_EZL‘ + E?J) {(ps + eAS)CY - (pl‘ + eAJ»‘)le + (py + eAy)Tlx}
S drs dry .dm
+ {E (—Ex + Ey) Y — SEQ} (Pz +eAs)
S drs dry .dn
+ {_a (—%l’ + %y) T+ SEZL‘} (py + eAy)
Nos " "as  "“as  os )

and a little reorganization leads to

d . |dT o ldr

= (ps@ = pamiy + py7iz) + S [5 XP‘CLJrSy {5 XﬁCL
= —i(A — A,my+ A )—g@—*c AC)

=€ di s zT1Y yT1T Js (% s

which agrees with the third Lagrange equation (12), as it should.

4. Arc Length as Independent Variable for the Hamiltonian

As the last step, we perform a change of the independent variable from the
time ¢ to the space coordinate s. For such an interchange, there is a surprisingly
simple procedure which merely requires viewing ¢ as a new position variable,
—H as the associated momentum, and —P% as the new Hamiltonian, and
expressing it in terms of the new variables, if this is possible; for details, see
[4]. Then the equations are

dr _O(=PF) dy O(=PF) dt O(-PF)
ds 9P ' ds  OPS T ds  O(—H)’
dpf _ 9(=PS) dF}  9(-PF) d(-H)  9(-Ff)

ds ~ O0xr = ds oy ds ot

To begin, let us try to express —P¢ in terms of ¢, z,y, —H, PZ, PY. From (19)
we obtain that

1 2
{a (PSG + Pley - PyGTlx) — eAs}

4+ (PS —eA,)? + (PyG —eA,)* +m*c?
1
= —(H —e®)?

c2
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SO
(PSG + Py — PyGTll' — 046145)2

1
= o? {E(H —ed)? — (Pf —eA,)? — (PyG - eAy)2 — m202} )
Considering the case that A=0and z and y are small, we demand p, should
be positive (and stay that way throughout); we also remind ourselves that
a > 0, and hence the choice of sign is done such that

S

PGI—PxGle‘i‘PyGTll'—FOéGAS

1
+ (X\/—(H —ed)? — (PS¢ —eA,)? — (PY —eA,)? —m?2c2.

2
Thus, —P¢ and hence the new Hamiltonian H* is obtained as
H® = —PY% = PCry— PyGTll‘ — aeA,
1
— a\/—(H —ed)? — (PF —eA,)? — (PY —eAy)? —m2c.

c2

Here, for later convenience, note

1
\/—(H —e®)? — (PE —eA,)? — (PF —eAy)? — m?c?

2
1
== (PSG + Pmy — PyGTllL‘) —eA, = ps. (25)
Then, the equations of motion are
dz _ 9(=Pf)
ds ~ OP¢
PY —eA,
=7y+ 1 a( = - ) ) (26)
\/E(H —e®)? — (PY —eA,)? — (PyG —eA,)? —m*c?
dy _0(=P7)
ds OPg
PG —eA
= —TT+ 1 a( i ‘ y) ) (27)
\/—2(H —e®)? — (PC —eA,)? — (PyG —eA,)? —m?c
c
1
dt _9(—PS) ag(H —cd)
ds — O(—H) 1 ’
\/g(H —e®)? — (PF —eA,)” — (PY — eA,)* —m*c
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dP¢ (P9

o s — pG. _ s
7 e P/ —emAs + ae o
- Tg\/%(H —e®)? — (PY —eA,)? — (PY — eAy)? — m2c?
c
%(H - efb)a—q) — (P — eAx)an — (PS - eAy)%
— Qe ¢ 1 Ox Oz Oz ’ (29)
\/—2(H —e®)? — (PS —eA,)* — (PyG —eA,)? —m?*c?
c
dP¢ o(—P%) 0A
y _ s - G s
i 3y P 1 +enAs + ae ay
+ 7'2\/6—12(H —e®)? — (PS —eA,)? — (PY —eAy)? —m?c?
Lo — )22 _(p6 _en )% (po_on )P
c? Ay v dy Y Y7 oy
—ae - , (30)
\/—2(H —e®)? — (PS —eA,)* — (PyG —eA,)? —m?c?
c
d(-H) _9(=PF)
ds ot
1 0P 0A 0A
—(H —e®)— — (PY —cA L _(PY —eA,)=Y
= e 8A5_02< e)8t (P ex)at (5 ey)at
ot
\/%(H —e®)? — (PC —eA,)? - (PyG —eA,)? —m?c?
c
(31)

For the sake of convenience and checking purposes, we replace PY, PyG and H
by p¢ using (14) and (19) and with the help of (16) and (25). Then we have
from (26), (27) and (28)

dz
=yt (32)
d
d—z——Tx—Fa];—Z, (33)
dt 1 \/(pY)% + m2c?
— = a—
ds s c
And we have from (29)
dp,  dA, 0A
b = (py + eAy)Tl — 67'3143 + ae—— — T3Ps

ds te ds ox
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o [VETFEwEEe s o4,
aps c or P or  Pvar (-

and organizing the expression using (7), (3) and (16) we find

dps 1o o [ dA, 10 -
=e|— ———(®—0" - AY)|. 4

ds +[TXP L” ‘ ds éax( ! ) (34)
In a similar way, we obtain from (30)

dpy 1~ ¢ [ dA, 10 o qoy]

Dy —e |- 2% 5. A 35

ds+[TXp]y e_ ds éay( ! )_’ (35)
and from (31)

dH 10

~C 1O
= (@ -9 A9
This concludes the derivations of dynamics in curvilinear coordinates. In
particular, we have obtained the relativistic equations of motion for motion in
gravitational and electromagnetic fields in curvilinear coordinates, with the arc
length s as the independent variable. Moreover, we know that these equations
of motion are Hamiltonian in nature, which has important consequences for

the theoretical studies [5], [6], [7], [4].

5. Planar Motion

As an application of the concepts just derived, let us consider a particularly
important special case, namely the situation in which the reference curve stays
in the x1-x9 plane. This so-called planar curvilinear system occurs frequently
in practice, in particular if the reference curve is an actual orbit and the fields
governing the motion have a symmetry around the horizontal plane. The basis
vectors in this 2D curvilinear system can be expressed by the Cartesian basis
vectors via

€y = €3,
€5 = cosfe; — sinfesy
€, = sin €] + cosbéy ,
where 6 depends on the arc length s; denoting its derivative by h, i.e.

h=h(s) = df{g .

All the elements of the matrix O are determined as

A cosf@ sinf 0
0= —sinf cosf 0
0 0 1



416 M. Berz, K. Makino

So, the antisymmetric matrix 7' of (2) has the form

) ) dO cosf) —sinf O —sinf-h cosf-h O
T=0"— sm@ cos@ 0| | —cosf@-h —sinf-h 0O
ds 1 0 0 0
h 0O
- —h 00 |,
0 0 O

thus the elements of 7" and hence 7 are given as

T 0
7_": T2 = 0 )
T3 —h

finally, we have
a=1—mr+ny=1+ he.

The partial differential operators in this 2D curvilinear system are, from

[1],

1 9
v, s
Vef=| V. | f= o !
v, o
dy
gradcf—l_:h g];ﬁ—kgé;%—g—iéy,
divA = thx a£5+1+1h aa {(1+ hz)A, }+%
0A, A,
Or oy
ol — DA, 1 0A,

dy 1+ hx 0s

1 0A, 1 0
1+ hx Os 1—|—hm8x (1+h)A.}

c,_ 1 0 1 of 1 0 of _f
Af_l—i—hx@s 14 hx Os +1—|—hx8x (1+h)8x +3y

The velocity expressed in this system is, from (3)
Vs $(1+ hx)
Uy Y

?76’
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The electromagnetic fields and the Lorentz force expressed in this system are,
from [1],

1 02 0A

E 1+ hz Os ot
FC _ ES B _3_@ B 0A,

E:v 8x 8t ’

/ _9% 04,
y ot
04, 04,

B Ox dy
BC — Bs _ 0A, 1 0A,

B, YR R |

° — —{(1+ ha)A
1+hx Os 1+h$8x( +he) A}

. fs E, +v,B, —v,B, E,+iB, —yB,
= f|=| E+v,B -vB, | =| E,+yB,—$1+h)B,

Iy E, +v,B, — v, B E,+ (14 hx)B, — iB;

1 0
/A 5 e s Aud/dt(~ha)
- _ Az _ g (@_1—}0‘14’0)+ 1+ hz
dt A ox 0
Yy g O
dy

Thus, the equations of motion expressed in this system are, using Newton’s
equation derived in [1],

dps .
b + Shp,
d Ps 0 Ds dcg
e s oo x e )= B,
t dt
Y —h Py dp,
dt
_ 1 g _
. A, 1+ %x Os Agd/dt(—hx)
—e | A, N v ((I)_@C.A’C)_'_ 14+ hx
dt A ox 0
y 0 0
i dy i

Furthermore, the equations of motion after space-time interchange in this sys-
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tem are, from (32), (33), (34) and (35)

dx D
— = (1+ha)= 36
o, = (L :r)ps, (36)
dy p
2 —(1+ hx)Z
o, = (L :r)p8> (37)
dp, dA, 10 o T
_ —el|l= 2 (Pp—iFC.A
ds s e[ ds 5820( ! )
e e+ YR (14 ha)B (38)
DA P P etk
dpy, dA, 10 < T
ds _6{ ds é@y(@ v A7)
_ el B+ 1+ hoyB - (39)
I A Cods |

It is customary to have the equations of motion regarding the momentum
slopes a = p,/po and b = p/po, instead of p, and p,, where py is the initial
momentum of the reference particle. Then the equations (36) and (37) can be
expressed as

a
— = (1+hx , 40
ds ( >ps/po (40
dy b
—~ = (14 hx , 41
p ( )ps/po (41)

where p;/po = \/(p2 —p2 —p2)/3 = /(p/p0)? — a® — b? can be utilized. Be-
cause pg is s-independent, the equations (38) and (39) can be expressed as

da ps e |1 dy

@yl g+ YB (14 ha)B,|, 42
s g Y 1+, (12
db e |1 dx

—=—|-F 1+ hx)B, — —DB,| . 43
w =< |im 0 non, - Un] (13)
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