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Persistent Currents in Superconducting Filaments
Due to Arbitrary Field Changes in the Transverse Plane

Martin Aleksa, Bernhard Auchmann,
Stephan Russenschuck, Christine Völlinger

Abstract. Magnetic field changes in the coils of superconducting magnets are shielded
from the filaments’ core by so-called persistent currents which can be modeled by means
of the critical state model. This paper presents an semi-analytical 2-dimensional model of the
filament magnetization due to persistent currents for changes of the magnitude of the magnetic
induction and its direction while taking the field dependence of the critical current density into
account. The model is combined with numerical field computation methods (coupling method
between boundary and finite elements) for the calculation of field errors in superconducting
magnets. The filament magnetization and the field errors in a nested multipole corrector
magnet have been calculated as an example.

1. Introduction

The Large Hadron Collider (LHC) [6], a proton-proton superconducting accelerator, will
consist of about 8400 superconducting magnet units of different types, operating in super-fluid
helium at a temperature of 1.9 K. The applied magnetic field changes induce currents in the
filaments that screen the external field changes (so-called persistent currents). The filaments
are made of type II hard superconducting material with the property that the magnetic
field penetrates into the filaments with a gradient that is proportional to the magnitude
of the persistent currents. Macroscopically, these currents (that persist due to the lack of
resistivity if flux creep effects are neglected) are the source of a magnetization

���� ����
of the

superconducting strands. One way to calculate this magnetization would be to mesh the coil
with finite elements and solve the resulting non-linear field problem numerically by making
use of a measured

���� ����
-curve. This approach has two main drawbacks: The numerical field

computation has to be combined with a hysteresis model for hard superconductors, and the
coil has to be discretized with highest accuracy also accounting for the existing gradient of
the current density due to the trapezoidal shape of the cables, the conductor alignment on the
winding mandrel, and the insulation layers. Hence, we aimed for computational methods that
avoid the meshing of the coil by combining a semi-analytical magnetization model with the
BEM-FEM coupling method [5].
In the straight section of accelerator magnets the magnetic induction is almost perpendicular to
the filament axis. The effect of a magnetic induction parallel to a superconducting filament is
small (see [11]) and has therefore been neglected here. A model to calculate the magnetization
of the superconducting strands is presented, considering external fields that change their
magnitude and direction. For this purpose, the model introduced in [1] has been extended to
account for filament magnetizations non-parallel to the outside field. As in [1], the model does
not attempt to describe the microscopic flux pinning, but applies the critical state model [2]
which states that any external field change is shielded from the filament’ s core by layers
of screening currents at critical density 	
� �������� . The model differs from other attempts to
describe a superconducting filament’ s response to arbitrary field changes in the transverse
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plane as, e.g., in [8]. It takes into account the dependence of the critical current density on
the applied external fiel and the resulting field distribution in the filament cross-section. As a
consequence, also low field effects such as the peak-shifting (asymmetry in the magnetization
curve for vanishing external field) are reproduced by the model.
The described model is combined with the coupled boundary element / finite element method
(BEM-FEM) [5] which avoids the representation of the coil in the finite element mesh since
the coil is located in the iron-free BEM domain. The fields arising from current sources in
the coil are calculated by means of the Biot-Savart law, while the surrounding ferromagnetic
iron yoke has to be meshed with finite elements. Hence, the discretization errors due to the
finite-element part in the BEM-FEM formulation are limited to the iron-magnetization arising
from the yoke structure. In order to account for the feed-back of the filament magnetization
on the magnetic field, an

���� ����
-iteration is performed.

The magnetization model is based on the input function � � �	�
���� of the critical current
density, which represents the material properties of the superconductor, but is independent
of geometrical parameters such as the filament diameter or shape and the ratio

�
of the

superconductor to total strand volume. The method reproduces the hysteretic behavior for
arbitrary turning points in the magnet’s excitational cycle including minor loops and rotating
external fields.

2. The 1-dimensional magnetization model

For a better understanding of the magnetization model, let us first consider a field change of
the form � ����� � ���� where

�	
����� �����
and

�
is the nominal field strength in some direction���� perpendicular to the axis of a circular superconducting filament, which we shall call a 1-

dimensional field change. This field change induces a shielding-current layer of a relative
thickness ��� called the relative penetration depth, see Fig. 1. It is measured on the scale of
the relative penetration parameter � that is zero on the outside and one in the center of the
filament. The currents are directed as to create a magnetic induction that opposes the applied
field change on the conductor surface, thus shielding the field change from the filament’ s core.
The thickness of the layer depends on the amplitude of the applied field sweep, on the filament
radius, and on the critical current density in the superconducting material.
The generation of a shielding field can be modeled by the perfectly uniform dipole field
produced by two intersecting circles with opposite current densities shifted by the relative
distance ��� � ��� � ��� ,

� � �� � ���� !"#$%&'()
'*+
� � � � � � � �,- � � (1)

where � �� is the shielding field, " is the filament radius and � � � ��� are the relative penetration
parameters that limit the shielding current layer, [3]. Such pairs of circles are nested inside
concentric circles. This equation will later be used to find a differential equation for the
differential shielding

- �� �.- � � . In Fig. 1 these nested pairs of circles are represented with
finite thickness, notwithstanding the continuous nature of the mathematical model, which
will be introduced in Sec. 3.1. Figure 1 (left) shows the cross-section of a filament after a
1-dimensional change of the external field from

�/
to

��012345
. The nested circles each shield

a fraction of the outside field from the inside, thus increasing � � � ��� in the inner circles, as
represented in Fig. 1 (left bottom diagram). The figure also yields a vector representation
of the 1-dimensional field change and the corresponding shielding effect. The vector

�� � � �
indicates the shielding magnetic induction as a function of the penetration from the outside
( � � /

), where
�� � / �0� �/

and
�� � / �0� ��67*829:; �/

, to the inner boundary of the shielding layer
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Figure 1. Circular superconducting filament in a magnetic induction �� of fixed direction,
for different penetration states. The individual graphs contain: (a) A schematic view of the
circular filament with inscribed pairs of circles. Orange colors indicate positive currents in� -direction, blue colors indicate negative currents. The color intensity represents the absolute
value of the currents at critical density ����� � ���	
����
 ; (b) The

���
component of the magnetic

induction over the relative penetration parameter � ; (c) The
���

component of �� ���	
 over � ; (d)
The vector representation of the shielding problem in the

� ��� � �
-plane;

�
and � denote the

external field vector �� and the shielding field vector at penetration ��� , �� ������
 , respectively; (e)
The shielding currents at critical density ����� � ���	
����
 in the cross-section. Left: Penetration to
a relative penetration depth of ��� . Right: Full penetration ( ������� ).

( � � ��� ), where
�� � ��� � � �������	�
 �� � � � � � ��

. The absolute value of
�� � � � depends in a non-linear

way on the penetration parameter � (see ��� ��� � � ��� -relation in Eq. (6) and on the applied field
change.
The right hand side of Fig. 1 shows the situation where a larger field change is applied to the
filament surface. The entire cross-section contains shielding currents of critical density which
are, however, unable to completely shield the field from the inside. The field has thus fully
penetrated the filament ( � � � 

). In the vector representation,
��

points from the induction
at the filament surface

�� � � � � �
to the value of the induction at the center of the filament�� � � � � � � .

Fig. 2 (left) shows the case where the magnetic induction outside the filament is ramped up to������� 
(previously denoted

�������	
) and subsequently reduced to

������ �
. A new layer of shielding

currents is generated, leaving the remaining inner layers untouched. The new field change is
again shielded from the filament’ s core. The shielding vector

�� ��� � � � � is now to oppose the
new field change. It further has to fulfill continuity requirements on the outer ( � � �

) and
inner boundary of the new current layer ( � � � � ):�� � � � � ������ � 
 �� ��� � � � �

! "#$ %
�

� �������� 	
(2)

�� � � � � � ������ � 
 �� ��� � � � � � � ������� 
 �� ���� � � � ��& (3)
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With given
�������� � �� �����

and
������ �

, the mathematical problem consists in the determination of a
penetration parameter � � and the corresponding shielding vector

�� ��� �
that satisfies the Eqs. (2)

and (3). For the 1-dimensional field change this task has been discussed in [1].

��

� �
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�
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�
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� �
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� 	 
 � � �  �

� �  �
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 �
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�

���

� �� �

� � � �

� �

�
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� � �

��� �
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� �
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� �

� �

� 	 
 �

� 	 
 �

�

�
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�

�

� �  � � �  �

Figure 2. Sequel to Fig. 1 (right). Different 1-dimensional field changes applied to a fully
penetrated superconducting filament. Left: The diminution of the external field causes the
creation of a new current layer of relative thickness � � with opposite current densities. Right:
The outer field changes sign, causing the new current layer to completely erase the previous
layer ( � � � � ). The gray part of the �	 ��� � vector represents �	 ��� � 
�� � � , the part of the shielding
magnetic induction that has been replaced by the new shielding layer �	�����	 
����� .

Figure 2 (right) shows a case where a field changes wipes out the previous current layer(s)
entirely. This happens, if the field change is too large (or the field is turned into a direction
that does not allow for an intersection of shielding vectors, see Sec. 3). It further shows that
the critical current density reaches its maximum at

� � � � 	 
 �� � � � 
 	 �
where the shielding

effect is biggest and the
� � � �

curve has the steepest inclination.

3. Persistent Currents Model for 2-dimensional field changes

The more general case of a magnetic induction that changes its absolute value and direction
is discussed now. We shall denote the underlying model therefore as “2-dimensional” or the
“vector magnetization model”. Starting again from the situation described in Fig. 1 (right), a
clockwise rotation and diminution of the magnetic induction is now studied. It can be expected
from the results presented in Section 2 that a new shielding-current layer of relative thickness
� � is created to oppose the change of the induction. Of course, the continuity equations (2)
and (3) also have to hold for rotational field changes.
Figure 3 (left) illustrates the case. The shielding vector

�� ���� � � � �
points to

�������� � �� ����� � � � �
. It is

directed as to shield field changes from the filament’ s core in accordance with the continuity
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Figure 3. Left: Sequel to Fig. 1 (right). The outer field �� �����
is decreased and turned by� ������� � � � � with respect to the previous excitation step �� � � � . A new current layer is created

with relative thickness ��� , that shields the field change from the filament’s core. Right: �� �����

is increased and rotated with respect to �� � � � . The field change fully penetrates the cross-
section. In the vector representation, the shielding vector �������� points to the arrowhead of the
old shielding vector �� � � � .

equations (2) and (3). The magnetic induction in the filament cross-section is, thus, given by
�� � � � ��� ���������	 �
 ��� � � � � � ��� � � � �������	 	 �
 ����	 � � � � �  � � � � 
 (4)

Similar to the case presented in Fig. 2 (right), the current layer resulting from the outer
field change shown in Fig. 3 (right) penetrates the entire cross-section. Again, the previous
shielding-current layer is completely removed ( �  � �

). As the effects are computed for
successive excitational conditions and the computational results ought to be independent of
the step sizes of these excitations, the

�
 ��� �
vector for �  � �

points to the arrowhead of
�
 ����	

.
This behavior is illustrated in Fig. 4.

3.1. Mathematical description of the vector magnetization model

Most magnetization models for superconducting filaments (e.g. [11]) neglect the field-
dependence of the critical current density � � . This is reasonable only if the excitational field is
large compared to the field generated by the filament magnetization (i.e., all the filaments are
fully penetrated). There are, however, regions in superconducting coils that yield a magnetic
induction in the transverse plane that is close to zero even at nominal level. Strands that are
positioned in these regions - the vorteces of the magnetic induction - are not fully penetrated
during the entire ramp cycle of a magnet. The model introduced in this paper includes varying
current densities inside the filament and calculates the continuous course of the magnetic field
over the filament cross-section by means of a differential approach. The model is, therefore,
suited to describe also low-field effects such as the peak-shifting, see Fig. 4. The following
approach was adopted to derive the mathematical model:� A differential equation for the course of the magnetic field is derived, based on the

equation for the perfectly uniform dipole field produced by a pair of intersection circles,
compare Eq. (1).
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Figure 4. Vector representation of steps of different sizes, following an increase and rotation
of the magnetic induction on a filament’s surface (dashed line). This plot is to illustrate why,
after a large step, (c), the shielding vector �� � ���

has to point to the arrowhead of �� � � � : Increasing
the step size, the moment of full penetration of the field ( � � � � ) is reached in (b). Assume
now that the step size is being infinitesimally increased. In order to avoid any incontinuity of
the results due to a choice of step sizes, the new shielding vector must point to the arrow head
of the old vector. Applying the same reasoning to a larger step, (c), it can be seen that letting

��������
point to the arrow head of �� � � � is the appropriate approximation of a series of successive

infinitely small steps along the dashed line.

� To obtain a solveable differential equation, the fit function for the critical current density
is approximated around the working point.

� A set of differential equations for the � - and a � -components is derived, to describe
arbitrary field changes in the transverse plane.

� The shielding induction vector
�� � � �

is introduced to describe the course of the induction
over the cross-section.

� One differential equation for
� � � � � � �� � � � �

is obtained. Solving the equation yields the
inverse relation � � � �

.
� With this solution at hand, the penetration parameter of a new shielding current layer can

be determined by solving an equation system, given by the continuity requirements in
Eqs.(2-3).

� Given the limits of each current layer and the respective � � � � � � � �
relation, the

magnetization of the filament can be calculated.

The critical current density as a function of the magnetic induction
� � � � � � �� � � � �

is given by
the following fit function [4], where

� � � � ��� � � � � ��� � ��� � ��� � � :
� � ��� � � � � � � � �	
 ���

�� � � � � ����� �
��� � � � �

� � � � � �
� ����� � � �

� �
� � � � ��� � ��� �

(5)

The fit parameters for the LHC main-magnet cables are a reference current density � 
 ���
� ���� � 	��� �!" 
 (at 4.2 K and 5 T), an upper critical field

� ��� � �#$ �%&�'
, a critical temperature of� �(� �)* � �+,

, a normalization constant � � � �	- � 	 $�'
and the fit parameters . � 	 �%& -

, / � 	 �0*
and 1 � � � � �

.
For small magnetic inductions

� � � �
, where the persistent currents have the biggest impact, it

follows that � � ��� � � � � � �23 4
with

� � � ����� � � � � � �5� � � 678+9 �:�;< � � � �
for

� � � �23 	
. For the

computation of the induction inside the filament, Eq. (5) is approximated around the working
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point
������� � � ������ � �

with the following function (
�

is constant):

� � � ��� � � � � � �	������� ��� �������� � � � ��� � �	������� �� � � � �
�

(6)

From Eq. (1) for the perfectly uniform dipole field produced by a pair of intersection circles,
a system of differential equations for the field change within the filament

	 �� � � � can now be
derived: � 	 ��� � � �	 ��� � � � � � 
�� � � ������� ��	� � � � �

� 
����
� �  � ������ � �  � � � 	 � �
(7)

The angles are defined in Fig. 3. The geometry factor
	 � � � � � ���� � � � � ����� � � , where �

denotes the filament radius, accounts for the little spaces that are left when a round filament is
filled with a series of intersecting circles inscribed in concentric circles (instead of intersecting
ellipses that would avoid these spaces but which could not be inscribed in concentric circles,
see Fig. 1 (left) and [1]). By setting� ��� � � ���� � � � �� ��� �����

�
�

� ������� � ����
� � ������ � � � �� ��� ����� !"#
� � � � �

� 
���� � �  � ������ � �  � � �� ��� ��$ �
�
�

�
(8)

and hence
� � � � � � � ������  � ������� � � � �%���� � � � � � � � � � (9)

we can derive from Eq. (7) a differential equation for
� � � � :

	 �&'� � ������  � ������� � � � �%��(� � � ��� � � � � � � 
 � � � ������� ��	 	 � �
(10)

Substituting ) � � � � �%��(� � yields
	 ) '� ) � � � ������ ����� � � � � � 
�� � �	����� � �*	 	 � (11)

A solution for � � ) � and hence for � � � ����� � � � � � is found by integrating Eq. (11) (using the
Mathematica computer program [7]):

� �	������� � � � � � � �� 
 � � � ������� ��	 + �������,����
� � �-. � � �������
� � ������� � ���/� � � � � �01 � . �

� �
�� � � � ��
��23 � �45�5

� � �  ����� �,���� � � � �6'� � ������  � ������� � ���� � � � �
� � ������� � ���/� � � �01 �

� �
� �
�� � � � �� � �  ����� �7��(� � � ������ � � � ������ ���89 � (12)

where �01 � denotes the Gauss’ Hypergeometric function. The algorithm for the
implementation of �01 � in the program language C was based on [9].
A system of equations can now be established for the problem of finding a relative
penetration depth � � that fulfills the Eqs. (2) and (3) or, equivalently, the problem of finding� ��� � � � �� ��� � � � � � � � � ��� �

and
� �� ����	 � � � � � � � ����	

. Obviously it is required that

� �	����� � � � ��� � � � ��� � � � � �	������	 � � ����	 � � ����	 � � � � � (13)
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Moreover, the continuity equation (3) yields

����� � � ����� � ���������� � ����� � � � ����� � 		�
����� � ����� 	 � ��� � ������ � � ����� 	 � ��� � � �

 ������� � ����� � ��������� � ����� � � � ����� � 		����� � � ����� 	 � ����� ����� � � ����� 	 � ����� � � �

(14)

Given the quantities
� ��� � � � ����� � � ����� � ������� , and � ����� , the system of equations (13) and (14)

can be solved for the unknowns � ��� � � � ��� � and
� �����

by means of a Newton algorithm.
Eventually, to find the distribution of the magnetic induction in the filament cross-section, see
Eq. (9), the inverse relation of Eq. (12),

� � � ���� � � � � � � , is required. It is obtained from the
Newton algorithm, using � recursions of the form

����� � 
 ��� 	 ��� � �������� ��� � � ������ � � � ��� � 	 � �
�� � ����� 	 � ���� � ��� �
����� � � � � �� � (15)

with � 
 � � � ��� � � denoting the index of the iteration step. An appropriate starting value
� � is

required.
From Fig. 3 it is easy to see that � field changes on the outside of the filament effect the
creation of ��	
� distinct shielding-current layers between the relative penetration parameter
values ��� and ��� � � , � 	��	� . The indices � and � � � correspond to what previously has been
subscripted as ’old’ and ’new’.
Provided the semi-analytic expression for the magnetic induction

� � � � inside the filament,
the magnetization due to a layer of shielding currents of critical density � � ��� � � ��� can be
derived. The vector of the entire filament’ s magnetization

	

equals the geometric sum of the

magnetization vectors
	
 � generated by the individual current layers,

	
 
 ��
��� �

	
 � 
 ��
��� � � ����� ����

	� � � ��� � � (16)

where
	� � � � denotes the magnetization contribution of a shielding current layer of relative

thickness
� � at � .

The direction of
	
 � follows the direction of the shielding vector

	� � � � � , subsequently denoted	� �
� . We obtain for the magnetization of one shielding-current layer

	
 � 

� �� � ����� �

���
� � � � � � � � � � 	 � � � 	� � �

� �

 � � � � ������ �

� �!����� �
���

� � 	 � � �� � � � �
	� �
�
� � � (17)

where
� � � � is given in Eq. (9). Generally, Eq. (17) is evaluated numerically. An analytical

approximation exists for outer fields being substantially larger than the shielding induction," � 	������ � � "�� " 	� � � ��� � � � " which is used whenever possible in order to accelerate the function
evaluation.

4. Simulations of a single filament subjected to field changes

The computations in this section are presented for one filament with a radius � 
 � � � � m
at

� 
 � � � 	
. The result is scaled for a strand with a filling factor

# 
 � 
 � ��� �
which

takes into account the copper to superconductor ratio of the multi-filament wire. Figure 4
presents computations of 1-dimensional field changes between

� ���� 
 � � �
and -2 T. The
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model reproduces the typical hysteretic behavior of superconducting filaments, as discussed
in [1].
Note that the so-called virgin curve joins the hysteresis slope in the point where the outer
field has fully penetrated the filament cross-section (and which is not the point of maximum
magnetization). At every point the magnetization vector

��
opposes the applied field change.

Consequently the lower branch of the hysteresis loop (up-ramp) is called the shielding branch
and the upper branch (down-ramp) is called the trapping branch. It can also be seen that the
filament magnetization increases as the outer field tends to zero and decreases for larger outer
inductions. This effect is due to the

�
-dependence of the critical current density � � ����� 	 
 .

The fact that the actual peak of the magnetization is shifted from
��� �

is discussed in detail
in [1].
A similar case for the vector magnetization model is shown in Fig. 6. The left hand side
diagram shows a clockwise rotating excitation field that goes through the origin in the

� � � � �

-
plane (

�������� � ��
). As for the first excitation steps, the filament’ s response (shown in the

right diagram of Fig. 6) is very similar to the 1-dimensional field change. The magnetization
opposes exactly the applied field. As the outer field further increases in absolute value, the
magnetization decreases due to the field dependence of the critical current density. At full
penetration the magnetization curve meets the closed 2d-hysteresis loop. The maximum of	 �� 	

is reached at the completion of each turn in the excitational field, where
	 ������ � 	

is zero.

5. Combining the model with numerical field calculation

For the calculation of field errors in superconducting accelerator magnets with a ferromagnetic
yoke, the magnetization model is combined with the coupling method between boundary
and finite elements BEM-FEM which accounts for the local saturation effects in the yoke,

B
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µ
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0.15

shielding

virgin
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Figure 5. Computed magnetization curve for one filament, scaled by the filling factor �
( � ����� ���	
 ��� ��� �� � ��� ��� � ��� ��� ). The excitational field is represented on the x-axis, the
corresponding magnetization on the y-axis. Note that the maximum of the magnetization is
not exactly at zero excitation but slightly shifted from it. This effect is called “peak-shifting”
and is confirmed by measurements.

9



Bx
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

B
y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Mx0µ
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

M
y

0
µ

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 6. Rotational field excitation of one filament, scaled by the filling factor � ( � �
� � � ��� ��� � � �	
 � ��� ��� � ��� �  ). Two complete turns have been computed. Left: The
external field follows a circular, clockwise path that goes through the origin in the

��� � �	

-

plane. Right: The filament’s response in terms of magnetization; A virgin curve and a closed
hysteresis slope can be identified.

[5]. The BEM-FEM formulation has the major advantage that the coil does not have to be
meshed in finite elements since it is positioned in the iron-free BEM domain. The coil can
therefore be modeled with the required accuracy taking insulation layers, cable keystoning,
and conductor placements into consideration. The fields arising from the source currents in
the superconducting coil and those resulting from the induced superconductor magnetization
can be calculated analytically by means of the Biot-Savart Law. The field generated by the
magnetization of the superconducting strands at each strand position is added to the computed
sum of the source fields from the superconducting coil and the contributed magnetic induction
which results from the non-linear iron yoke.
In order to calculate global shielding effects in the coil (in particular at low excitational
field) the feed back of the persistent currents on the excitational field is calculated by means
of an

���� ����
-iteration on the strand level. For that, an algorithm is implemented, that

controls the convergence of the � - and � -components of the magnetization vectors seperately,
since convergence in magnitude only does not exclude rotation. The combination of the
magnetization model with numerical field computation follows the method described in [10]
for the 1-dimensional model.
Fig. 7 shows the field plots of the combined octupole decapole spool-piece corrector (MCDO)
for the LHC. A somewhat academic excitational cycle is considered (which will serve the
purpose of validating the model with measurements). First the decapole is ramped up to
0.25 of its nominal field value. Then the octupole is powered up to its nominal field value
(100 A) which creates the asymmetric field in the magnet. Then the octupole field is ramped
repeatedly up and down between +100 and -100 A. The latter stages are displayed in Fig. 7.
This excitation creates a field change in a particular strand which is displayed on the left hand
side of Fig. 8 together with the resulting magnetization on the right.
Fig. 9 shows the

�
� and

�
� field component for the MCDO magnet with the ramp cycle

described as above. The field errors are the Fourier series components (in Tesla) of the radial
field at a reference radius � � of 17 mm. The field in the aperture can be calculated from the
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Figure 7. Field plots for the different excitations of the combined decapole octupole corrector
magnet. First the decapole (outer layer coil) is ramped up to about 0.25 of its nominal field
value. Then the octupole (inner layer coil) is powered up to its nominal field value (100
A) which results in the assymmetric field in the magnet as displayed on the left hand side.
Subsequently the octupole field is ramped up and down between +100 and -100 A. This is
a somewhat academic excitational cycle but it will serve the purpose of validating the model
with measurements.

relation
� � � � ��� �

��
� � �

� �
�
� � � �

� ��� �
���

� � � � �
(18)

where � �
�

� �
� ��� � [6]. The

�
� are called the normal and the

�
� the skew components. Note

that, for symmetry reasons, the numerical calculation of the MCDO magnet’s field without
the persistent current effects does not have any

�
� or

�
� component.
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Figure 8. Left: Excitational field of one filament in the MCDO combined corrector magnet.
Right: The filament’s response in terms of magnetization. The filament in question is situated
at the “two o’clock”position in the outer coil (decapole), compare Fig. 7
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Figure 9. Field errors (left
���

right
���

in Tesla at a reference radius of 17 mm) as a function
of the excitation step. First the decapole (outer layer coil) is ramped up to about 0.25 of its
nominal field value (step 10). Then the octupole (inner layer coil) is powered up to its nominal
field value (100 A, step 20). Subsequently the octupole field is ramped up and down between
+100 (step 20, 60, 100) and -100 A (step 40, 80, 120).

6. Conclusions

A vector magnetization model for superconducting multi-filamentary wires in the coils
of accelerator magnets has been developed. It describes arbitrary excitational cycles, in
particular also excitations for which the magnetization is not parallel to the external field. The
model has been combined with numerical field computation for the calculation of field errors
in magnets with nested coil geometries and local saturation of the ferromagnetic yoke. The
material related input parameter is only the critical current density (which can be measured on
the strand level). Arbitrary excitational cycles can now be studied and optimized for machine
operation.
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1. Introduction

The essence of collective simulations of the beam-beam interaction in particle colliders

is (1) the propagation of the particles in two counter-rotating bunches between adjacent

interaction points (IP) through external fields and (2) the computation of the collective

electromagnetic forces that the particles in one bunch exert on each of the particles

of the other bunch, localized at the interaction points. The first part is straight

forward and can be naively parallelized by assigning subsets of particles to different

processors, and propagating them separately. The second part encompasses the core

computational challenge which entails the summation of the collective effects of the

particles in one beam on the individual particles in the other beam. Typically, for high

energy colliders the computation of the collective forces is reduced to a 2 dimensional

Poisson problem. If there are N particles in each beam, a brute force calculation

involves O(N2) computations. For moderate size N, this quickly becomes a prohibitively

expensive operation. Fast Multipole Methods (FMM) have been used to reduce the

number of calculations to O(N) [1, 2, 3]. These methods invoke Taylor expansions of

forces due to multipole expansions of distant localized groups of particles. At large

distances, target particles interact with collective sources, while at near distances,

individual particle-particle interactions (<< N2) are computed directly. In order to

perform this computation efficiently, a hierarchal gridded domain structure must be

maintained.

FMMs have been parallelized and involve a quad or octet tree structure in which the

fine grain “leaves” of the tree record the location of particles in a given region of space

[4]. In this spatial domain-decomposition approach, it is crucial that between evolution

time steps, the particles in one collection of leaves (owned by a given processor) do not

migrate substantially over the whole spatial domain. In such cases, each processor only

§ To whom correspondence should be addressed (alsing@ahpcc.unm.edu)

Inst. Phys. Conf. Ser. No 175
Paper presented at 7th Int. Conf. Computational Accelerator Physics, Michigan, USA, 15–18 October 2002
©2004 IOP Publishing Ltd
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has to communicate with a suitably defined neighborhood of “nearby” processors and

involves the interchange of only a small number of particles close to the boundaries of

the domains. However, in beam-beam calculations for circular colliders, this condition is

violated, since the propagation of the particles through the external fields between beam-

beam interactions potentially causes them to wander over the entire spatial domain.

Thus current parallel implementations of FMM are inadequate for such simulations.

In this work we describe a very simple parallelization of a FMM based beam-beam

interaction code. We continue to use a serial FMM algorithm, but embed it in a clever

parallel communication scheme called Force Decomposition (FD) [5], initially developed

for molecular dynamics simulations. Without the FMM, each processor in the FD

algorithm would perform an N ′2 brute force calculation, where N ′ = N/
√

P , with P

the total number of processors used. By replacing this brute force computation with

a serial FMM algorithm on each processor we reduce the computational complexity to

O(N ′) = O(N/
√

P ). The advantage of this combined FMM/FD parallel method is

that it is extremely easy to implement. The FD method itself involves two basic MPI

routines, each called twice per interaction, and basic FMM calculations are performed

exactly as in a serial based FMM code, just now on a reduced set of source and target

particles.

This paper is organized as follows. In section 2 we discuss the beam-beam ring

model. In section 3 we discuss the macro particle tracking method for the beam-

beam interaction, and in section 4 a serial implementation of the FMM for the beam-

beam kick calculations. In section 5 we discuss the parallel force decomposition (FD)

communication scheme. In section 6 we discuss our parallelization of the previous serial

code which we denote as FD/FMM. Finally in Section 7 we summarize our findings and

indicate directions for future work to increase the order of this speedup.

2. The ring model

We assume a ring with one IP at θ = 0 and two counter-rotating bunches. In this work

we only treat head-on collisions , and the reference point at which the distribution is

studied is directly before the IP (θ mod 2π = 0−). In what follows we use the convention

that if some parameter or dynamical variable X describes one beam, then X∗ describes

the other beam.

Let ψn(z) and ψ∗
n(z) (z := (q, p), q = (x, y), p = (px, py)) denote the normalized

phase space densities of the beams at θ = 0− + 2nπ. Then the representation of the one

turn map for the unstarred beam from turn n to n + 1 is

T [ψ∗
n] = A ◦K[ψ∗

n] (1)

where A represents the lattice without the beam-beam and K[ψ] is the collective beam-

beam kick. In highly relativistic beams the beam-beam force for head-on bunch crossings

with zero crossing angle is essentially transverse (the space charge forces within each
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bunch are negligible). In this approximation, the collective kick is given by

K[ψ](q, p) =

(
q

p + k[ψ](q)

)
, k[ψ](q) = ζ

∫
R2

g(q − q′)ρ(q′) dq′, (2)

where g = ∇G, G(q) = − 1
2π

log
(√

x2 + y2
)

is the Green’s function, ζ is a strength

parameter and ρ(q) =
∫

R2 ψ(q, p) dp is the spatial density.

The particle trajectories are propagated turn by turn via

zn+1 = T [ψ∗
n](zn) , z∗n+1 = T ∗[ψn](z∗n) (3)

and since the maps are measure preserving, the densities evolve via

ψn+1(zn+1) = ψn(zn) , ψ∗
n+1(z∗n+1) = ψ∗

n(z
∗
n) . (4)

Note that the T and T ∗ are explicitly distinguished, allowing for different parameter sets

describing the starred and the unstarred lattice. Equations (1-4) define a representation

of the beam–beam Vlasov-Poisson system using maps.

3. Macro particle tracking

Macro Particle Tracking (see also [2]) is a method for computing time dependent phase

space averages of f

〈f〉n :=

∫
R4

f(z)ψn(z) dz, 〈f〉∗n :=

∫
R4

f(z)ψ∗
n(z) dz, (5)

which can be evaluated as, for example,

〈f〉n =

∫
R4

f(z) ψ0

(
M−1
n (z)

)
dz =

∫
R4

f (Mn(z)) ψ0(z) dz, (6)

where Mn := T [ψ∗
n−1] ◦ . . . ◦ T [ψ∗

0 ] is the symplectic n-turn map containing successive

collective kicks. Note that the beam-beam kick function can be written as such an

average over the beam-beam kernel with q fixed, k[ψ∗
n](q) = ζ 〈g(q − ·)〉∗n. The

macro particle concept enters through approximating the phase space integrals by finite

sums over macro particle trajectories. A popular implementation for high dimensional

problems is Monte Carlo macro particle tracking (MCMPT) where an initial ensemble

of identical macro particles is generated randomly at positions zk according to the initial

density ψ0. Then 〈f〉n ≈ 1
N

∑
k f(Mn(zk)). Of course, if we approximate the kicks in

Eq. (2) by this method then we have approximate trajectories ηk(n) ≈ Mn(zk). Thus

our final approximation is

〈f〉n ≈ 1

N

∑
k

f(ηk(n)) . (7)

This will be our procedure in this report. A refined method which captures the behavior

outside the beam core more accurately is weighted macro particle tracking (WMPT)

[2]. Here we start with the initial densities ψ0 and ψ∗
0 defined on an initial mesh {zk}

and a quadrature formula with weights wk. Using WMPT to update the approximate

trajectories ηk(n), the final approximation becomes 〈f〉n ≈
∑
k f(ηk(n))ψ0(zk)wk.
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These procedures use only forward tracking of particles and conservation of

probability is guaranteed by construction. In contrast to methods with an explicit

mesh (like PF in [2]), naive computation of the collective kick is an O(N2) operation.

The fast multipole method [1] reduces this to O(N), albeit with a large order constant.

4. A serial implementation of FMM for the beam-beam kick

The fast multipole method (FMM) [1] is a tree code that allows the computation of the

collective force of an ensemble of N charges on themselves to a given accuracy δ with

an operations count O(N) given that the distribution of the ensemble in configuration

space is not too irregular. It employs the fact that the force on a particle due to a

distant localized “clump” of charge can be given by a finite order multipole expansion

up to precision δ.

The FMM algorithm successively subdivides an outer rectangle in configuration

space occupied by the ensemble until, on the finest level of subdivision, no more than a

fixed number (typically 40) of particles are in each box. This leads to a tree structure

of boxes containing boxes containing boxes and so on, until the boxes on the finest level

finally contain a small number of particles. In the non-adaptive version of the scheme

all boxes on the same level have the same number of child boxes. We use the adaptive

version in which a box only branches into child boxes if the box itself still contains too

many particles. In the upward traversal of the tree (fine → coarse levels) the algorithm

first computes the multipole (long distance) expansions for all boxes on the finest level

explicitly. The next step is to generate multipole expansions around the center of the

parent boxes by translating their children’s expansions to the center and adding them

up, see Fig.(1). This is repeated at every level so that in the end every box, at every

level of mesh refinement, has its own long distance expansion.

The downward traversal of the tree (coarse → fine levels) begins with boxes that

are separated from one another by more than one box (i.e. at the 3-rd coarsest

level). The potential inside a given box due to the sum of the multipole expansions

of all well separated boxes is converted into a Taylor polynomial around the center

of that box. Taylor series around the centers of the boxes in the next finer level are

generated by shifting the Taylor polynomials of the parent boxes to the centers of their

children (Fig.(1)) and adding the contributions of the multipole expansions from the

well separated boxes (in the child level) which now show up at the boarder of the well

separated parents. This procedure is iterated until the finest level. Finally, for each box

on the finest level the forces on the particles are computed by evaluating the explicitly

given derivative of its local Taylor polynomial at the position of the particle plus a small

number of direct Coulomb terms.

The 2-D adaptive routines (DAPIF2), used in our simulations, were supplied by

Greengard. For more details see Greengard in [1].

FMM was originally invented for dynamics such as space charge where the force of N

particles on themselves is computed. The beam-beam effect on the other hand consists of
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Figure 1. Schematic representation of FMM algorithm (see text). Upward sweep
through boxing structure tree (fine → coarse levels): Far field multipole expansions
(MPE) of individual charges are summed and evaluated at the center of source-child
boxes Sc. The MPE of source-children boxes are summed and evaluated at the center
of corresponding parent box Sp. Downward sweep through tree (coarse→ fine levels):
The MPE of far sources are evaluated at the center of a target parent box Tp as local
Taylor expansions. These local Taylor expansions are shifted and evaluated at centers
of target children boxes Tc. At the finest level, forces can be computed on individual
target particles.

the collective interaction among two distinct counter-rotating bunches without taking

into account the space charge forces inside each bunch. In other words one has to

compute the forces on N particles of the unstarred bunch exerted by the N∗ particles

of the starred bunch, and then in addition the forces on N∗ particles in the starred

bunch due to the N particles in the unstarred bunch. Let us assume for simplicity

that N = N∗. The forces can then be computed at 4 times the computational expense

of the space charge force calculations inside a single bunch. First, the 2N particles

of both beams are considered as one ensemble, with the charges of the starred bunch

unchanged and the charges of the unstarred bunch set to zero. Then FMM computes

the “space charge” force of the 2N particles (half of them being uncharged) at the 2N

spatial coordinates. The kick proportional to the force is applied, however, only to the

particles of the unstarred bunch. Then the charges of the unstarred particles are set

back to their original values and the charges of the starred particles are set to zero.

After having FMM compute the new “space charge” forces, the kicks are applied to

the particles of the starred beam only. Thus FMM is called twice with twice as many

particles.
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5. The parallel force decomposition algorithm

In this section we discuss the Force Decomposition (FD) algorithm as originally

envisioned for MD simulations. In the next section we discuss our adaption of the

FD algorithm for the beam-beam kick calculations utilizing FMM.

The Force Decomposition (FD) algorithm was developed in 1995 by Plimpton

and Hendrickson [5] originally as a parallel method for matrix-matrix multiplication

without All-to-All communications (e.g. as used in 2D parallel FFT algorithms when

all processors must communicate with each other at the same time during the transpose

operation). The authors realized that this communication scheme (described below)

could be adapted to short range force molecular dynamics simulations where two-body

(and higher multi-body and bonded) forces could be computed more efficiently, over

that of the more conventional spatial decomposition algorithms, for particle numbers

in the range of N ∼ 105 − 106. In molecular dynamics (MD) simulations, the main

computational task involves the calculation of the force on particle i due the rest of the

N particles, Fi =
∑N
j=1Fij . A brute force serial calculation (which is to be avoided

at all costs) would involve an O(N2) double-do-loop calculation of the form:

do i = 1, N

do j = 1, N

Fi ← Fi + Fij

enddo

enddo . (8)

The so called Replicated Data (RD) algorithm reduces the order count by distributing

the particles amongst the P processors. Thus the outermost (i) do-loop is distributed

amongst the processors and each processor computes the forces on its own N/P particles

and then updates the position and momentum of these particles. However, in order

to perform the next calculation, all N updated particle positions would need to be

communicated to all processors; a communication operation that scales as N . A

measure of the scalability of an algorithm is isoscalability IS, which is the ratio of the

communication cost to the computation cost. An ideal algorithm has IS = 1, which

indicates that larger problems can utilize larger resources in the most efficient manner,

i.e. the communication and computation costs scale commensurately. Unfortunately,

the RD algorithm has IS = P , which implies that the efficiency of the algorithm

decreases with the number of processors P , since the communication cost scales as

P times the computation cost.

The most common parallel algorithm used in molecular dynamics force calculations

is Spatial Decomposition (SD). In SD, the physical domain is divided amongst the P

processors, with each processor responsible for the particles within its sub-volume. Thus,

computation cost scales as the volume or V ∼ N/P . For problems with short range

potentials which can be treated as negligible after some finite cutoff radius rc, the

communication cost scales as the area A = V 2/3 ∼ (N/P )2/3 in the limit of large N/P .
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If each processor’s sub-volume is on the order of r3
c , communication takes place between

the processor and its nearest neighbors across its boundary areas and the communication

cost can approach N/P asymptotically for large N/P . Thus, theoretically IS → 1 for

SD, though there can be impediments to reaching this limit [5].

Note that RD divides up the particles while SD divides up the physical domain.

RD has the advantage of being geometry free, with ease of coding for any arbitrary

dimension of the physical coordinates (i.e. z a 2D, 3D, vector, etc . . . ), though with

the marked disadvantage of poor scalability. The surface area to volume ratio of SD

communications makes it worth the added effort of coding for particles sizes typically

greater than 106.

Force Decomposition (FD) has an isoscalability that lies between RD and SD and

has been shown by Plimpton and Hendrickson [5] to out perform SD in the realm

of under 106 particles. As shown in Fig.(2), FD parallelizes the force matrix Fij by
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Figure 2. Parallel force decomposition (FD) of force matrix Fij on a 2D processor
grid. Each processor owns approximately O(N/

√
P ) i-particle indices and O(N/

√
P )

j-particle indices. A given processor, e.g. P12 computes the partial forces on all its
i-particles (here 16− 30) due to all its j-particles (here 31− 44).

creating a processor grid which is two dimensional regardless of the dimension of the

coordinates z = (q, p). Each processor, Prc, is responsible for approximately N/
√

P

target or i-particles and N/
√

P source or j-particles and thus can locally compute the

partial forces Fi =
∑N/

√
P

j=1 Fij ,

do i = 1, N/
√

P

do j = 1, N/
√

P

Fi ← Fi + Fij

enddo

enddo . (9)
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Here the i and j are local indices in a given processor (Note: Fig.(2)-Fig.(4) are labeled

with global indices). With the use of neighbor lists (as used in SD) to tag the O(N/P )

non-zero interactions in Fi, the computation cost scales as O(N/P ). Though the FD

algorithm can be coded for a non-square number of processors, we discuss it here for

a square number. The total number of particles N need not be a multiple of the the

number of processors P , as is illustrated in Fig.(2) (which uses N = 58 and P = 16 for

ease of discussion).
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Figure 3. Summation of total forces in a processor grid-row by recursive halving(see
text). Each processor obtains the total forces on approximately O(N/P ) i-particles
in log2(N/

√
P ) steps. (For processor P12 these are i-particles {24, 25, 26, 27}). This

operation is implemented via a call to MPI REDUCE SCATTERV.

Within each row of the processor grid the goal is to obtain the total force
∑N
j=1Fij

for each of the N/
√

P i-particles in that row. This is accomplished by the following clever

recursive halving communication scheme, depicted in Fig.(3) for the second processor

row of Fig.(2). At the first stage, each processor halves the number of partial forces it

has for its i-particles and sends them to a target processor in the same grid-row (top

half of Fig.(3)). At the same time this processor receives half of the target processor’s

partial forces. For example, processor (1, 0) sends its partial forces for 24 ≤ i ≤ 30 to

processor (1, 2) while receiving the partial forces for 16 ≤ i ≤ 30 from this processor.

After this first stage, each processor in the grid-row now owns a more complete (yet

not fully complete) set of partial forces, but now for only half of its original i-particles.

This process is now repeated in log2(N/
√

P ) stages until each processor in the grid-row

owns the total force
∑N
j=1Fij , for N/P i-particles. The bottom half of Fig.(3) illustrates

the second stage of this process. This recursive halving entails a communication cost

that scales as O(N/
√

P ) and is accomplished in MPI by the call MPI REDUCE SCATTERV

with an MPI SUM reduction operation. At this stage each processor updates its N/P

coordinates for which it has the total forces ( i.e solve ẍi = Fi/mi ).
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Figure 4. Communication of updated particles positions in a processor grid-row in
log2(N/

√
P ) steps by recursive doubling (see text). This operation is implemented by

a call to MPI ALLGATHERV.

To return the data to its initial configuration, in order to begin the next calculation,

FD invokes a recursive doubling of the data within a processor grid-row, Fig.(4) (i.e.

the opposite of the recursive halving operation described above). This operation is

accomplished by MPI ALLGATHERV and upon its completion, each processor in the grid-

row has the updated coordinates for all of its N/
√

P i-particles.

So far, the FD communication scheme has taken place only within processor grid-

rows, with no inter-grid-row communications. However, while the recursive doubling

operation above has updated all the i-particle coordinates within a grid-row, each

processor still requires the updated coordinates for its j-particles in order to begin

the calculations of the partial forces anew. An inspection of Fig.(2) reveals that the

transpose processor Pcr (when we utilize a two-digit designation of the processors in a

2D processor grid) has precisely the i-particles that processor Prc requires for use as

its own j-particles. Thus, the last step in the FD communication scheme is for these

two processors to perform a point-to-point communication (via MPI SENDRECEIVE) to

swap copies of their respective i-particles. Upon completion of this operation, the data

has now returned to its original form and we are ready to start a new partial force

calculation, as in Fig.(2).

Since the computation cost scales as O(N/P ) and the communication cost scales

as O(N/
√

P ), the FD algorithm has an IS =
√

P , which is intermediate between

RD and SD. FD retains the ease of coding and the geometry features of RD with a

intermediate isoscalability. As N/
√

P grows large, the double-do-loop in Eq.(9) grows

prohibitively large enough to warrant a transition to the SD algorithm with a near

optimal isoscalability. As stated earlier, Plimpton and Hendrickson [5] have shown that

FD out performs SD in the particle range N ∼ 105 − 106.
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6. Parallel force decomposition with serial fast multipole method

Our simple parallelization scheme for the beam-beam interaction is now easily described.

We employ a FD parallel communication strategy where the on-processor partial force

computations in Eq.(9) are replaced by a serial FMM calculation. As pointed out earlier,

in the beam-beam interaction the row i-particles and column j-particles in Fig.(2) are

in separate beams, say the unstarred and starred beam, respectively. Thus, on each

processor, we first compute the total force on the i-particles due to all the j-particles

(using FMM) and secondly compute the total force on the j-particles due to all the

i-particles (with a second call to FMM). Once the total force on all the i-particles are

known we can apply the momentum kick to each of the i-particles and then apply the

symplectic map to the next IP (and similarly for the j-particles in the starred beam).

What differs from the FD algorithm as discussed in the previous section, is that each

beam does not need the updated coordinates of the other beam. This means that we

can drop the MPI_SENDRECEIVE between transpose processors. Instead, between each IP

our algorithm utilizes the pair of routines MPI_REDUCE_SCATTERV and MPI_ALLGATHERV,

(Fig.(3) and Fig.(4)) in each processor grid-row for the accumulation of forces for the i-

particles, and then another pair of calls MPI_REDUCE_SCATTERV and MPI_ALLGATHERV in

processor grid-columns for the accumulation of forces for the j-particles. We denote this

parallelization method FD/FMM. While serial FMM reduces an O(N2) computation to

O(N), FD/FMM reduces an O((N/
√

P )2) computation to O(N/
√

P ), yielding a
√

P

speedup.

As a proof of principal we have written a test code implementing FD/FMM which

functions as follows:

1) Every processor sets up the two lattice maps.

2) Two Monte Carlo ensembles representing the 2 bunches are generated by computing

2N times 4 independent Gaussian random variables in transverse phase space and dis-

tributing e.g. the unstarred particles along the rows and the starred particles along the

columns of the processor grid.

3) The collective beam-beam kicks, starred on unstarred, are computed using the

FD/FMM approach along the columns and then along the rows. Here FMM is called

once on 2N/
√

P particles in the row cycle and then once again on the 2N/
√

P in the

column cycle.

4) Each processor applies the single particle lattice maps A and A∗ for its portion of the

starred and unstarred particles.

5) Repeat step 3) and 4) for as a given number of turns around the ring.

In our simulations we have achieved the expected
√

P speedup (defined as the ratio

of serial to parallel execution time) for N up to 107 particles. In future work, we will

incorporate the FD/FMM strategy into the WMPT code and do a detailed comparison

with the serial version.
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7. Summary and outlook

One of the main advantages of FD/FMM is its ease of coding. We were able to transform

the serial FMM code to an FD/FMM code in a couple of days, with most of the work

entailing the re-dimensioning of local arrays from N → N/
√

P . One can also make use

of MPI’s Cartesian topology routines to create grid-row and grid-column communicators

to facilitate scatter and gather operations in FD algorithm. In all, a total of four MPI

communications calls need to be invoked while the original serial FMM code remains

unaltered. The serial FMM code is called by each processor to accomplish the force

calculation only for the i and j particles that it owns. This is embedded in the efficient

parallel communication framework of FD to obtain the total beam-beam kick on each

particle.

FD/FMM is limited by its isoscalability, IS =
√

P , which results from its

communication cost scaling as N/
√

P . This is inherent in the FD algorithm and so

the maximum speedup of
√

P we achieved cannot be transcended with this method. As

pointed out earlier, conventional parallel FMM methods are extremely inefficient in the

beam-beam interaction context considered here since the particles move substantially

over the physical domain between interactions. Thus FD/FMM offers an easy way to

achieve some degree of speed up and ability to utilize a larger number of particles with

a minimal amount of coding effort. This work highlights the need for the development

of parallel FMM based algorithms for beam-beam interaction codes that can transcend

the current spatial decomposition limitations. This will be a focus of our future work.

In addition we will explore the application of FD/FMM to the so-called hybrid FMM

approach, [2, 3]. This approach significantly reduces the number of points at which

FMM has to compute the forces by laying down a PIC like grid and defining a minimum

number, n, of particles per cell. Cells with more than n particles per cell are defined to

be in the core and are deposited on the cell corners and the other cells are in the halo.

The corners of the core cells and the halo particles are then fed to FMM.
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Abstract.
We analyze the accuracy of a 2D Poisson-Vlasov PIC integrator, taking the KV

as a reference solution for a FODO cell. The particles evolution is symplectic and
the Poisson solver is based on FFT. The numerical error, evaluated by comparing the
moments of the distribution and the electric field with the exact solution, shows a
linear growth. This effect can be modeled by a white noise in the envelope equations
for the KV beam. In order to investigate the collisional effects we have integrated the
Hamilton’s equations for N charged macro-particles with a hard-core rH , reducing the
computational complexity to N3/2. In the constant focusing case we observed that a
KV beam, matched or mismatched relaxes to the Maxwell-Boltzmann self consistent
distribution on a time interval, which depends on rH and has a finite limit for rH → 0.
A fully 3D PIC code for short bunches was developed for the the ADS linac design
at LNL (Italy). A 3D particle-core model, based on Langevin’s equations with the
drift and noise terms given by Landau’s integrals, has been considered in view of the
inclusion of collisional effects in the the Poisson-Vlasov equation.

1. Introduction

High intensity linacs and storage rings are being considered for fundamental research on
matter at very high energy density and a variety of applications ranging from neutron
spallation sources to nuclear wastes transmutation and inertial fusion. In high intensity
accelerators the major problems are the field quality and the control of small losses.
In the storage rings, where the number of visited FODO cells can be as high as 106,
the resonances between the collective motion of the core and nonlinear betatron motion
may cause slow diffusion and affect the dynamic aperture. Moreover the collisional
effects need to be considered because the changes induced in the distribution may be
relevant on a long time scale. The semi-analytical tools available are mainly based on
the particle-core models developed to study the behavior of a test particle in a given
self consistent field of the core. The application of the frequency map analysis to these
models allowed to detect the key role of the mismatch oscillations in the diffusion process
which may explain the growth of the halo [1, 2, 3]. The analytical self consistent solutions
of the 2D and 3D Poisson-Vlasov (P.V.) equation for the particles distribution and the
corresponding electric field are confined to the constant focusing case [4], in which a a
linear and nonlinear stability analysis of small perturbations have also been developed
[5, 13]. The excitation of the lowest unstable mode was proposed as a possible escape
mechanism from the core, generating the halo [6, 7]. For the periodic focusing case
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numerical PIC solutions are extensively used since the only known analytic solution
is KV distribution in the 2D case. We have developed a 2D PIC code for a lattice
of identical FODO cells in order investigate its convergence properties, the onset of
instabilities and the dynamics of test particles. This program has been undertaken using
the KV as a reference solution in the periodic focusing case. Our 2D PIC solver is based
on a symplectic integrator and a FFT Poisson solver which allows to impose Dirichelet
conditions on a arbitrary closed boundary. For a matched KV solution the error on the
electric field and on the moments of the distribution are analyzed as a function of the
number K of Fourier components in each dimension and the number of pseudo-particles
N . In this case the rms radii, the emittance and the field error exhibit a linear growth.
For a fixed K we observe a decrease with N with a possible asymptotic limit; for K
fixed the error decreases reaches a minimum and increases again. The linear growth
of the moments is related to the accumulation numerical errors ( due to the grid size
and to the density fluctuations), which behave as a noise in the equations of motion[10];
For a circular machine to keep the error growth sufficiently small is a computational
challenge¿ In this case the effect of Coulomb collisions cannot be neglected. To this
end we have developed a molecular dynamics algorithm to integrate symplectically a
system of N macro-particles, reducing the computational complexity from N2 to N3/2

(with a multipolar expansion of the far field). We have introduced a hard core rH so
that an elastic collision occurs whenever there is a contact. In the absence of hard core
the close encounters are resolved by increasing the integration accuracy. It is found
that an initial KV distribution evolves towards the self consistent Maxwell-Boltzmann
distribution. This relaxation process cannot be obtained within the framework of a mean
field equation like P.V. The relaxation time increases as rH decreases and has a finite
limit for rH → 0. An estimate of the relaxation time for the lattice of identical FODO
cells previously considered is given. We have also developed a fully 3D parallel PIC
code in order in order to study the evolution of a bunch in the linac ISCL, a project of
the INFN laboratories of Legnaro (Italy).. In that case a Neuffer-KV initial distribution
evolves numerically, with our PIC solver, towards a Fermi-Dirac distribution whose
tails are Maxwellian. [11] We present a 3D particle core model defined by a Langevin
equation with a drift and noise given by the Landau integrals in view of an inclusion of
the collisions in the PIC code as recently proposed [12].

The plan of the paper is the following: we describe our 2D model in section 2, the
PIC solver in section 3, we present the error analysis in section 4, the related Langevin
model in section 5, we analyze the MD approach to collisions in section 6, 3D extensions
and the related particle-core Langevin model in section 7.

2. The model

2.1. The Hamiltonian

We consider a coasting beam on a lattice of identical FODO cells of length L at the end
of which a thin sextupole can be switched on. The Hamiltonian is

Hph =
p2
x ph + p2

y ph

2
+ kph0,x(sph)

x2
ph

2
− kph0,y(sph)

y2
ph

2
+

+
K2,ph

6
(x3
ph − 3xphy

2
ph)δL(sph) +

ξph
2

Vph(xph, yph)

(1)
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where K2,ph is the sextupolar gradient, δL denotes the periodic Dirac function of period
L, ξph is the perveance defined by

ξph =
2qQ

p0v0γ2
=

2qI

mc3β3γ3
(2)

and I is the current, Q the total charge per unit length. In order to use dimensionless
variables we scale the longitudinal coordinates with L the transverse ones with a. As a
consequence dropping the label ph on the scaled variables we have xph = ax, sph = Ls,

px,ph = pxa/L and L2kph0,x = k0,x, aLK2,ph = K2 and ξphL
2/a2 = ξ. Finally letting

Hph = a2L−2H and Vph(xph, yph) = V (x, y) the scaled Hamiltonian reads

H =
p2
x + p2

y

2
+ k0,x(s)

x2

2
− k0,y(s)

y2

2
+

K2

6
(x3 − 3xy2)δ(s) +

ξ

2
V (x, y) (3)

The self consistent potential satisfies the Poisson equation

∆V = −4πρS(x, y, s) ρS(x, y, s) =
∫

ρ(x, y, px, py, s)dpxdpy (4)

where ρ is the solution of the Liouville equation for the Hamiltonian H namely

∂ρ

∂t
+ [ρ,H ] = 0 (5)

We remark that the emittances scale as well according to εph = εa2/L. Correspondingly
the optical functions and the corresponding amplitudes scale according to βx,ph = Lβx
and Ax,ph =

√
εx,phβx,ph = aAx. The advantage of this choice is that all the quantities

become of order 1 choosing a of the order of the transverse size of the beam.

2.2. The FODO cell

It has a unit length, the quadrupoles length is 0.2 and their gradients are k0,x = k0,y =
12, the emittances are εx = εy = 1 (tipically L = 1 m, a = 1 mm). The perveance
range we considered is [1, 10], the results presented refer to ξ = 10 for which the tune
depressions 0.1.

2.3. Envelope equation

In order to analyze the performance of the PIC solver for equations (4) and (5) we
consider first a linear lattice (K2 = 0) and K.V. beam whose phase space distribution is

ρ =
1

π2εxεy
δ
(
1 − X2 + P 2

x

εx
+

Y 2 + P 2
y

εy

)
ρS =

1

πAxAy
ϑ

(
1 − x2

A2
x

− y2

A2
y

)
(6)

where the normalized coordinates are given by X = xβ−1/2
x , Px = (αxx + βxpx)β

−1/2
x

and the optical functions are related by βx = A2
x/εx, αx = −AxA

′
x/εx to the amplitudes

Ax,y which are the periodic solutions (matched beam) of the envelope equations

d2Ax
ds2

− ε2x
A3
x

+ k0,xAx =
2ξ

Ax + Ay

d2Ay
ds2

− ε2y
A3
y

+ k0,yAy =
2ξ

Ax + Ay
(7)

3. The PIC solver

The numerical solution of Poisson-Vlavov equations was obtained with a PIC code by
using N pseudo-particles. A parallel version for the evolution has been developed with
MPI.
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3.1. Initial distribution

We first change to the linearly normalized coordinate and perform the following
transformation

X =
√

tuεx cos(2πφx) Y =
√

t(1 − u)εy cos(2πφy) (8)

Px =
√

tuεx sin(2πφx) Py =
√

t(1 − u)εy sin(2πφy) (9)

where t ≥ 0 and u, φx, φy ∈ [0, 1]. The following relation holds

ρ(X,Px, Y, Py)dX, dPxdY dPy = ρ(t, u, φx, φy)π
2εxεytdtdφxdφy du (10)

For the case of a K.V. distribution we have ρ = (π2εxεy)
−1δ(1−t) and the distribution is

obtained by fixing t = 1 and filling uniformly the unit hypecube [0, 1]3 in the (u, φx, φy)
space. The waterbag distribution for which ρ = (π2εxεy)

−1 2θ(1−t) is obtained by filling
uniformly the unit hypercube [0, 1]4 in the (t2, u, φx, φy) space.

3.2. The evolution scheme

We have considered a second order symplectic evolution scheme . The Hamiltonian (3)
can be written as H = H0 + Hsex + 1

2
ξV and the numerical scheme consists in replacing

the space charge contribution in each interval si+1 − si with an impulsive force at si
(kick approximation), whereas the linear evolution from si to si+1 due to H0 is computed
exactly. The sextupole contribution , if any, is also a kick.

3.3. The Poisson solver

The Poisson equation is solved by a spectral method. We choose a rectangle |x| ≤
1
2
Λx, |y| ≤ 1

2
Λy whose sides are at least 3 times bigger than the amplitudes Ax, Ay.

We consider a grid whose cells have sides ∆x = Λx/Kx, ∆y = Λy/Ky where Kx, Ky

are powers of 2 and at any grid point we compute the density either by the nearest
grid points (NPG) deposition method or by the cloud in cell (CIC) deposition method.
The potential is obtained by a FFT transform and the electric field is computed by a
centered difference. To speed up the computation one FFT may be replaced by the
solution of a three diagonal system which reduces the computational complexity from
(K log K)2 to K2 log K. The potential is computed by imposing Dirichelet conditions
V = 0 at the boundary of the square; these conditions can be imposed on an arbitrary
closed curve, by using a Green’s function method which doubles the computation time
at each step once a K ×K matrix is inverted, for an approximation of the given curve
with a polygonal with K vertices.

4. Error analysis

A rigorous analysis of the discretization error introduced by a PIC code with respect
to the exact solution is a very hard task. We remark that the approximate solutions
depend on the box size Λ, (assuming Λx = Λy = Λ), on the the number K of Fourier
components (assuming Kx = Ky) which fixes the space resolution ∆x = Λ/K, on the
particle number N and on the integration step ∆s. The exact result is recovered in
the limit Λ → ∞, ∆s → 0 and K, N → ∞, once this limit is correctly defined. We
have fixed the first two parameters by choosing ∆s = 1/100 (this is the average of ∆si)
and Λ = 20 so that for the chosen value of the perveance ξ = 10 it is larger than 3
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Figure 1. Sketch of the dependence of the error on K and N (left). Sketch of
the behavior of Kopt as a function of N and corresponding power law Kopt = C Nβ

continuous interpolation.

times the amplitudes. The error introduced by the longitudinal step is of order (∆s)2

and we checked this is the case on the solution of envelope equation we computed by
integrating (7) with the same procedure (splitting method with exact integration of the
linear part and kicks for the space charge force). The error dependence on K and N has
been examined. We investigate the double limit by letting first N → ∞ and considering
the its dependence on K. Indeed N can be increased up to 106 and occasionally 107,
whereas K is limited to a few values ranging from 32 to 512. We have checked that by
increasing N the error decreases up to a limit value, which can be further reduced by
increasing K. As consequence if we fix N and vary K, the error first decreases reaches
a minimum and then increases. The error we consider refers to the electric field and to
the moments of the distribution. Since the error growth with s is linear, see figures 2
and 3, we have computed the slope and studied its dependence on N and K. For fixed
K the slope appears to follow a power law N−α with an exponent α slightly smaller
than 1 before the asymptotic region is reached; the asymptotic limit decreases with K.
Fixing N at a low value the error increases with K. As a consequence for fixed N the
error decreases, reaches a minimum and then increases again, as shown qualitatively by
figure 1. The optimal value of K is a stepwise function of N for which we propose a
power law interpolation K = cNβ.

4.1. Scaling law

A power law is found if we assume that the optimal condition is reached when the
relative error on the density, given by the statistical fluctuation, is equal to uncertainty
in the space resolution. Denoting by n

P
the average number of particles per cell in

the core and by 8 the core diameter such condition is ∆n
P
/n

P
� ∆x/8. Letting η the

fraction of the box occupied by the core, the diameter of the core is given by 8 � η1/2 Λ.
The side of the cell is ∆x = Λ/K so that the uncertainty in the position within the core
is ∆x/8 = 1/(K η1/2) For a uniform distribution the number of occupied cells is η K2

and the average number of particles per cell is n
P

= N/(η K2). As a consequence since
the statistical fluctuation is ∆n

P
=

√
n

P
by equating the position uncertainty to the

cell population uncertainty n−1/2
P

= ∆x/8 we obtain

N � η2 K4 (11)
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Figure 2. Variation of the emittances εx, εy with the iteration number n for different
values of the number of Fourier components K = 64 (left frame), K = 128 (central
frame), K = 256 (right frame). In each frame the x and y emittance have the same
color which changes with the particles number: N = 103 (light blue), N = 2.5 103
(red), N = 5 103 (blue), N = 104 (green), N = 105 (purple).

4.2. Numerical experiments

We have analyzed the error dependence on K and N on a model of FODO cell with a
high value of the perveance. This choice was made since we observed that the behavior
of the error was clearly detectable for a moderate number of iterations smax = 103.
Indeed the most relevant effect of discretization is a numerical noise which causes a
linear growth of the moments of the distributions and of the error in the electric field.
The growth rate increases with the perveance. We consider the FODO cell of section
2 with a perveance ξ = 10. The bare and depressed tune are ν0x = ν0 y = 61.8o and
νx = νy = 6.5o, the bare amplitudes A0x = 1.21, A0 y = 0.81, the core amplitudes
Ax = 3.65, Ay = 2.53. The number of longitudinal steps per FODO cell used is 100,
the periodic solution is found by a Newton’s method and the accuracy of the symplectic
integration procedure agrees with the theoretical estimate (∆s)2 = 10−4. The size of
the square where Poisson equation is solved is Λ = 20 so that fraction occupied by the
core is η = 0.07. The relative error on the electric field is defined by

∆E

E
=

(∫
D∗ [(Ex − Ex ex)

2 + (Ey −Ey ex)
2] dx dy

)1/2

(∫
D∗ [E2

x ex + E2
y ex] dx dy

)1/2
(12)

where the integrals are extended to the D∗ = [−2.5, 2.5]2 a domain almost entirely within
the core. In this way we can ignore errors due to the non-zero field on the boundaries.

In figure 2 we show the variation of the emittances defined by εx = 4 (< x2 >< p2
x >

− < xpx >2 )1/2, with the number s of visited FODO cells. It is evident that the growth
is linear with s and that the slope decreases with N . When K increases for a fixed N ,
the slope also increases, except for for the highest value N = 105, shown in figures 2,
for which the minimum occurs at K = 128. In figure 3 we consider the variation of
the error in the electric field ∆E/E with the iteration number s. We observe that the
error growth with s is still linear and that the slope decreases with N for a fixed K. We
have also fitted a line a + bn to the error growth in order to examine the dependence
of the coefficient b on N and K. The scaling law suggests that increasing K by 2 the
optimum N should increase by 24, a result compatible with our numerical observations.
For K = 64 the optimum N is below 105 a value above which the error does not decrease
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Figure 3. Variation of error on the electric field δE/E with the iteration number s
for different values of the number of Fourier components K = 64 (left frame), K = 128
(central frame), K = 256 (right frame). In each frame the color which changes with
the particles number: N = 103 (light blue), N = 2.5 103 (red), N = 5 103 (blue),
N = 104 (green), N = 105 (purple).
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Figure 4. Variation of the slope b of the emittance εx = a+ bs, determined by least
square fit, with respect to N , for different values of the number of Fourier components:
K = 64 (left frame),K = 128 (central frame) . Variation of the slope with the perveance
ξ forN = 104 and k = 128 (right frame).

appreciably. This is shown by figure 4 where dependence of the emittance slope on N
is shown for a fixed value of K. The saturation for K = 64 is evident, whereas it is
not reached for K = 128 up to N = 106. In the same figure we show the variation of
the slope with the perveance which is monotonic and approximately given by b ∝ ξ3/2.
The results described above refer to the NPG deposition method. We have repeated the
same simulations with CIC deposition method and the difference was typically within
10%, without any significant variation for the dependence on K and N described above.

5. The Langevin equation

We consider a stochastic model suitable to describe the linear rise of the errors with
number of visited cells s. We assume that the fluctuations in the particle number in every
cell is equivalent to a white noise in the equations of motion. This is by no means related
to the physical collisions which preserve asymptotically the kinetic energy. Referring
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still to a KV beam the equations of motion become

d2x

ds2
+ kx x = η

dw

ds

d2y

ds2
+ ky x = η

dw

ds
(13)

where w(s) denotes a Wiener process and the the depressed gradients kx, ky are defined

by kx(s) = k0x − 2ξ ( Ax(Ax + Ay))
−1 and similarly for ky. The amplitudes Ax and Ay

are solutions of the envelope equation

d2Ax
ds2

− ε2x
A3
x

+ kx(s)Ax = 0
d2Ay
ds2

− ε2y
A3
y

+ ky(s)Ay = 0 (14)

We recall that when η = 0 the following relations hold

< x2 >=
A2
x

4
< p2

x >=
1

4

ε2x
A2
x

+
1

4

(dAx
ds

)2
< xpx >=

1

4
Ax

dAx
ds

(15)

By taking the average also on the stochastic process we find that the second moments
grow linearly with s with a slope proportional to η2.

This can be easily proven by direct computation in the smooth focusing
approximation and zero space charge limit. In the symmetric case k0,x(s) = k0,y(s)
are replaced by a constant ω2

0 and the fluctuations change the x and y emittance ε0
into ε(s) = ε0 + 2η2 s/ω0 if one neglects oscillating terms. As a consequence since
A2 = ε(s)/ω0 we see that dε2/ds = 4ε η2/ω0 = 4η2 A2. More generally the amplitudes
and the emittances satisfy the system of equations (14), where kx, ky are replaced by
ω2

0 and

dε2x
ds

= 4 η2A2
x

dε2y
ds

= 4 η2A2
y (16)

Assuming these equations still hold in presence of space charge, one one has to replace
kx(s), ky(s) with ω2(s) = ω2

0 − ξ/A2(s). In order to find an approximate solution for a
matched beam we observe that the numerical solution shows that A(s) varies slowly so
that in (16) one can replace A2(s) with A2(0) = ε0/ω(0) namely

ε(s) =
(
ε20 + 4ε0

η2 s

ω(0)

)1/2 � ε0 + 2
η2 s

ω(0)
(17)

In (17) the linear approximation holds for 4η2s/ε0ω(0) � 1 and ω(0) = ε0/A
2(0) where

A2(s) =
ξ

2ω2
0

+
ε(s)

ω0

(
1 +

ξ2

4ε2(s)ω2
0

)1/2
(18)

The errors on the emittance and the amplitude are given by (17) and (18) whereas for
the electric field we have E = x ξ/A2(s) and the error is computed according to (12).
The result for ξ � 1 simplifies and setting γ = 2η2/ω(0) we have

ε(s) = ε(0) + γs A2(s) = A(0)2 +
γ

ξ A(0)
s

δE

E
=

∣∣∣1 − A2(s)

A2(0)

∣∣∣ =
2γ

ξA2(0)
s (19)

In our model using the smooth focusing approximations we obtain A = 2.95, to be
compared with the average of the amplitude over one period < Ax >=< Ay >= 3.08.
The estimate of the slope for the electric field error growth is 0.022 times the slope of the
emittance growth; fitting that data of our simulations we find a range of values between
0.018 and 0.03 which is compatible with the estimate.
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Figure 5. Energy density for particles without hard core at s = 0 (left) and s = 6000
(center). The red curve is the self consistent Maxwell-Boltzmann (MB) distribution.
Right frame: The χ2 for the discrepancy of the phase distribution ρ with respect to
the MB distribution.

6. Coulomb oscillators

In order to estimate the effect of collisions we have developed a 2D molecular dynamics
(MD) code. In this preliminary stage the smooth focusing approximation was chosen
because the thermodynamic equilibrium distribution is known. The equations of motion
for a system of N Coulomb oscillators are

d2xi
ds2

+ ω2
0 xi =

ξ

N

∑
j �=i

xi − xj
r2
ij

d2yi
ds2

+ ω2
0 yi =

ξ

N

∑
j �=i

yi − yj
r2
ij

(20)

and we integrate them with a second order symplectic integrator. A more accurate
integration is reserved to the subset of colliding particles (whose distances rij are below
an assigned value λcoll smaller than the average distance N−1/2 which in turn is smaller
than the Debye radius, which for ξ ∼ 1 is 1/3 the beam size.

R2
D

=
k

B
T

4πq2 ρs
=

A2

2ξ

〈p2
x + p2

y

2

〉
=

(
A

4

)2 2 ω ε0
ξ

(21)

We have also considered a model in which the macro-particles have a hard core r
H

, so
that elastic collisions occur when rij = 2r

H
. These collisions are treated with compiling

a list for each step and linearly interpolating the elastically colliding particles. The
simulations refer to a unit cells with bare phase advance ω0 = 1 emittances ε0 = 2
and perveance ξ = 2 so that ω = 0.64. The second order moments, for a matched
initial K.V. distribution, remains constant within the statistical error. The distribution
changes and evolves to a Maxwell-Boltzmann self consistent distribution ρ = Z−1e−H/kT

where H = 1
2
(p2 + ω2

0r
2) + ξ

2
V (r) and V is the self consistent potential. The relaxation

time depends on the hard core radius and reaches a finite limit for r
H
→ 0. In figure

5a and 5b we show the initial and final distribution in energy, when the equilibrium
condition has been reached. The result is the same for any value of the hard core. In
figure 5c we show instead the evolution of the distance from the equilibrium distribution,
measured by the χ2 (averaged on a small time interval to reduce the fluctuation). The
hard core accelerates the relaxation process as expected and the dependence of the
relaxation time on r

H
is smooth.
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7. 3D model and its applications

7.1. Scaling law for the PIC solver

An analogous error analysis of our 3D PIC solver is a more difficult task. In the periodic
focusing a self-consistent analytic solution of the Vlasov problem to be used as reference
solution is not available. The coupling between longitudinal and transverse dynamics
may also produce a fast relaxation of the bunch into a stationary distribution. Looking at
the emittance behavior it is therefore difficult to distinguish the physical and numerical
effects. A generalization of the scaling law given in sec. 4.1 reads

N � η5/3 K5 (22)

where η is the fraction of the cube occupied by the core. With the parameters of the
TRASCO-ISCL linac [8], a first set of simulations has been recently carried out [9].

7.2. Collisional Particle in Core model

The collisional effects within the Debye radius are modeled by using the Landau
approach: the collisions are supposed to be ’soft’, binary and of short range. We
introduce the drift and the diffusion coefficients

ai(x, s) = η2∂ρ1

∂pi
Di k(x, s) =

η2

2

∂2ρ−1

∂pi∂pk
(23)

where ρn(x, s) are the Rosenbluth potentials obtained by integrating the phase space
density over a Debye sphere of center x, whose volume is VD

ρn(p,x, s) =
∫

ρD(p′,x)

‖p− p′‖n dp′ ρD(p′,x, s) =
1

VD

∫
‖x−x′‖<R

D

ρ(x′,p, s) dx′ (24)

where j, k = 1, 2, 3 denotes the coordinates in the bunch reference frame, ρ is the
normalize (to 1) phase space beam distribution and η is related to the perveance ξ by

η2 = 2π
ξ2

N
log Λ ξ =

2 e2 N

mv2
0

(25)

Λ = log(2/θ min ) being here the Coulomb logarithm, with θ min the minimum scattering
angle within the Debye sphere. The integrals defined above should be computed
numerically. However assuming an ellipsoidal uniform distribution (not self consistent),
they can been explicitly evaluated in terms of elliptic functions. The single particle
equations are Langevin equations

d2xi
ds2

+ ω2
0 i xi = ξEi + ai +

√
Di, k

dwk
ds

(26)

where wi is a Wiener process, Es.c.
i the mean space charge field (see ref. [3]), produced

by a unit charge. Using the average parameters of the TRASCO-ISCL linac and the
constant focusing approximation, we have performed two simulations (matched and
mismatched case). 5 · 104 pseudo-particles are generated following the K.V. distribution
and tracked for 500 focusing cells. The emittance growth observed in both case is of
about 2%. The halo formation is limited in the matched case, while reaches the 20%
in the mismatched case, as shown in fig 6a. In fig. 6b is shown the final energy spread
around the mean value defined as

< E >=

〈
3∑
i=1

A2
i p

2
i

ε2i
+

x2
i

A2
i

〉
(27)
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Figure 6. Formation of a halo in due to the collision terms (left). Spread of the
energy after a 500 FODO cells (right) for the matched (red) and mismatched (blue)
case.

where ai are the bunch amplitudes.

We recall that the Particle in Core model is able to reproduce the single particle
instabilities, but unable to observe the collective instabilities since its space charge field is
not self consistent. On the contrary the PIC model is self consistent but is not optimized
for the single particle instabilities, since the single particle contributes are averaged on
the grid points. All these problems could be avoided by using a fully 3D Molecular
Dynamics model, whose computational complexity is too high to be implemented with
enough resolution.
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The COSY language independent architecture: porting
COSY source files

L. M. Chapin�, J. Hoefkens�§ and M. Berz�
� Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824,
USA

Abstract. As part of the project of porting the code COSY INFINITY[1] to a language
independent architecture, a tool is being developed that translates COSY language to C++
language. The tool will allow the use of C++ classes for all elementary operations of COSY,
which represent a wrapper around high-performance COSY C source. This will allow those
unfamiliar with the COSY language access to the power of COSY.

1. The COSY language independent architecture and the COSY syntax

Recently the COSY system [1, 2, 3, 4, 5, 6] has been ported to a language independent
platform to accommodate the use in various modern and widely used programming
environments. In particular, the languages supported include FORTRAN 77, C, as well as the
object oriented environments of FORTRAN 90 and C++. This is achieved in the following
way. The original FORTRAN 77 based language environment consists mainly of operations
on a suite of COSY objects, most notably the DA (Differential Algebra) objects that have
proven very useful for beam physics purposes [7]. These objects can traditionally be utilized
either within the environment of a FORTRAN precompiler[8, 9, 10], or within the object
oriented language environment of the COSY scripting tool[1], which will be discussed in
detail below. Support in the C world is achieved by the use of a FORTRAN-to-C precompiler,
and the FORTRAN source has been adjusted to achieve reliable cross-compilation to the C
environment that results in efficient code. To assure future reliability and reproducibility of
this porting operation, the C source code of the cross-complier is maintained together with the
FORTRAN package. The use within C++ and FORTRAN90 are achieved by a suite of light
wrappers providing C++ and FORTRAN90 objects for the COSY objects [11]. Great care is
taken to maintain the high performance of these data types, which is achieved by merely
representing the objects via pointers into COSY’s original memory management system.
Altogether this approach allows the rendering of COSY objects in four different language
environments, while developers need only to write and maintain the FORTRAN 77 based
source code in COSY.

Besides the use of data types of COSY in other languages, it is also desirable to port high-
level code written in the COSY scripting language to other languages. The COSY language
is an object oriented scripting tool that supports dynamic typing. It is recursive and allows
nesting, local variables, and procedures. Its syntax concepts are similar to those of PASCAL,
but in addition COSY has object oriented features. All type checking is done at run time, not
at compile time.

Most commands of the COSY language consist of a keyword, followed by expressions
and names of variables, and terminated by a semicolon. The individual entries and the
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semicolon are separated by blanks. The exceptions are the assignment identifier “:=”, and the
call to a procedure, in which case the procedure name is used instead of the keyword. Line
breaks are not significant; commands can extend over several lines, and several commands can
be in one line. Everything contained within a pair of curly brackets “�” and “�” is ignored.
Each keyword and each name consist of up to 32 characters. The case of the letters is not
significant. The basic COSY commands consist of the following commands:

����� ���

���	��
�� ������	��
��

�
�	���� ����
�	����

�������

���� �������

����� ��������

�� ������ �����

as well as the assignment command. (For more details, see p. 18 ff in [1], and p. 27 for a
complete list.) In the following we describe a tool that converts code written in COSY syntax
to C++.

2. Outline of the method

The conversion between COSY syntax and C++ syntax is accomplished by means of a
program written in Perl [12]. The program begins by reading in all of the lines of the source
.fox COSY file and placing each one, delimited by a semicolon, into an array called @Lines,
with a separate entry for each line. The array is then processed and various changes are made
to each line, and the order is changed in accordance with C++ standard syntax. As an example
of this first type of change, a COSY loop construct “LOOP I 1 TWOND 2 ;” would be changed
to the C++ equivalent “for ( I = 1 ; I �� TWOND ; I+=2)”.

The second type of change includes the unnesting of COSY functions and returning of
corresponding C++ functions in the appropriate order. The modified contents of that array are
then outputted to a new C++ file, which can then be read through and even modified. The
resulting C++ source will be fully compilable and, at execution time, will exactly duplicate
the performance of the original COSY source.

3. COSY intrinsic functions and procedures

All of the COSY intrinsic functions and procedures can be accessed through the COSY class.
The converter program gives calls in the proper format; in COSY, calls may be made with no
parentheses or commas between the arguments, but they are necessary in C++. A few of the
names are slightly different (normally with different capitalization) to avoid conflict with C++
reserved words, such as “int.” The renaming is based on a translation table (pp. 44-48 in [1]).
For example: “SIN(X)” becomes “Cosy sin (x)” and “PROCEDURE MEMALL Y” becomes
“void memall (y)”.

4. COSY commands

The Programming Manual lists the keywords in COSY (p. 27 in [1]). The simple commands
are reformatted with a one line statement when they are encountered. The commands that are
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complicated enough to need more than one line of manipulation have their own subprograms
that are called when a line is found to contain a command. The line is sent to the subprogram
as an argument. Each subprogram breaks the line up and takes pieces as it needs them,
processes the line, and returns it to its place. For example, upon encountering a line containing
the word ‘WRITE’ such as “WRITE 6 ‘Hello’ ;”, the program would call the following Perl
subprogram.

��� �����
�

�� !�����" � !#$%& '
()��*��� * +,)*+ -*��*�+� .,� �/� *�0���1� ��1�2 �3�3 �/� +�1�

!����� �4 �56�76�5850 '
()/*10�� �/� 	,�� ),1)*��1*��,1 ����,+ .,� �/� 	88 ����,+

!����� �4 �5 9�"����� :5),�� �� 5� '
()/*10�� �/� 	,�� ,��;�� ),��*1< .,� �/� 	88 ,������*�

!����� �4 �5=5>50 '
()/*10�� 	,��=� ��10+� ?�,��� *�,�1< ����10�
(�, <,��+� ?�,��� .,� 	88

!����� � !�����3> ' 61> ' (�����1� �/� �,<�.��< +�1�
@

Here !#$%& is the default variable for the first argument sent to the subprogram in Perl
(the arguments are stored as entries to the array A# and are accessed by !#$%&, !#$B&, !#$C&,
etc. for each argument).

The subprograms for the other commands are generally much more complicated, but
follow the same basic idea.

5. User-declared procedures and functions

In COSY, following conventional PASCAL philosophy, it is permitted to nest functions
and procedures within each other infinitely deep and to even entangle the functions and
procedures. For example, it’s fine to declare:

���	��
�� �������B D E '
���	��
�� �������C F '

�
�	���� �
�����B � ' �
�����B G� � 8B ' ����
�	���� '
F G� �
�����B F" ' ������	��
�� '

�������C E ' D G� D8E ' ����� : D '
������	��
�� '

In C++, functions cannot be nested, and the function signatures should be declared at the
beginning of the converted program and the functions should be defined at the end. Thus,
a user COSY code must be reshaped before being converted to C++. “PROCEDURE”s
may be regarded as void functions for the purposes of C++. The subprograms of the
conversion program that reshape the “PROCEDURE”s are very similar to those that reshape
“FUNCTION”s, with the exception of being of type void and thus not returning anything.
They are treated together for reshaping purposes.
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(i) The conversion program reads through the array until it first finds the keyword
“ENDFUNCTION” or “ENDPROCEDURE,” assigning the variable ‘toggle’ to
“FUNCTION” or “PROCEDURE” depending on which is found first.

(ii) The index of the end‘toggle’ line is recorded and the search reverses and looks for the
closest preceding ‘toggle,’ recording its index.

(iii) All of the array entries between the ‘toggle’ index and the end‘toggle’ index are
inclusively removed from the array and concatenated into a single string (with the entries
separated by semicolons “;”).

(iv) The string is passed to the conversion ‘toggle’ subprogram, which takes care of
formatting details. The nested structure is preserved by appending the names of any
functions or procedures the function is nested within to the end of the name.

(v) The formatted function is then stored in a separate array and the process is repeated,
assigning ‘toggle’ the value of “FUNCTION” or “PROCEDURE” each time depending
on the next one found, until all of the “END”‘toggle’ s are removed from the @Lines
array.

(vi) Each function is then split back into separate entries by semicolons and added to the end
of the @Lines array.

As a result of this process, the reshaped intermediate code of the example above would
look like this:
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������	��
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The subprograms of the converting program that format the “FUNCTION”s and
“PROCEDURE”s differ only slightly. The following describes the formatting ”FUNCTION”
subprogram in detail.

(i) The conversion subprogram for functions takes all of the lines that were between the
command “FUNCTION” and the command “ENDFUNCTION” concatenated into one
line as an argument.

(ii) The line is immediately divided up into local variables for function name, arguments,
and the rest of the lines.

(iii) An opening curly bracket is appended to the arguments. If there is more than
one argument, commas are placed between them. The set of arguments is placed
in parentheses and each argument is typed as ‘Cosy7’. This is a reference
to the actual variable. An ‘f’ for function or a ‘p’ for procedure is placed
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at the beginning of the name to establish uniqueness. Thus, for example, “
FUNCTION FUNTEST1 PROTEST2 PROTEST1 A ” in COSY has become “Cosy
fFUNTEST1 PROTEST2 PROTEST1 ( Cosy7 A )”.

(iv) A COSY variable with the same name as the function is declared, preceded by an “i”,
because, in COSY, functions deal with and return such a variable, which is declared only
in naming the function. “Cosy iFUNTEST1 PROTEST2 PROTEST1 (1),” is the return
variable for the above example.

(v) The rest of the lines are returned to the function and the final curly bracket closes it.
(vi) The names of any variables declared in the function (including the name variable and

arguments) are placed in a string that becomes the “namespace” of the function. The
“namespaces” that are visible to the function are declared using “using namespace” [13].
See the section on variables below.

(vii) The entire array @Lines holding the rest of the program is then queried for calls to the
function, which are reformatted to call “ !functionName” with parentheses surrounding
and commas separating the arguments and the full function name.

(viii) All keywords are searched for and dealt with by their individual subprograms.
(ix) A function signature is also generated to be placed at the beginning of the output program

so that the function may be placed at the end of the main output program in the style of
C++. The function is then returned to the @Lines array.

The resulting C++ code for this example would be:
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6. Variables

COSY variables have no declared types. They can be declared with an unlimited number
of arguments that will simply increase the dimensionality of the variable (while defining the
dimensions).

In treating the variables of COSY programs, most of the variables could be given the
type “Cosy” from the COSY class. However, many functions explicitly require integers, and
the C++ version of a COSY array is based on an integer array. For these functions, it must be
determined if a numerical integer or a COSY variable is passed (both equally valid options in
COSY, but not acceptable in C++). In the case of a COSY variable, the variable must be cast
into an integer. This is done by using the COSY class’s “toDouble” Cosy to double casting
function [1] and casting the resulting double as an integer in the normal C++ fashion.

In consideration of scope, COSY variables are visible inside the program segment in
which they are declared as well as in all other program segments inside it. If a variable has the
same name as one visible from a higher level, its name and properties override the name and
properties of the higher level variable of the same name for the remainder of the block [1].
This priority is being dealt with in C++ by creating a “namespace”[13] for each function and
procedure and giving access to the “namespace” in order of priority to all of the appropriate
program segments. The C++ command “using namespace”[13] overrides variables in the
same manner as COSY priority. The rule for granting access is that: if a “namespace”’s full
name (with the nesting extensions) appears in the name of the block, the block has the right
to that “namespace”. This “namespace” convention is still being implemented, but appears
to be a promising solution that allows for variables to maintain their short, original names
while preserving scope and avoiding a mass of global variables. In COSY, the actual variable
is passed to a function and not just a copy, as is common in C++. To account for this, all
variables are passed by reference to functions in the converted code [13].

42



7. Array access

To access arrays conveniently using all of the arguments used to call an array in COSY, two
C++ functions were written that are appended to the end of the converted program and used
throughout : “GetIt” and “SetIt”. These functions take advantage of member access functions
of the COSY class [1]. The $& access is not implemented in the COSY class and so is not
presently available in the conversion.

8. Examples

To provide a more comprehensive example of the conversion process, we list here the results
of the translation of an entire procedure from the code COSY.FOX, a part of the beam physics
environment of COSY [2]. The procedure, as coded in COSY language, has the following
form:
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After conversion, the C++ code will have the following form:
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We note that for the purpose of readability, the procedures, functions, and variables
declared elsewhere and found in this procedure were translated with the procedure and then
removed. For example, LOCSET is not declared as a procedure here, but earlier in the code
COSY.FOX. If one tried to translate just this excerpt, the conversion program would not
have identified LOCSET as a procedure and would not have processed it as such, adding
the parentheses and commas.
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Simulation Issues for RF Photoinjectors 

E. Colby, V. Ivanov, Z. Li, C. Limborg 

Stanford Linear Accelerator Center 

Abstract. Accurate simulation of radiofrequency photoinjector performance 

remains a challenge in predicting the performance of future linear colliders and 

next-generation light sources. Calculated performance consistently and 

significantly exceeds measured performance. This discrepancy can be traced to 

two principal sources: measurement uncertainty and unrealistic assumptions and 

approximations made in the numerical calculations. The dynamics involved 

make the calculation challenging: electrons are accelerated from rest to 

relativistic velocities in millimeters. Strong wakefield and space charge effects 

require that fields be accurately represented on very small distance scales over 

large volumes. These issues will be discussed, the results of detailed code-to-

code comparisons for tracking and particle-in-cell codes will be shown, and 

recommendations for further tests and improvements will be made.  

1. Introduction 

 
The RF photoinjector is an electron source that is widely used for particle accelerators 

and radiation sources. The ultimately performance of these devices is often directly 
linked to the beam quality produced by the electron source. Consequently, accurate 
simulation of photoinjector performance is an important part of designing and improving 

these devices. 
 Simulations have routinely predicted beam quality (in particular, the transverse 
emittance) that is significantly better than has been measured on real devices. There are 

two principal reasons for this: first, simulation codes make approximations of one kind or 
another and hence do not accurately reproduce the physics, and second, measurement 
uncertainty can be quite large for the figures-of-merit generally used to describe injector 

performance. It is the purpose of this paper to assess the importance of certain specific 
approximations made in a widely used tracking code, Parmela[1], and to discuss means 
for assuring that measurement and simulation are comparable. 

 Before proceeding with a discussion of the physics and simulation issues, it is worth 
commenting on the second source of the discrepancy, measurement uncertainty. Virtually 
all measures of beam quality from electron injectors depend on reducing a video image of 

the beam to statistical quantities. This image has added noise from dark current (field 
emission current not related to the photoemitted beam) and x-ray hits to the video system, 
resulting in bright pixels in the video image. Background image subtraction and 

despeckling algorithms generally are effective in dealing with these problems. However, 
the process of reducing the remaining beam profile to statistical quantities is generally 
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either accomplished by computing RMS quantities directly or by least-squares-fitting a 
particular distribution (e.g. a Gaussian) to the measured profile. Both procedures make 

use of the squares of deviations—either from a mean or from the fitted curve—and are 
therefore quite sensitive to the outlying data points. This has led to a large collection of 
filtering techniques (thresholding, low pass filtering, and so on) to suppress the effects of 

outliers, through which a fair amount of subjectivity and variation can enter the 
measurements. 
 Two actions are recommended to aid in comparing experimental measurements to 

simulation, and in comparing data with other laboratories. First, the fitting procedures, 
including background subtraction, despeckling algorithms, baseline subtraction, filtering 
and fitting should be presented, in detail, together with the reduced data. Second, for 

comparison with simulation, the experimental measurement should be simulated in as 
much detail as is possible, and the simulated measurement compared against the actual 
measurement. Many simulation codes have canned algorithms for computing emittance, 

spot size, and so on, but these are often too idealized to be directly comparable. For 
example, if quadrupole scan emittance data is to be compared to simulation, beam 
propagation should be simulated at the same quad strengths used in the actual 

measurement and the simulated spot sizes compared with the actual data. 
 

2. Photoinjector physics 

 
The dynamics of rf photoinjectors pose a challenge to desktop-scale computer simulation 
for several reasons. The electron beam is produced essentially at rest by photoemission 

and accelerated in very strong electric fields (~108 V/m) to relativistic velocities in 
millimeters. Within this very short period of time, space charge forces rapidly expand the 
bunch by almost an order of magnitude in volume, resulting in rapid emittance growth in 

all dimensions. In addition, acceleration is so rapid that the image charges on the 
emission surface remain nearly fixed in position, viewed from the bunch reference frame, 
resulting in strong retarding forces on the emitted bunch. During this same period, the 

first emitted electrons are accelerated to a significant fraction of the speed of light before 
the last electrons are emitted giving rise to a time- and space-dependent focussing of the 
tail of the bunch from the induced magnetic field. 

 Rf photoinjectors produce short, dense bunches because the acceleration gradient is 
high enough that the electron bunch produced closely follows the spatial distribution of 
the laser pulse that produced it. The photoemission process is complicated by surface 

roughness effects and surface contaminants and is generally poorly understood and 
specific to each photoinjector cathode. Variations in emitted current density result in 
additional electrostatic potential energy being stored in the charge distribution than if the 

emission had been uniform, and this added energy generally results in increased 
emittance as the distribution evolves. Accurate determination of beam quality therefore 
depends on using measured current density functions for the cathode in question. 

 Alignment and harmonic content in the fields of the rf cavities and the external 
focussing system can also strongly impact performance. While simulating misalignment 
of components is routine, handling harmonic content requires 3D computations, is more 

troublesome, and is less frequently tackled.   
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3. Photoinjector simulation 

 

Numerous suitable codes exist for tracking and particle-in-cell simulation of rf 
photoinjectors. Parmela is the most widely used code for simulating rf guns, having been 
developed and extensively used at Los Alamos, and used in the design and analysis of the 

much-copied Brookhaven gun. It is presently used as the most detailed model for the 
LCLS gun[2], motivating this study. Published benchmarking of photoinjector codes is 
comparatively rare in the literature, and is a critical step to predicting performance. 
 
Some of the more significant approximations made in Parmela include 
 

1.    Space charge forces are strictly electrostatic (test problem 1)  
2.    No wakefield effects are included except image charge effects on the cathode 
3.    Retardation effects are neglected (test problem 1) 

 
In addition, common simulation practice often makes the following idealizations: 
 

4.    The microwave excitation in all cavities has the same amplitude 
5.    All injector components possess strictly axisymmetric, aligned fields (test problem 
2) 

6.    Electron emission process is highly idealized (test problem 3) 
 
 In light of the strong velocity sheer present during emission, approximations (1) and 

(3) are invalid and were studied further. Approximation (1) has already received close 
attention in the context of electron beams in uniform motion[3] but not in the presence of 
large velocity sheer. Wakefield effects are also significant, but require detailed PIC 

modeling and will be studied and published in a subsequent paper. Field balance 
problems (4) have been studied and published elsewhere[4]. The approximation of rf 
cavity fields as axisymmetric (5) is also potentially significant and was studied. 

Nonuniform emission current density (6) has been studied with high spatial frequency 
checkerboard patterns[5] and measured laser profile data[6], and has been studied here 
from the vantage point of higher order mode content in the laser pulse.  

 Three test problems have been constructed to assess the impact of approximations 
(1), (3), (5), and (6). These problems are chosen to have parameters similar to the LCLS 
gun, but to be as abstracted and simple as possible, and in the case of test problem 1 to be 

amenable to fast, unambiguous calculation with very different simulation methods (e.g. 
tracking and PIC codes). 
 

4. Test problems with results 

4.1. Test problem 1: Electrostatic and retardation-free approximations 

The purpose of this problem is to test the electrostatic approximation of space charge 

forces and the influence of relativistic retardation effects during emission. This 
approximation is invalid in situations where the beam radiates (bends, strong quads), and 
at emission (where internal velocity sheer occurs, see Figure 1). This problem tests the 

latter circumstance. 
  Conceptually, the problem is similar to the emission process in the LCLS gun, but 
with rf effects suppressed by choosing a low working rf frequency. A bunched beam is 
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emitted from a perfect conductor under a strong accelerating field and tracked until the 
mean velocity reaches < >=0.9. Radial RMS spot size, normalized emittance, bunch 

length, momentum spread, momentum/coordinate correlation function and < > are 
computed as a function of <z>. Bunch space charge fields (Ez, Er, B ) are plotted shortly 
after the entire bunch has been emitted. 

 

 

Figure 1. Velocity sheer (max( z)-min( z)) and mean bunch velocity < z> 

versus mean bunch position <z>.

 
 The details of the problem are: an acceleration gradient of Ez=100 MV/m (peak on 

cathode) is used, driven at 100 MHz. The electron bunch has a charge Q= 1nC, and is 
uniformly distributed in space and time in a 1 mm radius x 10 ps long cylinder. The beam 
is launched with 1 eV energy, strictly longitudinal, and is otherwise cold. (i.e. no 

transverse momentum, no energy spread) The beam is launched at the crest of the rf 
wave. No magnetostatic focussing fields are to be applied. Grid density and number of 
macroparticles should be chosen to achieve results that do not depend on the grid size or 

number of macroparticles. 
 Space charge fields are to be plotted at a single time (“snapshot fields”) for the region 
around and within the bunch for PIC codes, and at the position of each macroparticle for 

tracking codes. Er, Ez, and B  should be plotted as a function of z. Also, compute: < >, 

r, r, z, z, p, Corr(z,p), and <z> every picosecond and record the 5D (or 6D) phase 
space when < >=0.9. Sums over the distribution are to be performed for all quantities 

taken at a single time (“snapshot” emittances), not a single z location. RMS definitions of 
all quantities are to be used: 
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 Results of this test problem are displayed in Figures 2 and 3 below. The Los Alamos 
version of Parmela (referred to here as “Parmela-lanl”) and the UCLA version of 

Parmela[6] (referred to here as “Parmela-ucla”) are compared against Magic-2D[7] and 
Maxwell-T[8]. Space charge field strengths are displayed for Parmela-ucla and for 
Magic-2D in Figure 2. Particle tracking is completed for all four codes and is displayed 

in Figure 3. 
 There is good agreement of electric field strengths at the bunch extremities, but since 
Parmela uses the electrostatic approximation, B  is zero everywhere, in stark contrast to 

the computed values shown from Magic-2D. Note that field plots from Magic-2D are 
plotted as functions of r and z, whereas fields from Parmela are plotted as functions of 
the macroparticle coordinates. The fields at the outer radius of the bunch compare 

reasonably well, with Magic-2D giving Er~6.3 MV/m, and Parmela giving Er~5.9 MV/m. 
The total space charge and image charge fields at the tail of the bunch also compare 
reasonable well, with Magic-2D giving Ez~23.8 MV/m, and Parmela Ez~23 MV/m. 

Magic-2D shows a maximum magnetic field of B ~0.015T, which gives the same 
approximate focusing force as a radial electric field of Er~3.4 MV/m, and results in a 
sizable reduction in the effective radial space charge force when the bunch still has large 

velocity sheer. 

 

Figure 2. Space charge and image charge fields for test problem 1, evaluated by 

Magic-2D (left) and Parmela-ucla (right). Upper left: Ez, middle left: Er, lower 

left: B . Upper right: Ex(x), lower right: Ez(z). 

 Plots of the moments, spot sizes, and emittances are shown in figure 3 below. 

Agreement is surprising good amongst the four simulation codes, which use very 
different calculation methods. Still more surprising is that the transverse emittances are 
consistently better in the PIC code simulations, which include the time-and-space 

dependent effects of the sheer-induced magnetic field, and also correctly handle 
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retardation effects with the cathode image charges. Agreement on the spot sizes, 
momentum spread, and momentum/phase correlation are all excellent.  

 It is reasonable to conclude from these results that omission of retardation effects and 
the velocity sheer fields in Parmela result in quite small errors in the spot size, bunch 
length and momentum spread, and to at most a ~20% overestimation of the transverse 

emittances. It is likely that some of this discrepancy is traceable to the very different 
computation methods used and not to the physics approximations. Finally, it is 
noteworthy that the two Parmela variants agree well with each other, and the two PIC 

codes agree reasonably with each other, suggesting that the differences are indeed 
algorithmic in origin. 

 

Figure 3. Transverse (left) and longitudinal (right) beam quantities.  

Upper left: < >, middle left: r, lower left: r Upper right: z, middle right: p, 

lower right: Corr(z,p). 

4.2. Test problem 2: Axisymmetric microwave field approximation 

This second test problem is designed to address the importance of approximating the 

non-axisymmetric rf fields of the LCLS gun as axisymmetric. Efforts have been made to 
suppress the dipole asymmetry of the fields, leaving the quadrupole as the leading error 
term. 

 Conceptually, this test problem is quite specific to the geometry of the LCLS gun[2]. 
Beam is emitted and propagated through the 1.6 cell s-band LCLS gun, stopping at the 
exit of the gun, but using two different maps to represent the rf fields. The first map is 

strictly axisymmetric, generated by revolving a 2D map (generated by Superfish[9]) 
about the z-axis. The second map is fully 3D, generated from a fully 3D gun model 
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computed with Mafia[10], including the laser ports, and the power couplers, each of 
which induce quadrupole field structure. 

 Specifically, the gun gradient will be taken to be Ez=100 MV/m, the frequency 
frf=2856 MHz, and the geometry will be that of the LCLS gun. Solenoid focusing is to 
be used with a peak on-axis field strength of 2.7 kG. The electron bunch will be 1mm 

radius by 10ps length, uniformly distributed, but should have zero charge, to suppress 
space charge effects. The beam is to be launched with only a longitudinal velocity 
corresponding to 1 eV kinetic energy. The grid density and macroparticle number should 

be chosen to give results independent of either. Care must be exercised that the two field 
maps are equivalent in resolution and spatial extent. 
 Compute and plot the “difference fields”, defined as the difference of the 3D and 2D 

maps on a component-by-component basis: Ex Ex(3D)-Ex(2D),…, Bz=Bz(3D)-
Bz(2D). Compute r, r, at the exit of the gun and compare. 

 
Figure 4. Difference fields Ez (top) and Bz (bottom).  

Computation of the beam transverse emittance (defined in test problem 1 above) with the 
2D and 3D maps is summarized in Table 1. For nominal LCLS beam parameters, there is 
no statistically significant emittance increase for the 3D field map case (N=10000, 

observed increase is 0.8%). As a check of this negative result, the initial beam size was 
increased five-fold and the simulations run again. The much larger beam size 
significantly increases the rf-induced emittance growth. This case yielded a 10% increase 

in the emittance due to the added multipole errors, and is also displayed in Table 1. 
 The conclusion is that the rf cavity asymmetries induced by the input power coupler 
and laser ports do not significantly impact the emittance. 
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Table 1. Transverse emittance and spot size at gun exit for the 2D vs 3D comparison. 

Exit Spot Size Exit Emittance Exit Energy [mec
2]  

2D 3D 2D 3D 2D 3D 

R=1mm 0.849 mm 0.878 mm 0.387 0.390 10.75 11.06 

R=5mm 3.626 mm 3.589 mm 3.319 3.689 10.85 11.01 

4.3. Test problem 3: Uniform current emission approximation 

The purpose of this test problem is to test sensitivity of beam transverse emittance to 
variations in the emitted current density. Variations arise from several factors: laser 

nonuniformity, cathode roughness leading to variations in Shottky enhancement, and 
cathode contamination leading to variations in quantum efficiency. 
 Conceptually this specific problem addresses nonuniformities of the laser, as would 

be caused by higher-order modes being generated in the laser by, scattering, variations in 
amplifier gain with position, optics damage, and so on. Electron beam distributions are 
derived by standard rejection techniques to have Gauss-Laguerre form[11]. 

 Parmela-lanl will be used for this case as it has an advanced 3D mesh-based space 
charge calculation method. The gradient will be Ez=120 MV/m, frequency 
frf=2856 MHz, and geometry that of the LCLS gun[2]. Solenoid focusing is to be used 

with a peak on-axis fields strength of 2.7 kG. The bunch charge will be Q= 1nC, and 
distributed approximately uniformly in time with a 10 ps length and 0.7 ps risetime, but 
with transverse distributions specified by the Gauss-Laguerre eigenfunctions with waist 

parameter wo=0.6*sqrt(2) mm and a distribution cutoff of r=1.2 mm. The laser striking 
the cathode is presumed to be focussed on the cathode, so the phase front radius of 
curvature R= , and the Guoy phase angle o=0. Launch energy: 1 eV, strictly 

longitudinal, with 0.4  thermal emittance added. The number of macroparticles, and 
mesh density should be chosen as required to achieve results that do not depend on 
either. Propagate the beam to the exit of the gun, and compute the transverse emittance at 

this location (using the definitions given in test problem 1).  
 

 

Figure 5. Transverse charge distributions at the cathode (left) and at the exit of 

the gun (right).  
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 Transverse beam profiles both at launch and at the gun exit are shown in Figure 5 
below. Washout of the initial distributions has clearly begun, and the action of the 

solenoid focussing are visible as a rotation of the distribution about the axis.  
 Transverse emittances for the lowest four Gauss-Laguerre modes are summarized in 
Table 2 below. The cases computed here correspond to excitation of single laser modes, 

which gives some indication of what types of distortion (azimuthal, low spatial 
frequency) are most damaging to the beam quality. In reality a large collection of these 
modes combine to make the actual laser profile used to illuminate the cathode, and 

realistic simulations will require examining more realistic combinations of these modes, 
which will be the subject of future work. 
 

Table 2. Transverse emittance at exit of gun for lowest four Gauss-Laguerre modes. 

Laser Mode Exit Emittance 

Radially uniform distribution 2.84  

TEM00 (Gaussian) 4.37  

TEM01 (azimuthal modulation only) 8.42  

TEM10 (radial modulation only) 4.87  

TEM11 (both radial and azimuthal modulation) 5.98  

5. Conclusions 

 
These three test problems address four of the approximations commonly made in 

simulating rf photoinjector performance. The electrostatic and retardation-free 
approximations are most dramatically violated shortly after emission, but as test 
problem 1 shows, the time during which these effect apply is so short that their inclusion  

has little impact on beam quality. The approximation of the rf fields as strictly 
axisymmetric is also reasonable for the symmetrized case of the LCLS gun. Accurate 
modelling of injector performance, however, depends directly on the fidelity with which 

the electron distribution is initially produced. Detailed measurements of emission current 
density over the active area of the cathode is essential data that has to be incorporated 
into injector simulation before accurate results can be expected. 

 
During the course of these studies, several difficulties arose from the very different 
nature of the simulation codes used, and from the challenge of getting exactly 
comparable results from these codes.
 Benchmarking codes and conducting fully integrated multi-code simulations are and 

will remain essential tasks for making reliable simulations of rf photoinjectors and for 
estimating the overall performance of systems which use rf photoinjectors. We therefore 
offer these recommendations with the hope of making both processes more efficient and 

reliable: 
 
Recommendation 1. Adopt the Self-Describing Data Sets (SDDS)[12] format for all input 

and output files whose primary user is another program. Often-edited input files, such as 
beamline descriptions or run control files, or output files intended solely for human 
consumption, should remain in easily understood formats that need not be standardized. 

Interchange between users of different simulation codes, either for comparison purposes 
or for continuing a complex multi-step simulation process, will be greatly facilitated by 
the adoption of a standard format. 
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Recommendation 2. Devise abstracted, minimal test problems which reveal quantitatively 
the importance of the various approximations made in the simulations, and publish these 

problems and their results with sufficient detail to be exactly replicated. Three such 
problems are presented here. 
 

Studies of wakefield effects will address the importance of one of the last remaining 
approximations made to the physics, and will be conducted for the LCLS gun in the near 
future. Other issues, specifically numerical in origin, also deserve attention such as the 

integrity of field maps and the symplecticity and convergence of the integrator. 
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problems 
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Abstract. The inexact Lanczos method implemented in Omega3P is a highly 

efficient technique for solving large generalized eigenmode problems on parallel 

computers.  For large finite element problems the iterative solution of the shifted 

linear system using the preconditioned conjugate gradient (PCG) method 

dominates the computational time.  Recent work has shown that the convergence 

rate of PCG can be greatly enhanced by introducing scalar degrees of freedom 

representing the electric potential.  This paper presents the implementation and 

application of the inexact Lanczos method with A-V basis functions in the 

parallel OM3P solver.  Results for large RF cavity problems (> 1 million DOFs) 

demonstrate significant reductions in computational time (more than a factor of 

10 in some cases) as compared to the original implementation.  The application 

of a deflation algorithm that improves the performance of the procedure on mode 

clusters is also illustrated.  

1. Introduction 

Large eigenmode problems are commonly encountered in accelerator component design, 

particularly in the analysis and optimization of RF cavities.  To provide optimal guidance 
in the design process of next generation cavities eigenfrequency error must be less than 
one part in 104.  Moreover, examination of field stress-related issues typically requires 

very fine conformal finite-element meshes in various areas of a cavity.  These two 
realities lead to very large finite-element meshes (often exceeding 106 elements), with 
correspondingly large numbers of unknowns (106 – 107 or more).  Given the typical 

matrix fill of between 25 and 60 non-zeros per row, memory needed for matrix storage 
alone can easily exceed 10 GB, and computational requirements are such that parallel 
computers are needed for problem solution. 

 Recent work by Sun, et al. [1] has lead to a novel method for the efficient solution of 
large eigenmode problems on parallel computers, and this method has been implemented 
in the Omega3P solver.  The method, called ISIL (Inexact Shift and Invert Lanczos), uses 

a standard shift-invert Lanczos process to solve the generalized eigenvalue problem, 
except that the solution of the shifted linear system is done iteratively only to low 
precision (10-2 residual).  The inexact Lanczos process will usually stagnate before the 

desired eigenvector residual is obtained, at which point the Jacobi Orthogonal 
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Component Correction (JOCC) procedure from the Jacobi-Davidson method is used to 
improve the residual of the mode. 

 With an appropriate choice of linear solver, such as PCG, ISIL scales well to many 
processors.  For large problems the computational time is dominated by the time required 
to solve the shifted linear system.  The performance of PCG on matrices generated using 

the finite element method in electromagnetics is strongly dependent on the particular 
problem and, of course, the preconditioner.  Scalability requirements limit the options for 
preconditioners, with some of the more effective strategies on serial machines involving 

factorization of the coefficient matrix being less desirable when the problem is to be 
solved on a parallel computer.  Given these constraints, the Gauss-Seidel method is a 
good choice for preconditioner, with a number of steps from 1 to 5 depending on the 

situation (each step requires essentially two matrix-vector multiplies).  With this linear 
solver, however, it can still take many thousands of iterations to reduce the initial 
residual by a factor of 100.  Indeed, even in some cases involving relatively small 

meshes, it is possible to exceed 50,000 iterations without suitable convergence. 
 Recent work in the finite element community has shown that the poor convergence of 
the PCG method on matrices obtained for electromagnetics problems is a result of two 

factors [3]: static modes in null space of the curl operator, and oversampling of relatively 
low frequency valid modes.  Multigrid methods are being investigated for solution of the 
latter problem [4], and use of the vector-scalar (so-called A-V) basis set has been shown 

to effectively mitigate the former.  In this paper we investigate the utility of the A-V 
basis set in connection with ISIL. 

2. A-V basis set 

 In the A-V finite element formulation the electric field is given by 

AE  (1) 

where the vector potential is represented using a standard vector basis set used in the E-
formulation that has unknowns associated with edges and faces of the mesh. The scalar 

potential is supported by nodal degrees of freedom.  As noted in [2] it is not necessary to 
form the resulting coefficient matrix explicitly, and the generalized eigenvalue matrix 
equation can be written in the form 

xBxA  (2) 

where 

][ ACCA T  (3) 

][ BCCB T  (4) 

][ GIC  (5) 

The A and B matrices in Eqns. 3 and 4 are the contributions to the standard E-formulation 

finite-element coefficient matrix from the curl-curl and dot product terms of the 
functional, respectively.  Assuming the solution vector x is ordered such that the n vector 
unknowns all appear first, followed by the m nodal unknowns, then the I matrix is the n x 

n identity matrix, and G (n x m) has a maximum of two non-zeros per row. 
 As noted in previous work the coefficient matrix that is obtained using the A-V basis 
set is rank deficient.  Although this is not directly relevant to our application, it may be 

the cause of divergent behavior in PCG that is sometimes observed if the desired solution 
residual for the shifted linear system is small enough.  In practice one does not run into 
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this problem with ISIL since the stopping point residual is relatively large, but it can limit 
the utility of the basis set (at least as we are using it) in the exact Lanczos process. 

3. Parallel implementation of A-V basis 

ISIL using the A-V basis set has been implemented in the OM3P parallel eigensolver.  
While the authors of [2] suggest a relatively sophisticated decomposition of the matrix to 

allow incomplete Cholesky preconditioning, we instead employ the matrices in their 
original form.  OM3P uses the PETSc library [5] for its parallel data structures and 
numerical solvers, and the A  and B  matrices of Eqn. 2 are represented as symbolic 

matrices in this library.  In this form one can provide functions that perform the required 
operations (such as matrix-vector multiplication) for the symbolic matrix, and it is treated 
as a regular distributed matrix by the PETSc solvers. 

 In a parallel implementation it is advantageous to explicitly form both C and CT.  The 
single instance of each matrix is then referenced by both the A  and B  symbolic matrices.  
Supported in this way the A-V basis set introduces a 5%-15% increase in unknown count 

(depending on the order of the vector basis set), and a similar increase in aggregate 
memory requirements for the matrices.  The primary disadvantage of the symbolic 
representation of the A  and B  matrices is that there are three vector scatters required per 

matrix-vector multiplication step in PCG (one for each matrix in the product), as opposed 
to one if they were explicitly formed.  However, as compared to roughly a factor of two 
increase in memory requirements for explicit formation of A  and B , and a comparable 

increase in the amount of computation required for a matrix-vector multiplication, it was 
seen as a worthwhile trade-off to leave them in symbolic form. 
 The implementation of the Gauss-Seidel preconditioner also requires some special 

care for the symbolic A-V matrices.  Since a single Gauss-Seidel iteration requires the 
same vector information as a regular matrix-vector multiplication, this operation has the 
same communication requirements, that is, three vector scatters per step.  To avoid this 

additional communication cost we perform the preconditioning using only the original E-
formulation matrices (A and B), requiring only one scatter operation per step. 

4. Deflation in OM3P 

Deflation methods are used to combat the tendency of the Lanczos method to produce 
duplicate eigenpairs.  The Hessenberg matrix that is generated by the Lanczos and 
Arnoldi processes has the property that its eigenvalues rapidly converge to the extreme 

eigenvalues of the original system.  The deflation/locking procedure diagonalizes a 
particular row/column of the Hessenberg, leaving the corresponding eigenvalue on the 
diagonal.  The row/column are the then removed from the matrix, and the 

Lanczos/Arnoldi process continues.  Performing this operation as eigenpairs converge, 
together with ensuring that new Lanczos vectors are orthogonal to the existing subspace, 
effectively bars duplicates from forming.  This procedure also allows the unblocked 

Lanczos process to extract degenerate eigenpairs. 
 There are a variety of methods for implementing deflation.  We chose a relatively 
simple technique described in a book by Dongarra, et al. [6], called the Orthogonal 

Deflating Transformation.  It was not clear to the authors at the outset whether the usual 
methods would work in ISIL, because only approximate information about the Krylov 
subspace is being generated.  In practice we found that using the simple Dongarra 

method in ISIL can still allow duplicates to be generated if the shifted linear system is 
only solved to 10-2 residual tolerance.  However, lowering the tolerance to 10-3 eliminates 
the problem in all cases we have considered, and so OM3P uses the latter tolerance by 

default.  It often takes 1.5 - 2 times as long to reach residuals of 10-3 as compared to 10-2, 
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so there is some motivation to consider deflation methods that work reliably at the latter 
residual level, but the authors have not investigated this possibility. 

5. Numerical examples 

 We have run several examples that illustrate the behavior of the A-V basis set as 
implemented in OM3P compared with the original implementation ISIL using the E-

formulation basis.  Comparisons were made using a variety of meshes generated for a 
single cell of the RDDS-1 cavity shown in Fig. 1. 

 

Figure 1.  Single cell of the Round Damped Detuned Structure RDDS-1 cavity 

proposed for the NLC (1/8 model).  Photograph courtesy of K. Ko, SLAC. 

 Results for a range of element counts in 1.5 cells of the RDDS-1 cavity are 
summarized in Table 1 and Fig. 2.  The meshes were fairly uniform.  Experience has 

shown that widely varying element sizes can cause additional ill-conditioning of the 
matrix that can adversely affect PCG, although this problem seems to be substantially 
worse using the standard vector basis set than it is with the A-V basis set. All cases were 

run without JOCC so they only compare the behavior in the Lanczos part of the 
algorithm. 
 

Table 1. Average number of PCG iterations required to reach a residual of 10-3 

for standard vector basis (E) and for the A-V basis for various element counts in 

1.5 RDDS-1 cavities.  The final residuals shown are the values obtained when 

the inexact Lanczos process stagnates. 

Element 
Count 

DOF Count Average PCG Iterations 
Per Lanczos Step 

Final Residual (No 
JOCC) 

E 38,770 2837 2.09 x 10-430,179 

A-V 43,780 126 9.41 x 10-7

E 62,425 2199 2.31 x 10-455,467 

A-V 71,125 151 4.79 x 10-7

E 267,437 1739 1.69 x 10-4232,441 

A-V 306,122 187 1.05 x 10-7

E 381,809 2173 1.48 x 10-4331,490 

A-V 436,764 209 1.04 x 10-7

E 876,835 2077 1.19 x 10-4756,781 

A-V 1,004,351 277 3.84 x 10-8
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The residuals shown in Table 1 illustrate another characteristic of A-V when used with 
ISIL – A-V routinely generates substantially better residuals than the E-formulation at a 

similar point in the Lanczos process, and for every case listed in the table it took fewer 
Lanczos steps to reach stagnation with A-V than in the corresponding E formulation 
case. 
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Figure 2.  Comparison of the number of PCG iterations per Lanczos step for the 

regular E-formulation vector basis set used in the original implementation of 

ISIL, and the A-V basis set used in OM3P.  The geometry used for these 

problems was 1.5 cells of the RDDS-1 structure shown in Fig. 1. 

To illustrate the use of deflation in ISIL, we analysed a 5-cavity structure that was 

designed and built at the National Superconducting Cyclotron Laboratory [7].  The 
structure has several modes clustered around 800 MHz, and in Table 2 we compare the 
performance of ISIL with deflation to ISIL without deflation but with a sophisticated re-

shifting mechanism used in an early version Omega3P. 
 The mesh for this example contained about 190K elements, and the model is 
essentially 2-D (run as a narrow wedge in 3D).  The structure and fields for one of the 

modes are shown in Fig. 3.  The tabulated results show that while deflation allowed all of 
the modes to be extracted in only 9 Lanczos steps, the re-shifting strategy actually missed 
one of the modes and required more the twice the number of Lanczos steps.  The increase 

in the step count comes about because Lanczos is restarted after each mode when the 
shift point is changed. 

Table 2.  Comparison of mode cluster extraction for ISIL using deflation with 
ISIL using reshifting.  An “x” in the column indicates the corresponding mode 
was found. 

Mode Number Method 

1 2 3 4 5 

Total Number of 
Lanczos Steps 

ISIL w/ reshifting x x  x x 20 

ISIL w/ deflation x x x x x 9 
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Figure 3.  Electric field magnitude for the fundamental mode at 794 MHz in the 

five-cell cavity.  Model courtesy of F. Marti, NSCL. 

 Using OM3P we have also run this problem with 4.76M elements (6.6M DOFs) on 
six processors hooked up on a standard interoffice network of 2.2 GHz Xeon processors.  

It took 8 hrs of elapsed time to extract the first mode, and a total of 20 hrs to extract all 
five modes. 

6. Conclusions 

 The use of the A-V basis set has been shown effective at reducing the computational 
work associated with solving linear systems arising from the application of the finite-
element method in electromagnetics.  In this paper we demonstrate that this basis set may 

be applied in the ISIL method, leading to dramatic reductions in the number of PCG 
iterations that are required to obtain solution to the shifted linear system. Also illustrated 
is the application of a standard deflation technique to ISIL for a mode cluster extraction 

problem, showing superior performance to a re-shifting algorithm. 
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Abstract. We review some recent developments in numerical algorithms to solve
the time-dependent Maxwell equations for systems with spatially varying permittivity
and permeability. We show that the Suzuki product-formula approach can be used
to construct a family of unconditionally stable algorithms, the conventional Yee
algorithm, and two new variants of the Yee algorithm that do not require the use of the
staggered-in-time grid. We also consider a one-step algorithm, based on the Chebyshev
polynomial expansion, and compare the computational efficiency of the one-step, the
Yee-type and the unconditionally stable algorithms. For applications where the long-
time behavior is of main interest, we find that the one-step algorithm may be orders of
magnitude more efficient than present multiple time-step, finite-difference time-domain
algorithms.

1. Introduction

The Maxwell equations describe the evolution of electromagnetic (EM) fields in space

and time [1]. They apply to a wide range of different physical situations and play

an important role in a large number of engineering applications. In many cases,

numerical methods are required to solve Maxwell’s equations [2, 3]. A well-known class

of algorithms is based on a method proposed by Yee [4]. This finite-difference time-

domain (FDTD) approach owes its popularity mainly due to its flexibility and speed

while at the same time it is easy to implement [2, 3].

A limitation of Yee-based FDTD techniques is that their stability is conditional,

depending on the mesh size of the spatial discretization and the time step of the

time integration [2, 3]. Furthermore, in practice, the amount of computational

work required to solve the time-dependent Maxwell equations by present FDTD

techniques [2, 3, 5, 6, 7, 8, 9, 10, 11, 12] prohibits applications to a class of important

fields such as bioelectromagnetics and VLSI design [2, 13, 14]. The basic reason for this

is that the time step in the FDTD calculation has to be relatively small in order to

maintain stability and a reasonable degree of accuracy in the time integration. Thus,

the search for new algorithms that solve the Maxwell equation focuses on removing the

‡ http://www.compphys.org/

Inst. Phys. Conf. Ser. No 175
Paper presented at 7th Int. Conf. Computational Accelerator Physics, Michigan, USA, 15–18 October 2002
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conditional stability of FDTD methods and on improving the accuracy/efficiency of the

algorithms.

2. Time integration algorithms

We consider EM fields in linear, isotropic, nondispersive and lossless materials. The

time evolution of EM fields in these systems is governed by the time-dependent

Maxwell equations [1]. Some important physical symmetries of the Maxwell equations

can be made explicit by introducing the fields X(t) ≡ √
µH(t) and Y(t) ≡√

εE(t). Here, H(t) = (Hx(r, t), Hy(r, t), Hz(r, t))
T denotes the magnetic and E(t) =

(Ex(r, t), Ey(r, t), Ez(r, t))
T the electric field vector, while µ = µ(r) and ε = ε(r) denote,

respectively, the permeability and the permittivity. Writing Z(t) = (X(t),Y(t))T ,

Maxwell’s curl equations [2] read

∂

∂t
Z(t) =


 0 − 1√

µ
∇× 1√

ε
1√
ε
∇× 1√

µ
0


 Z(t) ≡ HZ(t). (1)

It is easy to show that H is skew symmetric, i.e. HT = −H, with respect to the inner

product 〈Z(t)|Z′(t)〉 ≡ ∫
V ZT (t) · Z′(t) dr, where V denotes the system’s volume. In

addition to Eq.(1), the EM fields also satisfy ∇·(√µX(t)) = 0 and ∇·(
√
εY(t)) = 0 [1].

Throughout this paper we use dimensionless quantities: We measure distances in units

of λ and expresss time and frequency in units of λ/c and c/λ, respectively.

A numerical algorithm that solves the time-dependent Maxwell equations

necessarily involves some discretization procedure of the spatial derivatives in Eq. (1).

Ideally, this procedure should not change the basic symmetries of the Maxwell equations.

We will not discuss the (important) technicalities of the spatial discretization (we refer

the reader to Refs. [2, 3]) as this is not essential to the discussion that follows. On a

spatial grid Maxwell’s curl equations (1) can be written in the compact form [11]

∂

∂t
Ψ(t) = HΨ(t). (2)

The vector Ψ(t) is a representation of Z(t) on the grid. The matrix H is the discrete

analogue of the operator H. The formal solution of Eq. (2) is given by

Ψ(t) = etHΨ(0) = U(t)Ψ(0), (3)

where U(t) = etH denotes the time-evolution matrix. If the discretization procedure

preserves the underlying symmetries of the time-dependent Maxwell equations then the

matrix H is real and skew symmetric, implying that U(t) is orthogonal [15]. Physically,

the orthogonality of U(t) implies conservation of energy.

There are two, closely related, strategies to construct an algorithm for performing

the time integration of the time-dependent Maxwell equations defined on the grid [16].

The traditional approach is to discretize (with increasing level of sophistication) the

derivative with respect to time [16]. The other is to approximate the formally exact

solution, i.e. the matrix exponential U(t) = etH by some time evolution matrix
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Ũ(t) [16, 17]. We adopt the latter approach in this paper as it facilitates the construction

of algorithms with specific features, such as unconditional stability [17].

If the approximation Ũ(t) is itself an orthogonal transformation, then ‖Ũ(t)‖ = 1

where ‖X‖ denotes 2-the norm of a vector or matrix X [15]. This implies that

‖Ũ(t)Ψ(0)‖ = ‖Ψ(0)‖, for an arbitrary initial condition Ψ(0) and for all times t

and hence the time integration algorithm defined by Ũ(t) is unconditionally stable by

construction [16, 17].

We now consider two options to construct the approximate time evolution matrix

Ũ(t). The first approach yields the conventional Yee algorithm, a higher-order

generalization thereof, and the unconditional schemes proposed in Ref.[11]. Second, the

Chebyshev polynomial approximation to the matrix exponential [18, 19, 20, 21, 22, 23].

is used to construct a one-step algorithm [24, 25].

2.1. Suzuki product-formula approach

A systematic approach to construct approximations to matrix exponentials is to make

use of the Lie-Trotter-Suzuki formula [26, 27]

etH = et(H1+...+Hp) = lim
m→∞

( p∏
i=1

etHi/m

)m

, (4)

and generalizations thereof [28, 29]. Expression Eq. (4) suggests that

U1(τ) = eτH1 . . . eτHp, (5)

might be a good approximation to U(τ) if τ is sufficiently small. Applied to the

case of interest here, if all the Hi are real and skew-symmetric U1(τ) is orthogonal

by construction and a numerical scheme based on Eq. (5) will be unconditionally stable.

For small τ , the error ‖U(t = mτ)− [U1(τ)]m‖ vanishes like τ [29] and therefore we call

U1(τ) a first-order approximation to U(τ).

The product-formula approach provides simple, systematic procedures to improve

the accuracy of the approximation to U(τ) without changing its fundamental

symmetries. For example the matrix

U2(τ) = U1(−τ/2)TU1(τ/2) = eτHp/2 . . . eτH1/2eτH1/2 . . . eτHp/2, (6)

is a second-order approximation to U(τ) [28, 29]. If U1(τ) is orthogonal, so is U2(τ).

Suzuki’s fractal decomposition approach [29] gives a general method to construct higher-

order approximations based on U2(τ) (or U1(τ)). A particularly useful fourth-order

approximation is given by [29]

U4(τ) = U2(aτ)U2(aτ)U2((1 − 4a)τ)U2(aτ)U2(aτ), (7)

where a = 1/(4 − 41/3).

In practice an efficient implementation of the first-order scheme is all that is needed

to construct the higher-order algorithms Eqs.(6) and (7). The crucial step of this

approach is to choose the Hi’s such that the matrix exponentials exp(τH1), ..., exp(τHp)

can be calculated efficiently. This will turn the formal expressions for U2(τ) and U4(τ)

into efficient algorithms to solve the time-dependent Maxwell equations.



66

2.2. One-step algorithm

The basic idea of this approach is to make use of extremely accurate polynomial

approximations to the matrix exponential. We begin by “normalizing” the matrix

H . The eigenvalues of the skew-symmetric matrix H are pure imaginary numbers.

In practice H is sparse so it is easy to compute ‖H‖1 ≡ maxj
∑

i |Hi,j|. Then, by

construction, the eigenvalues of B ≡ −iH/‖H‖1 all lie in the interval [−1, 1] [15].

Expanding the initial value Ψ(0) in the (unknown) eigenvectors bj of B, Eq. (3) reads

Ψ(t) = eizBΨ(0) =
∑
j

eizbjbj〈bj|Ψ(0)〉, (8)

where z = t‖H‖1 and the bj denote the (unknown) eigenvalues of B. There is no

need to know the eigenvalues and eigenvectors of B explicitly. We find the Chebyshev

polynomial expansion of U(t) by computing the expansion coefficients of each of the

functions eizbj that appear in Eq. (8). In particular, as −1 ≤ bj ≤ 1, we can use the

expansion [30] eizbj = J0(z) + 2
∑∞

k=1 i
kJk(z)Tk(bj) , where Jk(z) is the Bessel function

of integer order k, to write Eq. (8) as

Ψ(t) =

[
J0(z)I + 2

∞∑
k=1

Jk(z)T̂k(B)

]
Ψ(0) . (9)

Here T̂k(B) = ikTk(B) is a matrix-valued modified Chebyshev polynomial that is defined

by T̂0(B)Ψ(0) = Ψ(0), T̂1(B)Ψ(0) = iBΨ(0) and the recursion

T̂k+1(B)Ψ(0) = 2iBT̂k(B)Ψ(0) + T̂k−1(B)Ψ(0) , (10)

for k ≥ 1. As ‖T̂k(B)‖ ≤ 1 by construction and |Jk(z)| ≤ |z|k/2kk! for z real [30], the

resulting error vanishes exponentially fast for sufficiently large K. Thus, we can obtain

an accurate approximation by summing contributions in Eq. (9) with k ≤ K only. The

number K is fixed by requiring that |Jk(z)| < κ for all k > K. Here, κ is a control

parameter that determines the accuracy of the approximation. For fixed κ, K increases

linearly with z = t‖H‖1 (there is no requirement on t being small). ¿From numerical

analysis it is known that for fixed K, the Chebyshev polynomial is very nearly the same

polynomial as the minimax polynomial [31], i.e. the polynomial of degree K that has

the smallest maximum deviation from the true function, and is much more accurate

than for instance a Taylor expansion of the same degree K. In practice, K ≈ z.

In a strict sense, the one-step method does not yield an orthogonal approximation.

However, for practical purposes it can be viewed as an extremely stable time-integration

algorithm because it yields an approximation to the exact time evolution operator

U(t) = etH that is exact to nearly machine precision [24, 25]. This also implies that

within the same precision ∇·(µH(t)) = ∇·(µH(t = 0)) and ∇·(εE(t)) = ∇·(εE(t = 0))

holds for all times, implying that the numerical scheme will not produce artificial charges

during the time integration [2, 3].
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3. Implementation

The basic steps in the construction of the product-formula and one-step algorithms

are best illustrated by considering the simplest case, i.e. the Maxwell equations of a

1D homogeneous problem. From a conceptual point of view nothing is lost by doing

this: the extension to 2D and 3D nonhomogeneous problems is straigthforward, albeit

technically non-trivial [11, 12, 24, 25].

We consider a system, infinitely large in the y and z direction, for which ε = 1

and µ = 1. Under these conditions, the Maxwell equations reduce to two independent

sets of first-order differential equations [1], the transverse electric (TE) mode and the

transverse magnetic (TM) mode [1]. As the equations of the TE- and TM-mode differ

by a sign we can restrict our considerations to the TM-mode only. The magnetic field

Hy(x, t) and the electric field Ez(x, t) of the TM-mode in the 1D cavity of length L are

solutions of
∂

∂t
Hy(x, t) =

∂

∂x
Ez(x, t) ,

∂

∂t
Ez(x, t) =

∂

∂x
Hy(x, t), (11)

subject to the boundary condition Ez(0, t) = Ez(L, t) = 0 [1]. Note that the divergence

of both fields is trivially zero.

Following Yee [4], to discretize Eq.(11), it is convenient to assign Hy to odd and Ez

to even numbered lattice sites. Using the second-order central-difference approximation

to the first derivative with respect to x, we obtain

∂

∂t
Hy(2i + 1, t) = δ−1(Ez(2i + 2, t) − Ez(2i, t)), (12)

∂

∂t
Ez(2i, t) = δ−1(Hy(2i + 1, t) −Hy(2i− 1, t)), (13)

where we have introduced the notation A(i, t) = A(x = iδ/2, t). The integer i labels the

grid points and δ denotes the distance between two next-nearest neighbors on the lattice

(hence the absence of a factor two in the nominator). We define the n-dimensional vector

Ψ(t) by

Ψ(i, t) =

{
Hy(i, t), i odd

Ez(i, t), i even
. (14)

The vector Ψ(t) contains both the magnetic and the electric field on the lattice points

i = 1, . . . , n. The i-th element of Ψ(t) is given by the inner product Ψ(i, t) = eTi · Ψ(t)

where ei denotes the i-th unit vector in the n-dimensional vector space. Using this

notation (which proves most useful for the case of 2D and 3D for which it is rather

cumbersome to write down explicit matrix representations), it is easy to show that

Eqs.(12) and (13) can be written in the form (2) where the matrix H is given by

H =




0 δ−1

−δ−1 0 δ−1

. . .
. . .

. . .

−δ−1 0 δ−1

−δ−1 0




= δ−1
n−1∑
i=1

(
ei eTi+1 − ei+1e

T
i

)
.(15)
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We immediately see that H is sparse and skew-symmetric by construction.

3.1. Yee-type algorithms

First we demonstrate that the Yee algorithm fits into the product-formula approach.

For the 1D model (15) it is easy to see that one time-step with the Yee algorithm

corresponds to the operation

UY ee
1 (τ) = (I + τA)(I − τAT ) = eτAe−τA

T

, (16)

where

A = δ−1
n−1∑′

i=2

(
ei eTi−1 − ei eTi+1

)
, (17)

and we used the arrangements of H and E fields as defined by Eq.(14). We use the

notation
∑′ to indicate that the stride of the summation index is two.

Note that since A2 = 0 we have eτA = 1+τA exactly. Therefore we recover the time-

step operator of the Yee algorithm using the first-order product formula approximation

to eτH and decomposing H = A − AT . However, the Yee algorithm is second-order,

not first order, accurate in time [2, 3]. This is due to the use of a staggered grid in

time [2, 3]. To perform one time step with the Yee algorithm we need to know the

values of Ez(t) and Hy(t + τ/2), not Hy(t). Another method has to supply the Hy-field

at a time shifted by τ/2.

Within the spirit of this approach, we can easily eliminate the staggered-in-time

grid at virtually no extra computational cost or progamming effort (if a conventional

Yee code is available) by using the second-order product formula

UY ee
2 (τ) = eτA/2e−τA

T

eτA/2 = (I + τA/2)(I − τAT )(I + τA/2). (18)

The effect of the last factor is to propagate the Hy-field by τ/2. The middle factor

propagates the Ez-field by τ . The first factor again propagates the Hy field by τ/2.

In this scheme all EM fields are to be taken at the same time. The algorithm defined

by UY ee
2 (τ) is second-order accurate in time by construction [17]. Note that eτA/2 is

not orthogonal so nothing has been gained in terms of stability. Since [UY ee
2 (τ)]m =

e−τA/2[UY ee
1 (τ)]me+τA/2, we see that, compared to the original Yee algorithm, the extra

computational work is proportional to (1 + 2/m), hence negligible if the number of time

steps m is large.

According to the general theory outlined in Sec.2, the expression

UY ee
4 (τ) = UY ee

2 (aτ)UY ee
2 (aτ)UY ee

2 ((1 − 4a)τ)UY ee
2 (aτ)UY ee

2 (aτ), (19)

defines a fourth-order accurate Yee-like scheme, the realization of which requires almost

no effort once UY ee
2 has been implemented. It is easy to see that the above construction of

the Yee-like algorithms holds for the much more complicated 2D, and 3D inhomogeneous

case as well. Also note that the fourth-order Yee algorithm UY ee
4 does not require extra

storage to hold field values at intermediate times.
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3.2. Unconditionally stable algorithms

Guided by previous work on Schrödinger and diffusion problems [17], we split H into

two parts

H1 = δ−1
n−1∑′

i=1

(
ei eTi+1 − ei+1e

T
i

)
, (20)

H2 = δ−1
n−2∑′

i=1

(
ei+1e

T
i+2 − ei+2e

T
i+1

)
. (21)

such that H = H1 + H2. In other words we divide the lattice into odd and even

numbered cells. According to the general theory given above, the first-order algorithm

is given by Ũ1(τ). Clearly both H1 and H2 are skew-symmetric block-diagonal matrices,

containing one 1 × 1 matrix and (n − 1)/2 real, 2 × 2 skew-symmetric matrices. As

the matrix exponential of a block-diagonal matrix is equal to the block-diagonal matrix

of the matrix exponentials of the individual blocks, the numerical calculation of eτH1

(or eτH2) reduces to the calculation of (n− 1)/2 matrix exponentials of 2 × 2 matrices.

Each of these matrix exponentials only operates on a pair of elements of Ψ(t) and leaves

other elements intact. The indices of each of these pairs are given by the subscripts of

e and eT . Using the Ũ1(τ) algorithm it is easy to construct the unconditionally stable,

higher-order algorithms Ũ2(τ) and Ũ4(τ), see Eq.(6) and Eq.(7).

3.3. One-step algorithm

The one-step algorithm is based on the recursion Eq.(10). Thus, the explicit form

Eq.(15) is all we need to implement the matrix-vector operation (i.e. Ψ′ ← HΨ)

that enters Eq.(10). The coefficients Jk(z) (and similar ones if a current source is

present) should be calculated to high precision. Using the recursion relation of the

Bessel functions, all K coefficients can be obtained with O(K) arithmetic operations

[31], a neglible fraction of the total computational cost for solving the Maxwell equations.

Performing one time step amounts to repeatedly using recursion (10) to obtain

T̂k(B)Ψ(0) for k = 2, . . . , K, multiply the elements of this vector by the appropiate

coefficients and add all contributions. This procedure requires storage for two vectors of

the same length as Ψ(0) and some code to multiply such a vector by the sparse matrix

H . The result of performing one time step yields the solution at time t, hence the name

one-step algorithm. In contrast to what Eq.(10) might suggest, the algorithm does not

require the use of complex arithmetic.

4. Numerical experiments

Except for the conventional Yee algorithm, all algorithms discussed in this paper operate

on the vector of fields defined at the same time t. We use the one-step algorithm (with

a time step τ/2) to compute Ez(τ/2) and Hy(τ/2). Then we use Ez(0) and Hy(τ/2)

as the initial values for the Yee algorithm. In order to permit comparison of the final
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Figure 1. The error ‖Ψ̃(t)− Ψ̂(t)‖/‖Ψ̂(t)‖ at time t = 100 as a function of the time
step τ for five different FDTD algorithms, plotted on a double logarithmic scale. The
initial values of the EM fields are random, distributed uniformly over the interval [-1,1],
on a grid of n = 5001 sites with δ = 0.1 (corresponding to a physical length of 250.05).
Ψ̂(t) is the vector obtained by the one-step algorithm κ = 10−9, using K = 2080
matrix-vector operations Ψ′ ← MΨ. The results of the Yee and UY ee

2 algorithm lie
on top of each other. Lines are guides to the eye.

result of the conventional Yee algorithm with those of the other methods, we use the

one-step algorithm once more to shift the time of the Hy field by −τ/2. This procedure

to prepare the initial and to analyse the final state of the Yee algorithm does in fact

make the results of the Yee algorithm look a little more accurate than they would be if

the exact data of the τ/2-shifted fields were not available.

We define the error of the solution Ψ̃(t) for the wave form by ‖Ψ̃(t)−Ψ̂(t)‖/‖Ψ̂(t)‖
where Ψ̂(t) is the vector of EM fields obtained by the one-step algorithm. Thereby we

have already assumed that the one-step algorithm yields the exact (within numerical

precision) results but this has to be demonstrated of course. A comparison of the results

of an unconditionally stable algorithm, e.g. Ũ4 with those of the one-step algorithm

is sufficient to show that within rounding errors the latter yields the exact answer.

Using the triangle inequality ‖Ψ(t) − Ψ̂(t)‖ ≤ ‖Ψ(t) − Ψ̃(t)‖ + ‖Ψ̃(t) − Ψ̂(t)‖ and

the rigorous bound ‖Ψ(t) − Ψ̃(t)‖ ≤ c4τ
4t‖Ψ(0)‖ [17], we can be confident that the

one-step algorithm yields the numerically exact answer if i) this rigorous bound is not

violated and ii) if ‖Ψ̃(t) − Ψ̂(t)‖ vanishes like τ 4.

¿From the data in Fig.1 we conclude that the error of algorithm Ũ4 vanishes like τ 4,

demonstrating that the one-step algorithm yields the numerically exact result. The high

precision of the one-step algorithm also allows us to use it for genuine time stepping with
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arbitrarily large time steps, this in spite of the fact that strictly speaking, the one-step

algorithm is not unconditionally stable.

If the initial EM field distribution is random then, for sufficiently small τ , algorithm

Ũ2 is more accurate than the two second-order accurate Yee algorithms, as is clear from

Fig.1 [32]. However, this conclusion is biased by the choice of the model problem and

does not generalize. For the largest τ -values used in Fig.1, the Yee and UY ee
2 algorithm

are operating at the point of instability, signaled by the fact that the norm of Ψ(t)

grows rapidly, resulting in errors that are very large. If the initial state is a Gaussian

wave packet that is fairly broad, the Yee-type algorithms are much more accurate than

the unconditionally stable algorithms employed in this paper (results not shown). The

data of Fig.1 clearly show that for all algorithms, the expected behavior of the error as

a function of τ is observed only if τ is small enough.

The answer to the question which of the algorithms is the most efficient one crucially

depends on the accuracy that one finds acceptable. The Yee algorithm is no competition

for Ũ4 if one requires an error of less than 1% but then Ũ4 is not nearly as efficient (by

a factor of about 6) as the one-step algorithm. Increasing the dimensionality of the

problem favors the one-step algorithm [24, 25]. These conclusions seem to be quite

general and are in concert with numerical experiments on 1D, 2D and 3D systems [25].

A simple theoretical analysis of the τ dependence of the error shows that the one-step

algorithm is more efficient than any other FDTD method if we are interested in the

EM fields at a particular (large) time only [24, 25]. This may open possibilities to solve

problems in computational electrodynamics that are currently intractable. The Yee-like

algorithms do not conserve the energy of the EM fields and therefore they are less suited

for the calculation of the eigenvalue distributions (density of states), a problem for which

the Ũ4 algorithm may be the most efficient of all the algorithms covered in the paper.

The main limitation of the one-step algorithm lies in its mathematical justification.

The Chebyshev approach requires that H is diagonalizable and that its eigenvalues are

real or pure imaginary. The effect of relaxing these conditions on the applicability of

the Chebyshev approach is left for future research.

In this paper we have focused entirely on the accuracy of the time integration

algorithms, using the most simple discretization of the spatial derivatives. For practical

purposes, this is often not sufficient. In practice it is straightforward, though technically

non-trivial, to treat more sophisticated discretization schemes [2, 12] by the methodology

reviewed is this paper.
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Beam simulation tools for GEANT4 (and neutrino

source applications)

V. Daniel Elvira† , Paul Lebrun† , and

Panagiotis Spentzouris† §
† Fermilab, P.O. Box 500, Batavia, IL 60555, USA

Abstract. Geant4 is a tool kit developed by a collaboration of physicists and
computer professionals in the High Energy Physics field for simulation of the passage
of particles through matter. The motivation for the development of the Beam Tools
is to extend the Geant4 applications to accelerator physics. Although there are many
computer programs for beam physics simulations, Geant4 is ideal for modelling a beam
going through material or a system with a beam line integrated into a complex detector.
There are many examples in the current international High Energy Physics programs,
such as studies related to a future Neutrino Factory, a Linear Collider, and a very
Large Hadron Collider.

1. Introduction

Geant4 is a tool kit developed by a collaboration of physicists and computer professionals

in the High Energy Physics (HEP) field for simulation of the passage of particles through

matter. The motivation for the development of the Beam Tools is to extend the Geant4

applications to accelerator physics. The Beam Tools are a set of C++ classes designed to

facilitate the simulation of accelerator elements such as r.f. cavities, magnets, absorbers.

These elements are constructed from the standard Geant4 solid volumes such as boxes,

tubes, trapezoids, or spheres.

A variety of visualization packages are available within the Geant4 framework to

produce an image of the simulated apparatus. The pictures shown in this article were

created with Open Inventor [3], which allows direct manipulation of the objects on the

screen, with perspective rendering via the use of light.

Although there are many computer programs for beam physics simulations, Geant4

is ideal to model a beam passing through a material or to integrate a beam line with

a complex detector. There are many such examples in the current international High

Energy Physics programs.

§ Correspondence should be addressed to V. Daniel Elvira (daniel@fnal.gov)
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2. A brief introduction to Geant4

Geant4 is the object oriented C++ version of the Geant3 tool kit for detector simulation

developed at CERN. It is currently being used in many fields, such us HEP, space

exploration, and medicine.

As a tool kit, Geant4 provides a set of libraries, a main function, and a family

of initialization and action classes to be implemented by the user. These classes are

singlets, and their associated objects are constructed in main. The objects contain the

information related to the geometry of the apparatus, the fields, the beam, and actions

taken by the user at different times during the simulation. The Geant4 library classes

start with the G4 prefix. The example described in this section, called MuCool, uses only

some of the many available user classes.

2.1. Detector and field construction

The detector and field geometry, properties, and location are implemented in the

constructor and methods of the MuCoolConstruct user class, which inherits from

G4VUserDetectorConstruction. In the Construct() method the user does the

initialization of the electromagnetic field and the equation of motion. There are a variety

of Runge-Kutta steppers to select from, which perform the integration to different levels

of accuracy. Next comes the detector description, which involves the construction

of solid, logical, and physical volume objects. They contain information about the

detector geometry, properties, and position, respectively. Many solid types, or shapes,

are available. For example, cubic (box) or cylindric shapes (tube), are constructed as:

G4Box(const G4String& pName, G4double pX, G4double pY, G4double pZ);

G4Tubs(const G4String& pName, G4double pRMin, G4double pRMax,

G4double pDz, G4double pSPhi, G4double pDPhi);

where a name and half side lengths are provided for the box. Inner, outer radii,

half length, and azimuthal coverage are the arguments of a cylinder (tube). A logical

volume is constructed from a pointer to a solid, and a given material:

G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial,

const G4String& name)

The physical volume, or placed version of the detector is constructed as:

G4PVPlacement(G4RotationMatrix *pRot, const G4ThreeVector &tlate,

const G4String& pName, G4LogicalVolume *pLogical,

G4VPhysicalVolume *pMother, G4bool pMany, G4int pCopyNo);

where the rotation and translation are performed with respect to the center of its

“mother” volume (container). Pointers to the associated logical volume, and the copy

number complete the list of arguments.
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2.2. Physics processes

Geant4 allows the user to select among a variety of physics processes which may

occur during the interaction of the incident particles with the material of the

simulated apparatus. There are electromagnetic, hadronic and other interactions

available like: “electromagnetic”, “hadronic”, “transportation”, “decay”, “optical”,

“photolepton hadron”, “parameterisation”. The different types of particles and

processes are created in the constructor and methods of the MuCoolPhysicsList user

class, which inherits from G4VUserPhysicsList.

2.3. Incident particles

The user constructs incident particles, interaction verteces, or a beam by typing code in

the constructor and methods of the MuCoolPrimaryGeneratorAction user class, which

inherits from

G4VUserPrimaryGeneratorAction.

2.4. Stepping actions

The MuCoolSteppingAction user action class inherits from G4UserSteppingAction. It

allows the performance of actions at the end of each step during the integration of the

equation of motion. Actions may include killing a particle under certain conditions,

retrieving information for diagnostics, and others.

2.5. Tracking actions

The MuCoolTrackingAction user action class inherits from G4UserTrackingAction.

For example, particles may be killed here based on their dynamic or kinematic

properties.

2.6. Event actions

The MuCoolEventAction user action class inherits from G4UserEventAction. It

includes actions performed at the beginning or the end of an event; that is, immediately

before or after a particle is processed through the simulated apparatus.

3. Description of the beam tools classes

This Section is devoted to explain how to simulate accelerator elements using the Beam

Tools. Brief descriptions of each class and constructor are included.

3.1. Solenoids

The Beam Tools provide a set of classes to simulate realistic solenoids. These are

BTSheet, BTSolenoid, BTSolenoidLogicVol and BTSolenoidPhysVol.
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• The BTSheet class inherits from G4MagneticField. The class objects are field

maps produced by an infinitesimally thin solenoidal current sheet. The class data

members are all the parameters necessary to generate analytically a magnetic

field in r-z space (there is ϕ symmetry). No geometric volumes or materials

are associated with the BTSheet objects. GetFieldValue is a concrete method

of BTSheet inherited from G4Field, through G4MagneticField. It returns the field

value at a given point in space and time.

• The BTSolenoid class inherits from G4MagneticField. The class objects are field

maps in the form of a grid in r-z space, which are generated by a set of BTSheet.

The sheets and the BTSpline1D objects, containing the spline fits of Bz and Br

versus z for each r in the field grid, are data members of BTSolenoid. No geometric

volumes or materials are associated with BTSolenoid. The field at a point in space

and time is accessed through a GetFieldValue method, which performs a linear

interpolation in r of the spline fit objects.

• The BTSolenoidLogicVol class defines the material and physical size of the coil

system which is represented by the set of current sheets. A BTSolenoid must

first be constructed from a list of current BTSheets. The BTSolenoid object is a

data member of BTSolenoidLogicVol. The BTSolenoidLogicVol class constructor

creates G4Tubs solid volumes and associated logical volumes for the coil system, the

shielding, and the empty cylindric regions inside them. Only the logical volumes

are constructed here. No physical placement of a magnet object is done.

• The BTSolenoidPhysVol class is the placed version of the

BTSolenoidLogicVol. It contains the associated BTSolenoid object as a data

member, as well as the pointers to the physical volumes of its logical constituents.

Figure 1 shows a group of four solenoidal copper coil systems modeled with four

infinitesimally thin sheets equally spaced in radius.

Figure 1. Left: a solenoidal copper coil system modeled with four infinitesimally thin
sheets equally spaced in radius. Right: array of four solenoids separated by gaps.
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3.2. Magnetic field maps

The Beam Tools also allow to simulate generic field maps using the BTMagFieldMap and

BTMagFieldMapPlacement classes.

• BTMagFieldMap class inherits from G4MagneticField. The constructor reads the

map information from an ASCII file containing the value of the field at a set of

nodes of a grid. No geometric objects are associated with the field. The field at

a point in space and time is accessed through a GetFieldValue method, as in the

case of the solenoid.

• The BTMagFieldMapPlacement class is a placed BTMagFieldMap object. Only the

field is placed because there is no coil or support system associated with it.

3.3. r.f. systems: pill box cavities and field maps

This section explains how to simulate realistic r.f. systems using Pill Box

cavities. The Beam Tools package provides the classes: BTAccelDevice, BTPillBox,

BTrfCavityLogicVol, BTrfWindowLogicVol, and BTLinacPhysVol.

• BTAccelDevice.hh class is abstract. All accelerator device classes are derived from

this class, which inherits from G4ElectroMagneticField.

• The BTPillBox class inherits from BTAccelDevice and represents single π/2 Pill

Box field objects. No solid is associated with BTPillBox. The time dependent

electric field is computed using a simple Bessel function. It is accessed through a

GetFieldValue method. The field is given by:

Ez = Vp J0

(
2πν

c
r
)

sin(φs + 2πνt) (1)

Bϕ =
Vp
c
J1

(
2πν

c
r
)

cos(φs + 2πνt) (2)

where Vp is the cavity peak voltage, ν the wave frequency, φs the synchronous phase,

and J0,1 the Bessel functions evaluated at
(

2πν
c
r
)
.

• The BTrfMap class also inherits from BTAccelDevice. The class objects are

electromagnetic field maps which represent an r.f. cavity. In this way, complex

r.f. fields can be measured or generated and later included in the simulation. The

field map, in the form of a grid, is read in the BTrfMap constructor from an ASCII

file. The BTrfMap object is a field, with no associated solid. A GetFieldValue

method retrieves the field value at a point in space and time.

• The BTrfCavityLogicVol class constructor creates solid and logical volumes

associated with the r.f. field classes. In the case of a map, a vacuum cylinder

ring represents its limits. In addition to geometric and material parameters of the

cavity, the class contains field and accelerator device information.
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• The BTrfWindowLogicVol class is used with BTCavityLogicVol to create the

geometry and logical volume of r.f. cavity windows, including the support structure,

which may be placed to close the cavity iris at the end caps.

• The BTLinacPhysVol class is a placed linac object. A linac is a set of contiguous

r.f. cavities, including the field, the support and conductor material, and windows.

The BTLinacPhysVol constructor is overloaded. One version places a linac of Pill

Box cavities and the other places field maps.

Fig. 2 shows a Pill Box cavity (in red) with windows. It also shows a cooling

channel where solenoids are embedded in large low frequency cavities. Since the beam

circulates inside the solenoid, the cavity is represented by a field map (in red) restricted

to a cylindric volume with radius slightly smaller than the inner radii of the magnets.

Figure 2. Left: a Pill Box cavity (in red), with windows (green). Right: low frequency
cooling channel. The red cylinders are the dummy software structure representing the
limits of the electric field maps.

3.4. Tuning the r.f. cavity phases

One of the critical elements of an accelerator simulation is the “r.f. tuning”. Each cavity

must be operated at the selected synchronous phase at an instant coincident with the

passage of the beam. The r.f. wave must be therefore synchronized with the beam, more

specifically, with the region of beam phase space that the user needs to manipulate. For

this, there is the concept of a reference particle, defined as the particle with velocity

equal to the phase velocity of the r.f. wave. If the kinematic and dynamic variables

of the reference particle are set to values which are coincident with the mean values of

the corresponding variables for the beam, the r.f. system should affect the mean beam

properties in a similar way it affects the reference particle.

The Beam Tools allow the use of a “reference particle” to tune the r.f. system before

processing the beam. The time instants the particle goes through the phase center of
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each cavity are calculated and used to adjust each cavity phase to provide the proper

kick, at the selected synchronous phase.

3.5. Absorbers

The Beam Tools provide a set of classes to simulate blocks of material in the path of

the beam. The constructors create the solid, logical, and physical volumes in a single

step. They are all derived from the abstract class of absorber objects BTAbsObj.

• BTCylindricVessel is a system with a central cylindric rim, and two end cup rims

with thin windows of radius equal to the inner radius of the vessel. The material is

the same for the vessel walls and windows, and the window thickness is constant.

The vessel is filled with an absorber material.

• Two classes are available to simulate absorber lenses:

BTParabolicLense and BTCylindricLense. The first one is a class of parabolic

objects with uniform density, and the second a cylinder object with the density

decreasing parabolically as a function of radius. From the point of view of

the physics effect on the beam, both objects are almost equivalent. The

BTParabolicLense is built as a set of short cylinders. The radius is maximum

for the central cylinder and reduces symmetrically following a parabolic equation

for the others in both sides. The BTCylindricLense object is built from concentric

cylinder rings of the same length, different radius, and different densities to mimic

a real lens.

The gray cylinder in Fig. 3 is a schematic representation of a liquid hydrogen vessel

with aluminum walls and windows. Figure 3 also shows a set of six parabolic lenses in

the center of a complex magnetic system. The lenses are placed to mitigate the effect

of the decrease in 〈pz〉 at large radii in a magnetic field flip region, using an emittance

exchange mechanism.

Wedge absorbers are also useful in some cases. They can be easily constructed

using the Geant4 trapezoid shape G4Trap.

4. Applications to neutrino factory feasibility studies

The neutrino beam in a Neutrino Factory would be the product of the decay of a low

emittance muon beam. Muons would be the result of pion decay, and pions would be

the product of the interaction of an intense proton beam with a carbon or mercury

target. Thus the challenge in the design and construction of a Neutrino Source is the

muon cooling section, aimed to reduce the transverse phase space by a factor of ten, to

a transverse emittance of approximately εx ∼1 cm.

The ionization cooling technique uses a combination of linacs and light absorbers

to reduce the transverse emittance of the beam, while keeping the longitudinal motion

under control. There are two competing terms contributing to the change of transverse
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Figure 3. Left: cooling unit cell composed of a solenoid (blue), surrounding the r.f.
system (red) and the cylindric absorber vessel (gray). Right: six parabolic lenses (gray)
inside a complex magnetic field.

emittance εx along the channel. One is a cooling term, associated with the process of

energy loss, and the other is a heating term related to multiple scattering.

4.1. The double flip cooling channel

The double flip cooling channel is a system consisting of three homogeneous solenoids

with two field-flip sections. The first flip occurs at a relatively small magnetic field,

B=3 T, to keep the longitudinal motion under control. The field is then increased

adiabatically from -3 to -7 T, and a second field flip performed at B=7 T. Figure 4

shows a side view of a lattice unit cell, consisting of a six 201 MHz Pill Box cavities

linac and one liquid hydrogen absorber, inside a solenoid. Details on the design and

performance of this channel are available in Ref. [6].

4.2. The helical channel

The helical channel cools both in the transverse and longitudinal directions. The lattice

is based on a long solenoid with the addition of a rotating transverse dipole field, lithium

hydride wedge absorbers, and 201 MHz r.f. cavities. Figure 4 shows a side view of the

helical channel, including the wedge absorbers, idealistic (thin) r.f. cavities, and the

trajectory of the reference particle. The design details and performance of this channel

are described in Ref. [7].

4.3. The low frequency channel

This is a design based on 44/88 MHz r.f. technology. A unit cell is composed of four

solenoids embedded in four r.f. cavities, followed by a liquid hydrogen absorber. Figure 2

shows a unit cell of the low frequency channel, including the solenoids, the absorber,
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and the relevant section of the r.f. field map (inside the magnets). More information

about this channel may be found in Ref. [5].

4.4. Other systems

Among other simulations performed with the Beam Tools for Geant4 we may cite: the

Alternate Solenoid Channel (sFoFo) [8], and a High Frequency Buncher/Phase Rotator

scheme for the neutrino factory [9, 10].

Figure 4. Left: side view of the double flip channel unit cell, including the solenoid,
the six Pill Box cavities, and the absorber. Right: image of the helical channel,
including the wedge absorbers (yellow and green), idealistic thin r.f. cavities (blue),
and the trajectory of the reference particle (red).

5. Summary

The Beam Physics Tools for Geant4 are used in numerous accelerator studies, reported

in conference proceedings and proposals. Geant4 is especially suited to systems where

accelerators, shielding, and detectors must be studied jointly with a simulation. The

Beam Tool libraries, a software reference manual, and a user’s guide, are available from

the Fermilab Geant4 web page [11].
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Muon cooling rings for the ν factory and the µ+µ− collider

Yasuo Fukui (UCLA), David B. Cline (UCLA),
Alpher A. Garren (UCLA), and Harold G. Kirk (BNL)

Abstract. We designed two storage ring models for 6 dimensional phase space cooling of
intense muon beam for the neutrino factory and the muon collider, by using the SYNCH code.
We demonstrate the 6 dimensional muon phase space cooling with the first 8 cell cooling ring
model by using a tracking simulation code, ICOOL, with distributed Lithium lenses with the β
at 30 cm, wedge absorbers, and RF cavities, with the muon momentum at 500 MeV/c. Phase
space cooling is done by the transverse ionization cooling, and the wedge absorbers contribute
to the emittance exchange from the longitudinal phase space to the transverse phase space. The
second muon cooling ring has a 1.25 m long Lithium lens with the β at 1 cm in a straight section
of a race track ring. Tracking simulation study is in progress to demonstrate the 6 dimensional
phase space cooling of muon beam.

1. Introduction

In order to reduce the 6 dimensional phase space of muons within their lifetime, the ionization
cooling is considered to be one of the most promising methods, where both transverse and
longitudinal momenta are reduced due to the energy loss in absorbers, and the only longitudinal
components of the muon momenta are restored through the accelerating fields of RF cavities.
The multiple Coulomb scattering contributes to heat the transverse phase space. And the
normalized transverse equilibrium depends on material kinds and the transverse beta function
where an absorber is located. Initially, we designed muon cooling rings with quadrupole
magnets, RF cavities, wedge absorbers of liq. H2. [1] In order to increase the acceptance
and to reduce the circumference, we then designed muon cooling rings with zero-gradient
dipole magnets with edge focusing, RF cavities, and liq. H2 wedge absorbers. Work is still in
progress in improving the cooling performance in muon cooling rings.

Lithium lens is an active focusing element with energy absorber function at the same time.
With β at 1 cm with high current density Lithium lenses, the normalized transverse emittance
can be at 100-200 mm · mrad, which is low enough for a µ+µ− collider.

By using the muon cooling rings and repeat the phase space cooling multiple times, the
cost of the muon cooling channel can be reduced for the Neutrino Factory designs, and by
using Lithium Lens with small beta in a storage ring, the 6 dimensional phase space cooling
can be achieved for the muon collider designs.

2. Phase space cooling in a muon cooling ring

Figure 1 shows a schematic diagram of a ν Factory and a µ+µ− collider. Two stages of muon
phase space cooling rings are used in the figure.

In the longitudinal phase space, a wedge absorber in a dispersive region can reduce the
energy spread of muons, where the straggling of the dE/dx and the slope of the dE/dx as a
function of the muon momenta contributes to heat the longitudinal phase space by widening
the energy spread. The wedge absorbers perform the emittance exchange from the longitudinal
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phase space to the transverse(horizontal) phase space, due to the change of the muon trajectories
in a storage ring when relative muon momenta were changed through absorbers in dispersive
regions. Table 1 lists a comparison of an electron damping ring and a muon cooling ring in
elements of damping, excitation, and the partition numbers in the transverse phase space and
in the longitudinal phase space. Partition numbers in the Robinson’s theorem are also listed.
The muon cooling ring with wedge absorbers is similar to the well known electron damping
rings in the damping and excitation terms.

Figure 1 shows a schematic diagram of a ν Factory and a µ+µ− collider. Two stages of
muon phase space cooling rings are used in the figure.

Ring Cooler

Proton Linac

Proton Driver
Target

Neutrino Factory

FFAG
π Phase Rotation

Coolingµ
Ring Cooler

Higgs Factory
Collider Ring

Muon Decay Ring

Race Track Linac

Figure 1. A schematic diagram of a ν Factory and a µ+µ− collider

We designed an eight cell ring, with eight 45 degree bending cells, with a storage ring
design code, SYNCH [3], by using two sets of zero-gradient dipole magnets with edge focusing.
Figure 2 shows a schematic diagram of the eight cell muon cooling ring, and a blow-up of a
half of a 45 degree bending lattice. A circumference is 28.8 m and a radius is 4.6 m. 2.5 cm
long liq.H2 wedge absorber and 7 cm long Lithium lens with field gradient of 3.3 Tesla/m, a
set of two 0 gradient dipole magnets with bending angles of 44 degree and -22 degree with
edge focusing, and a half of a 201 MHz RF cavity is shown in a half of a 45 degree cell. The
cell length is 3.6 m. Figure 3 shows βx, βy and η in a 45 degree bending cell in the SYNCH
modeling. The maximum βx is 1.8 m, and the maximum βx is 2.7 m at the outside dipoles.
At the center of the 45 degree cell where the liq.H2 wedge absorbers and Lithium lenses are
placed, the minimum βx, βy are 30 cm each, and the maximum η, the dispersion, is 38 cm.

SYNCH is a linear matrix program to design a storage ring. It does not have any of
the following: acceleration through RF cavities, dE/dx energy loss and straggling, multiple
Coulomb scattering in the absorbers or in the Lithium lenses, and the effect of nonlinear fields
on particle tracking. We use the fitted values of the ring parameters of SYNCH as input
parameters of the ICOOL [4], a tracking code with nonlinear field configurations.

Table 2 lists parameters of the eight cell muon cooling ring. Figure 4 shows evolution of
the normalized transverse emittances, εnx, εny, and the normalized longitudinal emittance, εnz
and a merit factor as a function of the path length along the central trajectory. Here, x is the
horizontal coordinate and its positive direction goes outside of the muon cooling ring, y is the
vertical coordinate, and the z goes along the central trajectory with beam. With the minimum
β at 30 cm at the wedge absorbers and the Lithium lenses, the expected normalized vertical
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Liq. Hydrogen 
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Figure 2. A top view of a muon cooling ring and a schematic diagram of a half of a 45 degree
bending cell

Path Length (m)

β D(m) (m)

0

5

0

1

1 2 30

D

β

?

@

β

Figure 3. βx, βy and η as a function of z in a 45 degree bending cell

equilibrium emittance εny,equi is 1.9 mm·rad, and we obtained 2.3 mm·rad in the ICOOL
simulation, which is close enough to the expected number.

A merit factor is defined as a ratio of the initial normalized 6 dimensional emittance to
the final normalized 6 dimensional emittance, multiplied by the muon transmission, without
including the muon decay factor. With the average muon momentum at 500 MeV/c, the average
survival factor of muons due to decay at z at 1200 m is 69 %. The merit factor in this simulation
is around 10 at z at 1200 m, which corresponds to 42 turns.



86

z (m)

εnx (m*rad)

z (m)

εny (m*rad)

z (m)

εnz (m)

Merit Factor

z (m)

Figure 4. x, y, z normalized emittances and a merit factor as a function of z in the ICOOL
tracking simulation on the 8 cell muon cooling ring

3. A muon cooling ring with a Lithium lens with β at 1 cm

We designed a race track ring model where a 1.08 m Lithium lens with β at 1 cm, sandwiched
by two 9 cm long matching Lithium lens with β at 5 cm, is installed in a straight section.
Table 2 lists parameters of the race track muon cooling ring. Figure 5 shows the schematic
diagram of the race track ring. The circumference is 64.8 m, the straight sections are 18.0 m
each. Figure 6 shows βx, βy inside two matching Lithium lenses and a central Lithium lens.
Matching of the β function through a matching Lithium lens is done by:

βmatch =
√
βin · βout, λosci/2 = π/2 · βmatch

where βmatch, βin, βout, andλosci are an equilibrium beta function of the matching Lithium lens,
beta functions outside the matching Lithium lens, and the wave length of the beta oscillation
in the matching lens.

The set of Lithium lenses is connected to a special matching lattice which is shown in
Figure 7. Maximum βx and βy are 10.0 m and 12.9 m, respectively, in a quadrupole magnet
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close to the Lithium lens set. Figure 8 shows βx and βy in four 4.50 m long straight cells on
the other side of the straight section. No Lithium lens is installed here. Figure 9 shows βx, βy,
and η in the whole race track muon cooling ring, including the Lithium lens insert.

radius    =    4.6 m

circonf. =   64.8 m

Lithium Lens

Figure 5. A schematic diagram of a race track muon cooling ring with a Lithium lens with the
β at 1 cm

Path Length (m)

β (m)

0

0.5

0 1

β

Figure 6. βx, βy as a function of z in two matching Lithium lenses and in a central Lithium
lens where the minimum β is 1 cm.
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Figure 7. βx, βy as a function of z in a straight section with a Lithium lens at the β at 1 cm
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Figure 8. βx, βy as a function of z in a straight section without a Lithium lens

4. Conclusion

We designed an eight-cell muon cooling ring using SYNCH, a storage ring design code, with
zero-gradient dipole magnets with edge focusing. We demonstrated the 6 dimensional muon
phase space cooling in the eight cell ring with a tracking simulation code, ICOOL, with liq. H2

wedge absorbers, Lithium lenses with β at 30 cm, RF cavities to compensate the z component
of the muon momentum.

We designed a race track muon cooling ring with 1 m long Lithium lens with β at 1 cm,
with the SYNCH code. Study is in progress to obtain the 6 dimensional muon cooling in this
cooling ring.
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Figure 9. βx, βy and η as a function of z in a race track ring

Table 1. Comparison of an electron damping ring and the Muon Cooling ring
e Damping Ring

phase space x y z
Damping x’ synch.rad. y’ synch.rad. synch.rad.

+RF +RF ∆E ∝ E4

Excitation x-x’ quantum fluct.
orbit change ∝ E3.5

Partition # (1 −D) 1 2 + D

µ Cooling Ring with Wedge Absorbers
phase space x y z
Damping x’ y’ ∆E ∝ E

Ion.Cooling Ion.Cooling in Wedge
Excitation x-x’ dE

dx
straggling

orbit change
mult.scat. mult.scat. ∝ E2

Partition # 2-d 2 d
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Table 2. Parameters of an 8 cell muon cooling ring and a racetrack muon cooling ring
8 Cell Ring Racetrack Ring

muon momentum 500 500 MeV/c
Circumference 28.8 64.8 m
straight section length 36.0 m
Structure of half cell 2 dipoles with edges 2 dipoles with edges
Number of bending cells 8 8
Number of straight cells 0 8
bend cell length 3.6 3.6 m
straight cell length 4.5 m
max. β bending cell 1.8/2.7 1.8/2.7 m
min. β bending cell 0.30 0.30 m
max. η bending cell 0.38 0.38 m
max. β straight cell 10.0/12.9, 6.5/6.3 m
min. β straight cell 0.30 m
max. Quad grad 22.7 Tesla/m
length of Lithium lens 59 125 cm/turn
equilib. β in Lithium lens 0.30 0.01/0.05 m
dBφ/dr of Lithium lens 0.034 167/5.5 Tesla/cm
length of liq.H2 wedge absorber 0.40 0.40 m/turn
energy loss 57 115 MeV/turn
dipole length 0.2 0.2 m
dipole bend angles 44.2, -21.7 44.2, -21.7 degree
dipole edge angles 30/-3, -11/-11 30/-3, -11/-11 degree
dipole magnetic field 6.5, -3.2 6.5, -3.2 tesla
RF cavity length 1.0 1.0 m
number of RF cavities 8 15
RF frequency 201 201 MHz
total drift space 21.4 44.8 m/turn
Cell tunes bend cell 0.72/0.70 0.72/0.70
Cell tunes straight cell 0.39/0.47, 0.77/1.22
Ring tunes 3.09/3.75 2.87/2.80
chromaticities bend cell -0.86/-0.69 -0.86/-0.69
chromaticities straight cell -2.75/-2.49, -9.29/0
momentum compaction -0.062 -0.062
transition gamma 4.02 4.02
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Abstract.  Since 1986, the Los Alamos Accelerator Code Group (LAACG) has 
received funding from the U.S. Department of Energy. The LAACG is a national 
resource for members of the accelerator community who use and/or develop 
software for the design and analysis of particle accelerators, and beam transport 
systems. We distribute accelerator design and simulation codes such as the 
POISSON/SUPERFISH group of codes, PARMELA, PARMILA, TRACE 3-D, 
and others via the world-wide web, and maintain an online compendium of 
accelerator codes at http://laacg1.lanl.gov/laacg/componl.html. We presently have 
over 1300 registered users world-wide using our codes and accessing our website. 
An update of recent LAACG activities and projects for the upcoming year will be 
discussed. This work is supported by the U. S. Department of Energy Office of 
Science, Division of High Energy Physics. 

 

1.  Brief history of the Los Alamos Accelerator Code Group 

Since 1986, the Los Alamos Accelerator Code Group (LAACG) has received funding 
from the U.S. Department of Energy. The LAACG is a national resource for members 
of the accelerator community who use and/or develop software for the design and 
analysis of particle accelerators, and beam transport systems. We distribute accelerator 
design and simulation codes via the world-wide web and maintain an online 
compendium of accelerator codes at http://laacg1.lanl.gov/laacg/componl.html. Figure 
1 shows the website layout for the code compendium. We presently have over 1300 
registered users world-wide using our codes and accessing our website. The code group 
resides in the Accelerator Physics and Engineering Group, LANSCE-1, at Los Alamos 
National Laboratory. Initially, funding was received to maintain and document a 
standard version of POISSON/SUPERFISH, a collection of programs for calculating 
static magnetic and electric fields, and radio-frequency electromagnetic fields in either 
2-D Cartesian coordinates or axially symmetric cylindrical coordinates. Designers of 
modern high-energy physics machines use POISSON/SUPERFISH to design magnets, 
accelerator cavities, and other beam-line components. Significant improvements in the 
accuracy and ease of use of the POISSON/SUPERFISH group of codes have resulted 
due to the past efforts of members of the LAACG. In the early 1990s the LAACG 
added support of other workhorse accelerator design codes: PARMELA, PARMILA 
and TRACE 3-D. At about the same time, due to rapidly increasing desktop computing 
capabilities, the code group began migration of these programs from older mainframe 
computers to PC desktop machines. Now all the supported codes run on PC desktop 
machines. 

Inst. Phys. Conf. Ser. No 175
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Figure 1.  Code compendium website layout. 

 

2.  Impact of the LAACG 

The codes maintained by the LAACG are currently being used in the design and 
simulation of accelerators and beam delivery systems presently funded through several 
divisions of the DOE Office of Science and other funding sources. Many of these 
projects are of national importance such as the Spallation Neutron Source (SNS) now 
being constructed at Oak Ridge National laboratory, at SLAC for LCLS and NLC, at 
BNL for RHIC, at universities such as UCLA, the University of Maryland, the 
University of Indiana, and Michigan State University, and several companies in 
industry including Advanced Energy Systems and AccSys Technology, Inc.  

A review of major conference and workshop proceedings (e.g. the International 
Linac Conference, the Particle Accelerator Conference, the European Particle 
Accelerator Conference, the International Conference on the Application of 
Accelerators in Research and Industry, and others) shows that, in any given year, 
several hundred papers are published for which the research presented involved codes 
developed and maintained by the LAACG. Several of these publications also include 
comparisons between codes, indicating that similar alternate software is being 
developed at other institutions [1]. However, these codes are always benchmarked 
against the LAACG codes. Another trend that is visible is the development of software 
at other institutions that basically provides graphics interfaces and uses the LAACG 
codes as the calculation tools (or uses output from the LAACG codes as input for 
secondary calculations). 
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3.  Present LAACG activities 

Present LAACG activities include: (1) maintenance and enhancement of certain widely 
used software packages, including POISSON/SUPERFISH, PARMILA, PARMELA, 
PARMTEQ, and TRACE 3-D; (2) consultation, education, and gathering/dissemination 
of information related to computational accelerator physics; (3) the distribution of 
software and documentation via the Internet; and (4) maintenance of the official 
LAACG website. The continued high-level use of the above-mentioned codes, which 
have over 1300 registered users world-wide, demonstrates the great value of the 
LAACG to the national and international accelerator communities. Additionally, every 
year, the code group is pleased to grant the requests of instructors at universities and at 
special accelerator schools (USPAS, CERN) to use LAACG codes 
(POISSON/SUPERFISH, PARMELA, and TRACE 3-D) in the classroom as part of 
their graduate-level instruction in accelerator physics and engineering. 

Many improvements to the codes have resulted through national and international 
collaborations with our users and through regular feedback regarding how the codes are 
serving the needs of the community. Future code enhancements such as including the 
capability to model low-energy superconducting accelerator structures could impact the 
design of facilities such as the Rare Isotope Accelerator (RIA) now being planned by 
collaboration between Argonne National Laboratory and Michigan State University, 
and the Accelerator Demonstration Test Facility (ADTF) being planned as part of the 
Advanced Accelerator Applications Program (AAA). Codes like PARMELA have 
already been used to enhance the performance of existing machines such as the 
Stanford Linear Collider [2]. Additionally, these codes may be required to help design 
the next- generation light source. 

Recently, in order to reach some of our future goals, we have begun to collaborate 
with members of the Accelerator Controls and Automation Group (LANSCE-8) in our 
division and have added a member of that group to the LAACG. Members of this group 
will help us to eventually modernize our workhorse codes by allowing modularization 
of beam-physics calculations through object-oriented programming methods. 
Modularization will increase the application flexibility of these codes. Additionally, we 
are working towards standardizing the input format for our distributed codes. This will 
also increase the application flexibility of the codes.  
 

4. The LAACG design codes 

POISSON/SUPERFISH [3] – is a 2-D code package of more than 30 programs for the 

design of RF cavities, magnet components, electrostatic elements, and waveguide 
devices. An over-relaxation method is used to solve the generalized Poisson's equation 
in two dimensions. Eigenfrequencies and fields for arbitrarily shaped two-dimensional 
waveguides in Cartesian coordinates and three-dimensional axially symmetric RF 
cavities in cylindrical coordinates can be determined. The package contains codes to 
generate a very accurate triangular mesh adjusted to conform to the problem geometry, 
to plot the fields and to evaluate auxiliary quantities of interest in the design of drift-
tube linac (DTL) cavities, coupled-cavity linac (CCL) cells, radio-frequency 
quadrupole (RFQ) cavities and other devices. For example, the code calculates transit-
time factors, power losses, and the effect of perturbations. Several codes are included 
for automatically tuning DTL, CCL, and RFQ cavities by iterating on a selected portion 
of the geometry.  

PARMILA [4] – is a multi-particle design and transport code for ions historically 

used to design drift-tube linacs (DTLs). The name comes from the phrase, "Phase and 
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Radial Motion in Ion Linear Accelerators". The code has been extended to also design 
coupled-cavity linacs, and elliptical-cavity superconducting linac structures. A "drift-
kick" method is used to transform the beam, represented by a collection of particles, 
through the linac to study the beam dynamics performance of the design. 

PARMELA [5] – is a multi-particle beam dynamics code used primarily for 

electron-linac beam simulations. The name comes from the phrase, "Phase and Radial 

Motion in Electron Linear Accelerators." It is a versatile code that transforms the 
beam, represented by a collection of particles, through a user-specified linac and/or 
transport system. It includes several space-charge calculation methods. Particle 
trajectories are determined by numerical integration through the fields. This approach is 
particularly important for electrons where some of the approximations used by other 
codes (e.g. the "drift-kick" method commonly used for low-energy protons) would not 
hold. PARMELA works equally well for either electrons or ions although is 
computationally slower due to the numerical integrations. PARMELA can read field 
distributions generated by the POISSON/SUPERFISH group of codes. Members of the 
code group won a LANL 2000 Distinguished Copyright Award for this code. 

PARMTEQ [6] – and several other RFQ design codes comprise this group of 

codes and are used to design high-performance radio-frequency quadrupole (RFQ) 
linacs. PARMTEQ is an acronym for "Phase and Radial Motion in a Transverse 

Electric Quadrupole". The codes have been experimentally verified in some detail by 
working hardware at Los Alamos and at other laboratories around the world. As we 
learn more about linac performance, both experimentally and theoretically, we continue 
to update these codes. Partial and complete RFQ design-code distributions are 
available. A partial distribution contains the codes necessary to design the RFQ vane 
profile and analyze the beam performance including the effects of higher order 
multipole field components and image charges. A complete distribution also includes 
the code VANES and several related programs, which generate and analyze machine 
instructions for numerically controlled machining of the vanes. Multi-particle 
simulations of the RFQ design are also possible with these codes. 

TRACE 3-D [7] – is an interactive first-order beam-dynamics program that 

calculates the envelopes of a bunched beam, including linear space-charge forces, 
through a user-defined transport system. It provides an immediate graphics display of 
the envelopes and the phase-space ellipses in three dimensions. This code is extremely 
useful for laying out beam transport lines and for determining beam matching 
parameters. 

 

5. FY 2002 highlights 

The LAACG suite of PC codes (PARMELA, PARMILA, RFQ Codes, 
POISSON/SUPERFISH, and TRACE 3-D) continued to be supported and enhanced in 
FY 2002. A description of some of these activities follows. More detailed accounts can 
be found in the “Changes” files distributed with the codes, available on the LAACG 
fileservers [8]. Additionally, some updating of information and links in the online code 
compendium was completed. 

POISSON/SUPERFISH – (highlights from more than 40 code modifications)  
At user request, the POISSON/SUPERFISH codes now support an unlimited number of 
materials. Program VGAPLOT was retired and replaced by the Windows plotting 
program WSFPLOT, which includes several hard copy choices, arrow and circle plots 
to show field amplitude and direction, numbered axes, and other features. New utility 
programs update user preferences in an “INI file,” and convert experimental 
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measurements of cavity frequencies between ambient conditions and vacuum at 
operating temperature. Modifications to point selection and harmonic polynomial 
functions improved the accuracy of the field interpolator. Several new features were 
added to the suite of RF-tuning programs. At the suggestion of a user at LBNL, we 
added new problem variables to the POISSON and PANDIRA harmonic analysis that 
allow off-axis placement of the analysis circle. We fixed some reported problems in the 
postprocessors SF7 and Force. All codes now use the robust programming practice that 
declares “IMPLICIT NONE” in every program unit, an extensive overhaul that allowed 
us to discover and work around a serious bug inherent to the Windows 98 and 
Windows ME operating systems. 

PARMELA – (highlights from more than 20 code modifications) 
Version 3, which was released last year, has proven robust enough so that we have 
discontinued support of version 2. The 3-D space-charge routine has new limits on the 
mesh aspect ratio while still allowing high-energy electrons to be treated correctly. 
Several beam-line elements have additional options, some at user request. Drifting 
particles whose velocity falls to zero are now treated properly in the presence of a static 
electric field. The code now writes multiple plot files for large problems (> 2 GB), 
eliminating a code crash. The plotting code, PARGRAF, includes new options, 
including color-coded particle densities, output of time-step emittance, and beam-size 
data. Input of Twiss parameters now uses the same convention as the programs 
PARMILA and TRACE 3-D. 

PARMILA – A new 3-D space-charge algorithm has been added to more 
accurately simulate the performance of beams with high-aspect ratios. The code group 
benchmarked performance of PARMILA against four other codes as a part of an 
international collaboration on linac-design techniques. New features and plotting 
routines have also been added to help evaluate linac designs, and aid in the 
development and understanding of machine-commissioning techniques. PARMILA 
was used to design the SNS linac that is presently under construction and is being 
modified for use during its commissioning. PARMILA has become a large code. An 
effort to separate the accelerator design and beam dynamics functions of the code is 
presently underway with the goal of improving the ease of use of the code. 

TRACE 3-D – A more robust data entry routine was added. This routine parses the 
namelist-like entries for syntax errors and reports the specific error, saving users 
considerable time debugging an input file. 

IMPACT [9] – Many enhancements were made to the Impact code (an object-
oriented three-dimensional parallel particle-in-cell code for studying high intensity 
beam dynamics) to increase its applicability to a wider range of problems and to 
improve performance. The code treats mean-field Coulomb interactions along with the 
dynamics of charged particles accelerator electromagnetic fields. The code includes 
two types of integrators, one based on a Hamiltonian approach and another based on 
the direct integration of the Lorentz-force equations. The code’s 3-D parallel Poisson 
solvers treat six types of boundary conditions. The Lorentz-force based solver has been 
modified to have a time-step sub-cycle for the space-charge force calculation. This 
allows several steps, using different external fields, to use the same space-charge 
forces, which speeds up the Lorentz integrator. External field transformation functions 
needed for error studies using the Lorentz integrator with all six boundary conditions 
were added. The restart capability (portable to all high performance computers) was 
modified so that each processor in a multi-processor run will read from a file. The 
random sampling of an initial distribution was improved. A new beam-line element, 
EMfld, provides users the flexibility of using complex external-focusing and -
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accelerating structures in the simulation. We used the code to study a “cross-plane 
resonance” phenomena discovered by Ingo Hofmann [10], which may lead to halo 
amplitudes significantly larger than previously expected. 

POSTER – This graphics postprocessor is currently under development by C. 
Thomas Mottershead and is a new addition to the LAACG suite of codes. We anticipate 
making a version of this code available on the web soon. POSTER converts data files 
into Postscript form for plotting. It also includes several high-performance data 
processing/analysis capabilities. Its primary utility is to layout linacs, circular 
accelerators and beam lines that have been designed by the popular accelerator design 
codes. However, it has also been used to visualize results from multiparticle 
simulations and actual measured beam data. Figure 2 shows two examples of the 
sophisticated data processing and plotting capabilities of POSTER. Figure 2A shows a 
layout of the LANSCE Proton Storage Ring that is produced directly by reading a 
MARYLIE output file. All dimensions of the ring layout including the specific 
locations of each of the beam line elements are accurately portrayed to scale by the 
program. Figure 2B is a plot of the real-space transverse cross-section of a beam 
containing a halo. In this example the graded logarithmic color scale indicates halo 
beam fraction decades. This postprocessor will be extended to provide a seamless 
interface to PARMILA, PARMELA, TRACE 3-D, MARYLIE, DIMAD, 
TRANSPORT, and TEAPOT. POSTER will read the input files for these codes and 
generate accurate physical layouts of beam lines and accelerator lattices. An online 
version of a users manual will also be available. POSTER has been used rather 
extensively for beam-line layouts completed as part of the Advanced Hydrotest Facility 
Project, as well as others. 

CODE COMPARISONS [11] – In an attempt to validate our linac-design codes we 
undertook a program to benchmark the performance of 5 codes: PARMELA, 
PARMILA, IMPACT, and two codes developed by K. Crandall at TechSource, LINAC 
and PARTRAN, against each other by simulation of the beam dynamics in the high-
intensity SNS linac design as the basis of comparison. The comparison showed all 5 
codes to be in close agreement. This exercise, involving an international collaboration, 
laid the initial groundwork for standardization of the I/O of all the codes to facilitate 
further collaborations and comparisons in the future. 

6. Future plans 

Present funding levels for the code group do not allow any new initiatives to be 
undertaken. However, it is anticipated that the future level of DOE support may 
increase. As a result, we are considering several new initiatives for the future. These are 
discussed below along with our ongoing activities. 

6.1 Ongoing activities  
Code Development and Distribution – The LAACG will continue to develop, maintain, 
and distribute the following codes: POISSON/SUPERFISH, PARMILA, PARMELA, 
PARMTEQ, and TRACE 3-D. A major area of emphasis will be to upgrade all source 
codes to the Fortran 90 standard. The POISSON/SUPERFISH suite of codes has 
already been upgraded to the Fortran 90 standard. A near-term goal will be to complete 
conversion of the PARMILA code, with conversion of all the codes in the next few 
years. Conversion of all the codes to this standard is a long-term goal of the LAACG  
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Figure 2. POSTER plotting examples: A) LANSCE Proton Storage Ring layout, B) Plot of the 
real-space transverse cross-section of a beam containing a halo where the graded logarithmic 
color scale indicates halo beam fraction decades. 
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and will facilitate the eventual release of Linux versions of all these codes, thereby 
increasing our user base significantly. Another major area of emphasis will be to 
improve the user interfaces of these codes. Other code development activities will 
include: 
 

POISSON/SUPERFISH – Windows versions of the general-purpose plotting 
codes will be released (A beta-test version has been very well received in the 
community.), the ability to use file editors while in a major application will be 
implemented, several obsolete features no longer needed on fast, modern 
computers will be eliminated, and the 600-page online users manual will be 
revised. 
 
PARMELA – The next major release will include 3-D field maps for RF and 
static fields, and coherent synchrotron radiation effects for electron beams in 
bends. PARMELA will likely be the first of the beam dynamics codes released 
as either a Linux or Windows version. 
 
TRACE 3-D – The next release will include new Windows dialog boxes with 
tabular entry of variables, replacing old-style cryptic text commands.  
 
RFQ CODES – Work is underway to bring the source codes for these programs 
up to modern standards. The next versions will use robust coding in Fortran 90 
similar to that already implanted in POISSON/SUPERFISH. In addition, two 
important features will be added to the beam-dynamics simulation code 
PARMTEQ: a 3-D space charge routine, and implementation of the dynamic 
aperture effect.  

  
Web Site Maintenance / Compendium of Accelerator Codes – The LAACG will 

continue to maintain the official web site and online compendium of accelerator codes. 
At present, the online compendium is incomplete with many pages not yet containing 
the required descriptive text or appropriate links. We expect to be able to correct all 
major compendium deficiencies during FY 2003, although improvement of the web site 
and updating the compendium is expected to be an ongoing activity of the LAACG. 
Acquisition of a new server running the Linux operating system is also a goal for FY 
2003. Switching to a Linux-based server will allow improved capabilities such as 
online searching along with implementation of software not presently available under 
the MS-Windows environment to track our web site traffic. 
 
6.2 New initiatives 

External Advisory Panel – As a means of better setting priorities for the LAACG and to 
better serve our user community, we will establish an external advisory panel. A 
volunteer panel comprised of users from several other national laboratories and 
universities will be formed. One to two meetings per year via e-mail or phone 
conference will be used to address issues and set priorities to best utilize the LAACG 
funding. 

Universal Input Format – Through recent interactions with many of the 
international users of our distributed codes, some consensus has been reached as to 
what a universal input file format might look like. The impetus for standardizing an 
input file format would be to allow ease of simulation of the same problem using 
various codes throughout the world. In particular, this would be extremely useful in 
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expediting code benchmarking. We expect to specifically define this format with the 
help of our users. Our final goal is to, as much as is possible, implement this input 
format with all of our distributed codes. 

Superconducting (SC) Accelerating Structure Modeling – At present, modeling of 
SC elliptical accelerating cavities is included in the PARMILA code. These cavities 

have historically been used in electron accelerators ( =1) and will soon be used in the 
high-energy section of the Spallation Neutron Source (SNS) proton linac. However, 

there is increasing national and international interest in the use of low-  accelerating 
structures such as spoke resonators that could be used to eliminate the majority of 
normal-conducting accelerating structures in a proton or ion linac, for example, for 
systems like accelerator transmutation of waste, etc. LANSCE-1 presently has codes 

used for modeling the beam dynamics of these low-  accelerating structures. We plan 
to either incorporate the modeling of these cavities into the PARMILA code or to 
develop our present codes to a state that would eventually allow distribution through 
the LAACG. This work would be carried out as part of our present code-development 
activities. An additional future project will be the modeling of other types of quarter-

wave and half-wave resonators that are now also becoming of interest for low-  SC 
applications. Interest in these cavities exists since they will be used for the proposed 
RIA Project. 

Code Modernization – A long-term goal of the LAACG is to eventually move 
away from codes having a monolithic, procedural architecture. This is typical of most 
legacy codes, making them difficult to maintain, upgrade, and distribute. We believe 
that porting the simulation algorithms and numerical techniques to a modern, modular, 
and object-oriented architecture has the potential to significantly reduce the overhead 
associated with code maintenance. Additionally, we believe this approach will increase 
the range of applications and ease of use of the codes. A major new area of application 
for this modern modular programming approach is the implementation of sophisticated 
beam modeling algorithms as part of an accelerator control system. Major advances in 
control system sophistication related to beam tailoring and fault recovery/management 
will be required for operation of complex accelerator systems. Example applications for 
such a system include an energy-producing waste transmutation plant where tolerances 
to accelerator faults is very low and beam down-time must be reduced significantly 
below what is presently tolerated in research facilities, significant improvements in 
beam control required to reach luminosity goals in future colliders, and the very tight 
tolerances required for successful operation of the next 4th-5th generation light sources. 
As a first step, we plan to modernize/modularize the beam dynamics calculations for a 
drift-tube linac as an initial test case. Simulation results will be benchmarked against 
the PARMILA code. A specific part of the modularization process is documentation of 
the physics approximations and numerical methods used in the codes. This is 
particularly urgent since many of the key individuals having developed these codes 
over the last 10-15 years will retire within the next 2-5 years. We will begin this 
documentation process in FY 2003. 

IMPACT Code Development – Past LAACG funds were used to support the 
development of advanced computing applications. We would like to continue to 
develop the IMPACT code in collaboration with R. Ryne and J. Qiang, the developers 
of this code and both now at Lawrence Berkeley National Laboratory, into another 
work-horse user-friendly code that can eventually be distributed through the LAACG. 
Specifically, we would work on making the code portable for use on both large multi-
processor clusters and smaller desktop systems. Improvement of user interfaces and 
documentation would also be a goal. 
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MARYLIE Collaboration – MARYLIE is a Lie-algebraic particle beam transport 
and tracking program particularly useful for doing higher-order optics in transport lines 
and circular storage rings. Dr. C. Thomas Mottershead has been a long-time 
collaborator with Professor Alex Dragt at the University of Maryland (UM) in the 
development of this code. Other members of LANSCE-1 have also made contributions 
to this code. Continued code development and possibly the eventual distribution of 
MARYLIE through the LAACG is being discussed. The LAACG would also attempt to 
build up a larger user base for the code and to maintain the code while continuing to 
participate in future code development activities. 
 

7. LAACG members 

A new leader has recently been appointed and additional members have been added to 
the LAACG in order to meet future goals including succession planning. The present 
members of the LAACG are listed below: 
 Dr. Robert Garnett, Code Group Leader - parallel computing, consulting. 
 Dr. Christopher Allen - Code modernization, accelerator controls. 
 Dr. James Billen - POISSON/SUPERFISH, PARMELA, PARMTEQ code 
 development, consulting and distribution.  
 Dr. Frank Krawczyk - Website maintenance, code compendium, consulting. 
 Dr. C. Thomas Mottershead - MARYLIE and POSTER code development. 
 Dr. Harunori Takeda - PARMILA code development and consulting. 
 Dr. Lloyd Young - POISSON/SUPERFISH, PARMELA, PARMTEQ code 
 development, consulting, and distribution. 
With the exceptions of Drs. Allen and Mottershead, all other present members of the 
LAACG (including the new Code Group Leader) have been members in excess of 5 
years. 
 
8. Contact us 

For any questions, comments, or suggestions regarding the codes we distribute, their 
use, or our policies, please feel free to contact us at: 
 Phone:  505-665-2835 
 Fax:      505-665-2904 
 Email:  rgarnett@lanl.gov
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Abstract. For the simulation of high-brightness electron bunches, a new 3D 

space-charge model is being implemented in the General Particle Tracer (GPT) 

code. It is based on a non-equidistant multigrid solver, allowing smooth 

transitions from a high to a low-aspect ratio bunch during a single run. The 

algorithm scales linearly in CPU time with the number of particles and the 

insensitivity to aspect ratio ensures that it can be used for a variety of 

applications. Tracking examples and field comparisons with an analytical model 

will be shown. 

1. Introduction 

Applications such as SASE-FELs require high quality electron bunches with an 
emittance of the order of 1 micron and a peak current of 1 kA [1]. The standard method 

to create such bunches is to use a rf-photogun to produce relatively long bunches of 
several ps length, and magnetically compress them to the required current following 
acceleration.  

 
A typical example of the bunch compression scheme is the first part of the DESY TTF, 
where a bunch of several ps is accelerated to 17 MeV and subsequently compressed [2]. 

This compression stage however causes Coherent Synchrotron Radiation (CSR) 
degrading the transverse emittance and hence reducing bunch brightness [3]. 
 

One of the alternatives to this route are acceleration techniques based on pulsed DC 
technology. Attainable fields of 1 GV/m can keep a bunch sufficiently short to reach the 
current of 1 kA without the need for downstream compression and thus avoiding 

degradation of bunch quality. An example of DC acceleration is the DC/RF scheme 
pioneered at Eindhoven University of Technology [4]. Here a 50 fs FWHM laser pulse is 
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used to create a 200 fs electron bunch at 10 MeV in a two-stage process. First the bunch 
is accelerated in a 1 GV/m field to 2 MeV. This is followed by a 2.5 cell S-band rf-

booster to increase the energy to 10 MeV. 
 
The dynamic behaviour of the space-charge fields for these approaches is very different. 

This can easily be seen by comparing the aspect ratio A in the rest-frame of the bunch, 
defined as A=R/( L) with R the bunch radius, L the length and  the Lorentz factor. As 
shown in Table 1, the compression scheme has an aspect ratio of near unity, for a 1 mm 

radius, at 1 MeV. At that energy, the ‘TU/e’ bunch still has an aspect ratio far larger than 
one, i.e. a ‘pancake’ geometry. 
 

Table 1. Aspect ratio in the rest frame for various energies and bunch-lengths 

measured in the lab frame. 

 0.1 MeV 1 MeV 10 MeV 

100 fs 50.85 11.98 1.62 

1 ps 5.09 1.20 0.16 

10 ps 0.51 0.12 0.02 

 
The remainder of this paper focuses on a new 3D space-charge model in the GPT code 
[5,6]. Section 2 shows space-charge fields for bunches with varying aspect ratios. Section 

3 explains the algorithm of the new space-charge model, where the accuracy and 
scalability is shown in section 4. The first tracking tests are presented in section 5. 

2. Space-charge fields 

Different aspect ratios pose different challenges to the space-charge routines in 
simulation codes. To demonstrate this, Figure 1 shows the transverse and longitudinal 
electric fields for various low aspect ratio (cigar) bunches. This is the typical regime for 

most electron accelerators. For very long bunches with A<1/100, the longitudinal fields 
become non-linear at the head and the tail of the bunch. In many simulations however, 
these effects can safely and conveniently be ignored because they only affect a relatively 

small part of the bunch and do not affect the overall results significantly. 
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Figure 1. Transverse (top) and longitudinal (bottom) electrostatic fields in 

cylindrically symmetric low aspect ratio (‘cigar’) bunches. The different lines in 

each plot represent different positions in the bunch. All plots are created with 

uniform charge density. 
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High aspect ratio (‘pancake’) bunches have very different fields as shown in Figure 2. 
There the longitudinal fields are always relatively linear. However, when A>100, the 

transverse fields become non-linear near the edge of the bunch. This non-linearity is hard 
to tackle analytically and numerically because it is very ill described by a truncated 
Taylor expansion. In many simulations this difficult effect is ignored because bunches 

with an aspect ratio of 10 or more are quite uncommon in accelerators, see Table 1. 
 
For the simulation of high brightness electron bunches, where every anomaly is 

important, the non-linear fields in both the high and the low aspect ratio bunches need to 
be modelled with great precision. Especially the dynamic behaviour of the short bunches 
is challenging because the aspect ratio varies significantly during the first stages of 

acceleration. 
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Figure 2. Transverse (top) and longitudinal (bottom) electrostatic fields in 

uniformly charged cylindrically symmetric high aspect ratio (‘pancake’) 

bunches. The different lines in each plot represent different positions in the 

bunch. All plots are created with uniformly distributed constant total charge. 

3. The new space-charge model 

3.1. Requirements 

To be able to track high-brightness electron bunches through accelerators like the TU/e 
DC-RF scheme, or the DESY-TTF, the new space-charge model should be applicable to 
a wide parameter range in aspect ratio. At least aspect rations varying between 0.01 and 

100 are required. 
 
Furthermore, the model should be very accurate, since the design of demanding 

applications such as SASE-FELs relies on very accurate simulation tools. It is difficult to 
exactly state how accurate the model should be, but in any case the final simulation 
results for emittance, energy spread and bunch length must be accurate to a few percent 

or less. 
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Because not all external fields in an accelerator are cylindrically symmetric, the space-
charge model has to be 3D. Furthermore, cathode impurities and laser anomalies often 

start a non-cylindrically symmetric beam on a photocathode. To simulate this process, 
again a 3D space-charge model is required. 
 

Finally, the new space-charge routine should be fast and robust to make it useful as a 
design tool. The aim is to make it fast enough to allow scanning and optimisation of 
various parameters on a standard PC. 

3.2. Algorithm 

The chosen algorithm for the new space-charge model in GPT is a mesh-based Poisson 
solver in the rest-frame of the bunch. First the bunch is transformed to the frame with no 

average momentum. In this rest-frame, only electrostatic forces are present as long as the 
velocities in this frame are non-relativistic. The bunch-length in the rest-frame is longer 
by the Lorentz factor . 

 
Subsequently, a Cartesian mesh is generated in a box around the bunch. The distribution 
of the meshlines is non-equidistant and adapted to the projected charge density. This is 

essential for the accuracy and speed of the routine. More information about the meshing 
is presented in section 3.3. The non-equidistant mesh is used to store an approximation of 
the charge density on the corners of the mesh. This information is obtained using a linear 

distribution of the charge of every particle over the eight corners of its enclosing 
meshbox. 
 

The charge density on the mesh is fed into a Poisson solver to obtain the potential. A 
state-of-the-art multigrid Poisson solver [7,8] has been constructed for the non-
equidistant meshes described in subsection 3.3. It scales linearly in CPU time with the 

number of meshnodes. Selectable Dirichlet or open boundary conditions allow the 
simulation of bunches within pipes with rectangular cross section, bunches near a 
cathode and a bunch in open space. 

 
The resulting potential is interpolated and differentiated using a 2nd order interpolation 
scheme to obtain the electric field in the rest-frame of the bunch at all particle 

coordinates. This electric field is transformed back to the laboratory frame to obtain the 
electric and magnetic fields. The GPT kernel combines these fields with the external 
fields in the tracking engine. 

 
The chosen algorithm implies that the velocity in the rest-frame of the bunch is non-
relativistic. This assumption is not always true for long bunches in the first stages of 

acceleration. There, the situation is possible that new electrons are emitted with an 
energy in the eV level while the front of the bunch has already been accelerated to 
relativistic velocities. This is a known limitation of the routine reducing the applicability. 

3.3. Adaptive meshing 

To reduce the number of meshlines needed, an adaptive meshing technique is used. The 
purpose of this scheme is to both reduce ‘wasted’ CPU time in empty volume and reduce 

numerical errors by choosing more meshlines in regions with higher charge density. 
 
To control the ‘adaptiveness’ of the meshing, a control parameter fn is introduced. This 

parameter defines the maximum difference in size between neighbouring meshnodes as 
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shown in Figure 3. When fn=0, the mesh-spacing is equidistant, resulting in the most 
stable setting for the Poisson solver. Increasing fn typically increases the overall 

efficiency because less nodes are required to obtain the same accuracy. A fn-value of 
100%, allowing neighbouring mesh spacing to double in size, seems to be a good 
compromise for a relatively large parameter range. Further increasing fn typically leads 

to a regime where the Gauss-Seidel scheme does not always converge [9]. Obviously, 
different applications with different accuracy requirements and different charge density 
distributions have different optimal settings for fn.  

 

 

Figure 3. Different adaptive meshes for a uniformly charged hard-edge 

cylindrical bunch. The fn=0 (top) setting results in an equidistant mesh. When 

fn=20% (middle) more meshlines are chosen at the position of the bunch with 

smooth transitions into empty space resulting in very stable solver performance. 

The fn=100% case (bottom) results in very aggressive adaptive meshing, 

choosing almost all meshlines at the position of the bunch. 

4. Analytical test-cases of a hard-edged cylinder 

To test the accuracy of the new space-charge model, the field calculations have been 

compared to various analytical test cases [10]. In this section we describe the tests against 
analytical equations for a uniformly charged hard-edged cylindrically symmetric bunch 
as function of aspect ratio, number of particles and number of meshnodes. 
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As shown in Figure 4, the dimensionless field error E is below 10% for a range in aspect 
ratio varying between 0.01 and 100 for 100,000 meshnodes, where E is defined as: 

 

analytical

simulationanalytical
E

E

EE
 (1) 

 
The aspect ratios 0.01 to 10 produce much better results with E-values in the range of a 

few percent starting from 20,000 meshnodes. Although an error of a few percent may 
sound quite high, it should be noted that these tests represent worst-case scenarios. In 
actual tracking simulations, as presented in section 5, all hard-edges become smooth in a 

few timesteps. This produces much higher average accuracy of the space-charge routine, 
allowing aspect ratios over 100 and increasing the practical applicability of the algorithm 
beyond the range plotted in Figure 4. 
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Figure 4. Field-accuracy as function of the number of particles. The number of 

meshnodes is chosen equal to the number of particles with fn=100%. 

 
The Rostock multi-grid routine should ideally scale as (N) as function of number of 
meshnodes in terms of CPU time. As comparison, FFT based Poisson solvers scale as 

(N log(N)) and particle-particle interaction is an (N 2) process. The actual performance 
of the Poisson solver is very close to this ideal case, independent on aspect ratio, as 
shown in Figure 5. The typical scaling is as the number of meshnodes to the power 1.1. 
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Figure 5. CPU time as function of number of particles for various aspect ratios. 

The number of meshnodes is chosen equal to the number of particles with 

fn=100%. The solid line is an exponential fit through all points and scales with 

the number of meshnodes to the power 1.1. 

5. Tracking tests 

5.1 Exploding bunch 

The first tracking test of the new space-charge routine was a simulation of an exploding 
hard-edged cylindrically symmetric bunch during 100 ps, as shown in Figure 6. The 
initial bunch charge of 1 nC is uniformly distributed over a ‘pillbox’ with an initial radius 

R=1 mm and a bunchlength L=0.1 mm. The Lorentz factor  is 5. 
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Figure 6. One million particles are tracked during 100 ps on a mesh with 

64x64x64 meshnodes. 

Figure 7 shows a comparison of bunch-length and emittance of the new 3D space-charge 
routine with the well-tested 2D space-charge model of GPT. When the number of 

particles is increased, there is smooth convergence in both routines to the same values. 
For this specific scenario, about 10,000 particles are sufficient for convergence of the 3D 
model. 
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Figure 7. Final bunchlength and emittance values for an exploding R=1 mm, 

1 nC bunch after 100 ps. Both 2D and 3D results are shown as function of 

number of particles. 

5.2. 1 GV/m diode 

To test the new space-charge routine in GPT for a scientifically relevant case, it has been 

used to simulate the 1 GV/m diode as is currently under construction at the Eindhoven 
University of Technology [11]. The set-up consisting of an anode with a circular opening 
and a flat cathode is shown schematically in Figure 8. During 1 ns, a 2 MV pulse is 

applied between the cathode and the anode, resulting in a DC acceleration field of 
1 GV/m. This field is used to accelerate an R=0.5 mm, 100 pC electron bunch photo-
extracted from the cathode surface by a 50 fs FWHM laser. Although the peak-current is 

over one kA at initiation, the bunch-quality is maintained due to the high acceleration 
field. 
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Figure 8. Schematic set-up of the 1 GV/m diode. Shown are equipotential lines 

and sample trajectories. 

The simulation results shown in Figure 9 are a snapshot in time at z=4.5 mm. The large 
number of particles, 100,000, produces for more detailed results compared to the 
previously obtained 2D results [11]. 
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Figure 9. Raw simulation results of the 1 GV/m diode with 100,000 particles on 

a 60x60x60 mesh with fn=100%. Shown are (left) the energy/position correlation 

and (right) the current.  

Because the set-up is fully cylindrically symmetric, it can again be compared with the 2D 

space-charge model of GPT. Because the 2D model does not make use of a 
transformation to a rest-frame, the accuracy is not affected by relative energy spread. As 
a result, this comparison verifies that for this specific case the electrostatic assumption in 

the rest-frame is valid. 
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Figure 10. Comparison between the GPT 2D model and the new 3D mesh-based 

route applied to the TU/e 1GV/m diode set-up. The different lines indicate 

different number of meshlines in the 3D model. 

6. Conclusions 

A new 3D mesh-based space-charge model has been implemented in the General Particle 

Tracer (GPT) code.  The routine is based on a multi-grid Poisson solver to obtain the 
electrostatic potential in the rest frame of a charged particle bunch on a non-equidistant 
adaptive mesh. Lorentz transformation and interpolations are used to obtain the 

electromagnetic fields in the laboratory frame. The multi-grid Poisson solver scales 
linearly in terms of CPU time as function of the number of meshnodes over a wide range 
of bunch parameters. 

  
When compared to analytical expressions for a uniformly charged cylindrically 
symmetric bunch, the average field error is below 10% over a range of 6 orders of 

magnitude in aspect ratio. Tracking tests for an exploding bunch and a 1 GV/m diode 
show perfect agreement with 2D simulation results. 
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The accuracy, speed and applicability over a wide parameter range make the new routine 
ideally suited for the simulation of 3D space-charge effects in high-brightness electron 

bunches. 
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Abstract. For structures with very fine details or slight geometrical deviations, 

an approach fully based on discretization frequently causes problem dimensions 

which are much too big even for powerful computing hardware. In this paper, 

two such situations are studied:        1.) simulation of an entire 9-cell TESLA 

cavity, fully equipped with HOM- and Input-couplers, the latter demanding for 

3D-computation;    2.) chains of cavity cells being slightly elliptically deformed 

with different axis orientation. Both simulations were performed using a 

scheme which we denote as Coupled-S-Parameter-Calculation (CSC). CSC 

applies a segmentation in several sections of the entire structure. The scattering 

properties of every segment need to be computed with field solving codes, 

resulting in (multi-dimensional) frequency dependent S-matrices. Then CSC is 

used both for the concatenation of the S-matrices and - if the whole system is 

entirely closed - to determine its eigen-resonances. In our first example we take 

profit of the rotational symmetry of the inner part - the TESLA cavity, which 

therefore can be calculated in 2D. The scattering properties of the couplers at 

both cavity ends are computed separately. Then the CSC result of the overall 

system S-matrix is used to derive the Q-values of each single resonance. The 

study of dipole modes in deformed cavities uses the ability of CSC to calculate 

the frequencies and the distribution of waveguide mode amplitudes of 

eigenmodes. It is shown that the orientation of the fields experiences an angular 

shift along a chain of cells having elliptical deformations of different 

orientation. Here several parameter sets were analyzed in order to gain some 

experience on the phenomenon. In this study we took advantage of the 

analytical description of the cell-to-cell rotation thus leading to very short cpu 

times.   

1. Introduction 

Resonators used for accelerating particles were probably with the first objects being 
studied with numerical codes for electromagnetic fields. Nevertheless their geometric 
complexity often still demands for simplifications, even on powerful modern computers. 
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Two typical assumptions are the neglection of structure appendices, especially couplers, 
and the idealization of pure rotational symmetry. In this paper we are going to describe 
the application of a method, denoted here as Coupled-S-Parameter-Calculation (CSC), 

on resonators where none of both simplifications are possible. CSC is based on the 
partitioning of the entire structure in segments, being small enough to calculate their rf-
scattering properties – the frequency-dependent S-matrices - on standard hardware with 

commonly used field solving codes like MAFIA, CST Microwave Studio™ [1], etc. 
Afterwards the calculation scheme of CSC is used to combine the segments to build up 
the entire structure, independent from its topology and the number of waveguide modes 

needed to describe the segment´s interactions. CSC is able to handle both kind of 
structures: a. with open ports, delivering the overall S-matrix, and b. completely closed 
resonators, calculating their eigenfrequencies and internal wave amplitudes. For a 

detailed description of CSC and its theory see [2, 3]. 
The first example is the TESLA-9-cell structure [4] (section 3) fully equipped with 
Higher Order Mode- (HOM-) and input-couplers, that showed to have resonances with 

unexpected high quality factors in the 2.6 GHz-range [5]. A similar study was presented 
in [6]. Here three different arrangements of HOM- and input-couplers were analyzed 
and the according Q-factors were determined. The latter step was performed by 

applying a fitting procedure (section 2) on the S-parameter-spectra found with CSC. A 
significant variation of the Q-values was found here. 
In the second part (section 4) focus is laid on structures that are derived from ideally 

circular symmetric geometries, but experienced slight elliptical deformations. Two 
types of structures are considered: one denoted as "waist-structure", having a big 
circular cross section at the connecting planes and a small inner cylinder of elliptical 

shape; the second being derived from an inner cell of the TESLA-resonator with a 
circular waist, but a slightly elliptical body. For both structure types eigenresonances of 
chains built from 3, 4 and 6 cells were studied, the cells being skewed one to the next by 

angles between 0° and 90°. Front-to-end differences of wave polarizations are 
calculated for all arrangements and a certain set of dipole modes. Furthermore CSC-
results of an unskewed 9-element-chain of the TESLA-type cell is compared with 

reference frequencies [7]. The 4-element chain is investigated in further detail, 
regarding the fields in all cutting planes.     
 

 
2. Q - value determination from S-parameters 
 

For rf devices with resonant behaviour a set of resonance frequencies and Q-values are 
the main quantities to characterize the object. We developed a procedure to extract these 
quantities from previously calculated S-parameter curves. It is assumed, that the S(f) 

curves follows the complex relation  

       
k

N

kk 1

aS(f )
2 if p

 (1) 
 

with the frequency f, the number N of poles and the coefficients ak and pk describing the 
pole. The resonance frequency fk of the k-th pole and its Q-value are given by equations 
(2a) and (2b). 

k k k kf Im p 2 Q Im p 2 Re pk   (2a, 2b) 
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If pk is determined from the S-parameter curve, both parameters are known. The relation 

 

 

      (3) 
k

k

k

a S(f ) R
2 if p

 

 

holds in the vicinity of a certain pole k, if we assume, that all other contributions in the 
vicinity of that pole can be summarized in a frequency-independent residual Rk . 
Furthermore Sj (fj) has to be known for a sufficient number z of different fj in the 

frequency range near the pole. This leads to an overdetermined set of equations of the 
form 

2  i fj Rk + Sj(fj) pk – (pkRk – ak)  =  2  i fj Sj(fj)    (4) 

 

Or, in matrix-vector notation:      

 

 

(5) 

1 1 1 1 k

k

z z z z k k k

2 f S 1 2 i S f R

M ; ; x p

2 f S 1 2 i S f p R a

M x  

 

  

In the minimal least square sense this system has the explicit solution 
1

x M M M  with the adjoint matrix M  of M which directly yields the 

parameters searched for, i.e. pk , ak and Rk  - the latter serving as a reliability check. 

The success of this procedure strongly depends on the selection of frequency points 
used for the overdetermined system. Taking a span of a few dB on one side of a 
resonance curve, starting from the maximum, usually gives good results. In special 

cases like the spectrum shown in figure 3 with resonances of strongly varying Q-values, 
an additional step needs to be performed by the user: Then, in a first run it is necessary 
to subtract the contribution of the low-Q-resonances determined from the S-parameters, 

afterwards repeating the procedure with the remaining signal. Like CSC, this procedure 
was implemented using Mathematica™ [8]. 

 

3. The TESLA-9-cell cavity 

 

Experimental investigation of the HOM-properties of the TESLA-9-cell resonator 
(figure 1) [5] proved the existence of at least one mode with a surprisingly high Q-
value. This gave reason for intense numerical investigations, which finally were able to 

explain the observed phenomenon (see especially [6], where a method very similar to 
CSC was applied).  

 
Figure 1. Cavity for particle acceleration as used in the TESLA Test Facility at DESY 

[4]. The circular symmetry of the nine cells is lost when the couplers  attached at both 

ends of the cavity are taken into account. (Picture courtesy to DESY.) 
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Our S-parameter calculations were performed with an arrangement similar to a test 
stand set-up used for measurements at DESY (figure 2): a TESLA-9-cell-cavity, 
equipped with upstream HOM-coupler and downstream HOM-input-coupler 

combination. The beam pipes at both ends of the cavity are shortened at a distance of 
L2,u = 101.4 mm and L2,d = 65.4 mm measured from the middle plane of the HOM-
coupler. The scattering parameters of the TESLA-cavity were calculated from modal 

coefficients [9, 10],  which were determined by eigenmode calculations. This approach 
is advantegeous in case of objects with significant resonant-like behaviour, which would 
cause extremely long time domain calculations [6]. The S-parameters of the shorts and 

beam pipes were calculated analytically, the HOM-coupler and HOM-input-coupler 
segments were modelled in CST Microwave Studio™. To compare the effects of 
geometry variations on S-parameters and Q-values the following set-ups were 

computed: 
a) input coupler empty and closed, HOM-coupler in original orientation 
b) input coupler empty and closed, HOM-coupler mirrored, as suggested by 

M. Dohlus [10] to ensure better coupling to all dipole mode orientations 
c) input coupler with inner conductor shortened, HOM-coupler in original orientation 
The coaxial ports of both HOM-couplers were left open. 

Figure 2. Geometry set-up as used for CSC calculation. 

Figure 3. HOM-coupler in original (left) and mirrored (right) version. In arrangements 

a) and b) the input-coupler port has no inner conductor and is closed; in arrangement c) 

a shortened inner conductor is added. The figure shows the geometry as modelled by 

CST Microwave Studio™. 

 
For all three set-ups CSC was used to compute the transmission coefficients from 
HOM1 to HOM2 in the range of the second dipole passband (2.47 GHz – 2.58 GHz), 

showing eight high-Q resonances and eight well known low-Q resonances (see figure 
4). The spectra of the Q-values of all resonances were extracted from the CSC-
calculated |S21| values as shown in figure 4 for the three different set-ups a) to c) as 

described before. A very narrow frequency sampling of the S-parameters is needed in 
the vicinity of the high-Q resonances.  
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Figure 4. Left: Full spectrum of CSC calculated transmission values (|S21|, grey dots) 

and  poles according to equ. (1), (solid line) of set-up a), right: detail of high-Q and low-

Q resonance at a frequency of about 2.545 GHz 

 

 
 

 
 

 

set-up a) 

set-up b) 

set-up c) 

Figure 5. Spectra of Q-values extracted from CSC calculated |S21| values for the three 

different set-ups a) to c) 
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This can be provided either by analytic calculation (short, waveguide, cavity with modal 
expansion) or by interpolation of the component´s S-parameters (HOM-/Input-couplers 
which have weak frequency dependence). These Q-values of the high-Q resonances are 

strongly depending on the HOM-coupler orientation and on the presence of the inner 
conductor in the input coupler. For set-up a) HOM-resonances with extremely high Q-
values (>106) can be indicated in the TESLA cavity with HOM-couplers. With the 

mirrored HOM-coupler these Q-values are reduced by about two orders of magnitude. 
But also if the (shortened) inner conductor at the combined HOM-input-coupler is 
present, the Q-values  decrease by nearly the same order. 

 
4. Orientation of dipole-polarization in skewed chains 

 

Most resonators used for the acceleration of charged particles are designed to be of 
ideally circular cross section in the transverse plane. Nevertheless, deviations from that 
ideal shape may occur after installation due to tolerances, improper handling, external 

forces, etc. Therefore it is worth to gain better understanding of the influence of weak 
deviations from rotational symmetry. Elliptical deformations as they are used here seem 
to be a proper first order approximation of more complicated imperfections. Since there 

is an overwhelming variety of possible combinations of deformations, it was decided to 
study first a very regular set-up, consisting of chains with a constant skewing angle 
between neighbouring cells. 

Even though a single elliptic structure cannot couple waves oriented orthogonal to each 
other, it will scatter both polarizations differently. Then, if two or more segments with 
different orientations are combined, multiple reflections in the chain will lead to an 

overall coupling of polarizations. This influences both the polarization crosstalk even if 
deformation and skewing angle are kept very small [2], and the resonant fields and 
eigenfrequencies as well, if such a chain is closed. In either case a method like CSC is 

by far better suited to calculate the effect of the rotation than direct 3D discretization. In 
CSC, rotation is described by a virtual scattering element without reflection, having 
transmission submatrices, that rotate the incident wave amplitudes by a given angle : 

 

0 0 cos sin

0 0 sin cos

cos sin 0 0

sin cos 0 0

      (6) 

 

In order to start with a very simple geometry a symmetrical waist segment (figure 6) 
was designed. The outer diameters and the connecting cones both are ideally circular, 

whereas the inner part is of a slightly elliptical shape (ellipticity = 1.022). Three to six 
of those segments were combined. Deformations of the real accelerating structure are 
more likely to affect those regions with large radii. In order to describe this, a 

deformation model of a single inner TESLA cell (figure 7) was introduced. The curve of 
revolution that describes an ideal rotational TESLA cell is divided in three parts: the 
narrow waist I follows an ellipse, the inner part III is given as circular segment, 

between them exists a linear connection II. Transversal elliptical deformation is applied 
similarly: no deformation of the (mechanically stable) waist (I); maximum ellipticity in 
the inner part (III); ellipticity linearily growing from zero to maximum in the linear part 

(II). MAFIA was used to discretize the cell as stack of 56 slices either of circular or 
elliptical cross section and about 2 mm thickness in main axis direction. 
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2  3

Figure 6. Single waist segment (ellipticity = 1.022), calculated in 3D with 86,000 mesh 

points in CST Microwave Studio™ (left). Several segments were combined, each 

rotated to the next by a certain angle  (right). 

Figure 7. Cross section of a single cell used for S-matrix calculation and double cell 

arrangement for the check of concatenation results. Discretization with MAFIA, 

150,000 mesh points per cell. The ellipticity is too weak to be seen in the picture. 

 

  

Figure 8. CSC-calculation of input reflection of nine identical unskewed but elliptic 

cells for both polarizations, together with frequencies from CSC eigenmode calculation 

(grey lines, distinguished with respect to the according polarization found) and TESLA 

resonator eigenmodes (black lines) as listed in [7]. (Note: In [7] the TESLA resonator 

had modified end cells.) 

 

Even though a chain of nine identical elliptic cells does not correctly resemble the 
TESLA-9-cell cavity with its special end cells, differing from the inner ones, such a 
chain was calculated without rotation using CSC. The comparison of the results both 

from CSC-S-parameter and CSC-eigenmode calculations shows a good agreement with 
resonance frequencies simulated in 2D for an ideal circular resonator [7] as shown in 
figure 8. The main difference is the existence of twice the number of resonances due to 

the splitting in two polarizations. 
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Figure 9. Difference of field orientation angle from left to right of cavity chain 

depending on cell-to-cell skewing angle for (up to down) 3, 4 and 6 segments. Left 

column: waist segments, ellipticity = 1.022, frequency range f = 1.31GHz - 1.69 GHz, 

right column: resonator cell, ellipticity = 1.01, f = 2.45 GHz - 2.60 GHz. Different 

colour/dot thickness indicates different mode index. Continuous curves are frequently 

composed by dots from modes with different indices, due to changes in the order of 

frequency. Gaps are caused by the limited frequency range used for calculations. 

 

Next we consider chains of three, four and six identical segments, each segment rotated 
about a certain angle compared to its neighbour. The chain is shortened with planes at 
both ends. Again the only field solving calculation needed for this analysis is the 

calculation of the single segment's S-matrix. In the S-matrices both polarizations of the 
TE11 circular waveguide modes are considered. The monopole TM01 and higher 
waveguide modes are omitted, because of their very weak coupling to the TE11 modes. 

Therefore only dipole-like eigenmodes of the chains are calculated.  
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Figure 10. Magnetic field polarization of a certain mode at the cutting planes in a 
resonator of four TESLA cells for skewing angles between 0 and 90 degrees. 

 

 

 Figure 11. Dependence of the resonant frequencies of a closed four element TESLA 

chain on the skewing angle. Mode patterns displayed in figure 10 correspond to the 

modes starting at 2.545 GHz / 0°, specially marked here. 
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Introducing a nonvanishing angular shift between single cells of a multicell structure, 
which is assumed to be constant along the chain, showed to cause a different orientation 
of the incident dipole mode waves at both ends of the chain. The orientation is 

calculated as  atan(Ay/Ax) using the wave amplitudes A
x
 and A

y
  that belong to the 

resonances and that are found directly by CSC. Here the difference of wave angles at 
beginning and end of the skewed chain is analyzed (Fig. 9). 

For the chain of four TESLA-like cells a further analysis of the field orientation in all 

cutting planes was undertaken by superposition of the forward and backward waves. A 
representation by the field vector´s path during one rf period seemed to be most 
appropriate (Fig. 10). As shown there, fields of elliptic polarization do appear for certain 

skewing angles, whereas pure linear polarizations are valid for 0° and 90° skewing 
angle. 

 

5. Conclusions 

 

The segmentation of long or complex structures by means of Coupled-S-parameter-
Calculation proved to be a method that may significantly reduce numerical effort. It is a 

versatile tool to calculate properties of resonators equipped with couplers, if there is an 
appropriate partitioning possible. 

Due to CSC´s semi-analytic character it allows for easy computation of polarizational 
crosstalk and eigenmodes in skewed chains. Those show a complicated dependence on 

the skewing angle, especially linear polarization is lost. The longer the chains are the 
more complicated  are the dependencies of field rotation on the skewing angle. 
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Abstract. The booster lattice for the Advanced Hydrotest Facility at Los Alamos 
was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice 
from TEAPOT, the full set of magnet and misalignment errors, and full space-
charge effects. The only corrections included were a rough closed-orbit correction 
and chromaticity correction. The lattice was tracked for an entire booster cycle, 
from multi-turn injection through acceleration to the top energy of 4 GeV, 

approximately 99,000 turns. An initial injection intensity of 4 1012, injected in 25 

turns, resulted in a final intensity of 3.2 1012 at 4 GeV. Results of the tracking, 
including emittance growth, particle loss, and particle tune distributions are 
presented. 

 

 

1.  Introduction 

 

The booster lattice for the proposed Advanced Hydrotest Facility (AHF) at Los Alamos 
was tracked in 3-D with the program SIMPSONS [1], using the full, symplectic lattice 
from TEAPOT [2], the full set of magnet and misalignment errors, and full space-charge 
effects. The only corrections included were a rough closed-orbit correction and 
chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-
turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 

turns. An initial injection intensity of 4 1012 protons, injected in 25 turns, resulted in a 

final intensity of 3.2 1012 at 4 GeV. Results of the tracking, including emittance growth, 
particle loss, and particle tune distributions are presented. 
 
 
2.  Booster design 

 

The booster for the AHF at Los Alamos is a 9-period, rapid-cycling synchrotron with 
circumference of 261 m, operating between 157 MeV and 4 GeV, injecting into a 50 
GeV Main Ring. It is filled from an H- linac, and is designed to operate at 5 Hz with an 
average intensity in excess of 2×1012 protons per pulse. Lattice functions for this 
machine are shown in Fig. 1. Fig. 2 shows a 3-D layout of the ring. 
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Figure 1.  AHF Booster Lattice Functions for 1/9 of the ring 

 

 
Figure 2.  3-D layout of the AHF Booster 

 
3.  TEAPOT 

 

TEAPOT tracking for the booster has been done to specify the error content of the 
magnets.  We use the magnets described in the Fermilab Main Injector Design 
Handbook [3], scaled for energy and aperture. We discuss below how the errors were 
determined for the booster magnets.  
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3.1 Dipole errors 

 
The dipole errors in the FMI Handbook are shown in Table 1. 
 

Table 1.  Dipole errors (part in 10-4 at 1 inch) 

 

Harmonic 
Number 

Normal 
Systematic 

Skew 
Systematic 

Normal 
Random 

Skew  
Random 

     
1 0.737 - 10.251 - 
2 0.06 - 0.8 - 
3 -0.6 0 0.18 0.12 
4 0.04 0.03 0.06 0.03 
5 0.33 0 0.05 0.05 
6 -0.01 -0.03 0.05 0.04 
7 -0.03 0 0.05 0.05 

The errors in Table 1 are given in term of parts in 10-4 of the main field at one-
inch radius from the beamline center. Because TEAPOT uses the very different units of 
fractions at one meter, the numbers appearing in the input files are very different. Table 
2 gives the dipole errors in TEAPOT units. Note that the harmonic number we use is 
one unit larger that the index used in TEAPOT. Our Harmonic number 1 skew 
multipole is TEAPOTS’ a0,  etc. 
 

Table 2.  Dipole errors  (TEAPOT units) 

 

Harmonic 
Number 

Normal 
Systematic 

Skew 
Systematic 

Normal 
Random 

Skew  
Random 

     
1 0.74E-04 - 0.10E-02 - 
2 0.16E-03 - 0.21E-02 - 
3 -.42E-01 0 0.19E-01 0.12E-01 
4 0.16E+00 0.12E+00 0.25E+00 0.12E+00 
5 0.53E+02 0 0.80E+01 0.80E+01 
6 -.63E+02 -.19E+03 0.32E+03 0.25E+03 
7 -.75E+04 0 0.12E+05 0.12E+05 

Since we do not have a booster dipole design specified, the booster runs were done with 
errors obtained by scaling the FMI dipoles, scaled to reflect the larger gap (4 inches vs. 2 
inches). The process involves two steps. First the same errors are assumed at a proportionately 
larger radius for the larger magnet. Then the multipoles at a different radius are obtained using 
the formula 

rb
r

R
Rb m

m

m

1

)( .      (1) 

 
 Equation 1 relates the multipole errors for the same dipole at different radii. 

Using Equation 1 we can derive TEAPOT multipoles for 4” magnets dipoles 
from the values of Table 1.  
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Table 3.  4” Booster Dipole errors at injection (TEAPOT units) 

 

Harmonic 
Number 

Normal 
Systematic 

Skew 
Systematic 

Normal 
Random 

Skew  
Random 

     
1 0.74E-04 - 0.10E-02 - 
2 0.79E-04 - 0.11E-02 - 
3 -.10E-01 0 0.47E-02 0.31E-02 
4 0.20E-01 0.15E-01 0.31E-01 0.15E-01 
5 0.33E+01 0 0.50E+00 0.50E+00 
6 -.20E+01 -.59E+01 0.99E+01 0.79E+01 
7 -.12E+03 0 0.19E+03 0.19E+03 

 

3.2 Quadrupole errors 

 
Table 4 summarizes the errors in the quadrupoles we obtained from scaling the errors 
for the FMI quadrupoles from the Design handbook. 
 

Table 4.  Original FMI Quadrupole errors (part in 10-4 at 1 inch) 

 

Harmonic 
Number 

Normal 
Systematic 

Skew 
Systematic 

Normal 
Random 

Skew 
Random 

     
2 - - 24 - 
3 -0.51 1.08 2.73 1.85 
4 1 -2.05 1.02 2.38 
5 0.03 -0.75 1.12 0.47 
6 -1.49 0.43 0.63 0.70 
7 0.21 - 0.64 0.44 
8 1.14 - 0.64 - 
9 -0.19 -0.07 0.12 0.16 
10 -0.77 -0.12 0.06 0.07 

The errors of Table 4 are very large, especially for the high-order multipoles. 
There is some suspicion that the values reported are upper limits, because such high 
values are somehow unphysical.  

 
3.3 Revised quadrupole errors 

 
Table 5 summarizes the quadrupole errors that were agreed on after an analysis of what 
kind of errors can be realistically obtained. The numbers are obtained (sometimes with 
scaling) from actually produced magnets and represent what can be achieved without 
increasing the quadrupole cost.  

The formula used for scaling the quadrupole errors is 
 

rb
r

R
Rb m

m

m

2

)( .      (2) 
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We have considered two possible apertures for the booster dipoles. The larger 
quadrupoles have an 8” diameter, twice the dipole gap. The nominal quadrupole 
diameter is only 1.5 times the dipole gap. 6” quadrupole values will be shown in the 
tables, but 8” tracking results will be included in the tracking results. Using Equation 2 
and converting to TEAPOT units, the quadrupole errors are shown in Table 6.  

We should again point out that the index used by TEAPOT is one less than the 
harmonic number we use. 
 

Table 5.  Revised Quadrupole errors (part in 10-4 at 1 inch) 

 

Harmonic  
Number 

Normal 
Systematic 

Skew 
Systematic 

Normal 
Random 

Skew 
Random 

     
2 0 - 12 - 
3 0.2 0.3 1 1 
4 -0.5 0.1 1 0.3 
5 -0.1 -0.1 0.15 0.1 
6 0.4 -0.1 0.1 0.1 
9 - - - - 

10 - - - - 

 
Table 6.  Revised Booster 6” Quadrupole Errors at Injection (TEAPOT units) 

 

Harmonic 
Number 

Normal 
Systematic 

Skew 
Systematic 

Normal 
Random 

Skew 
Random 

     
2 0 - 0.12E-02 - 
3 0.52E-03 0.79E-03 0.26E-02 0.26E-02 
4 -.34E-01 0.69E-02 0.69E-01 0.21E-01 
5 -.18E+00 -.18E+00 0.27E+00 0.18E+00 
6 0.19E+02 -.47E+01 0.47E+01 0.47E+01 
9 - - - - 

10 - - - - 

 

4.  Injection 

 
25-turn, multi-turn injection was used for the booster. The incoming beam was painted 
in the four transverse dimensions in a standard method. The beam was also painted 
longitudinally by modulating the momentum coming out of the linac and by chopping 
the head and tail of the linac beamlet. The number of particles injected on each turn 
varied, corresponding to the length of the chops. A total intensity of 4×1012 protons 
were injected. The resulting pulses just matched the waiting rf bucket and the bucket 
was uniformly filled from low to high momentum. The injection was done on-the-fly at 
the bottom of a sine ramp into an accelerating bucket. The fully-injected beam was then 
tracked for approximately 99,000 turns until it reached its extraction energy of 4 GeV 

Neither the transverse painting nor the number of injected turns were fully 
optimized. Looking at the final beam loss & emittance blow-up, an injection scheme 
with more turns and a larger transverse displacement would be advantageous. The 
number of turns possible from the linac will have to be studied more closely. 
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In the simulation, 20,335 macroparticles were used, and space-charge kicks were 
applied 4 times per cell. A run of 99,000 turns required approximately 500 hours of 
CPU time on a 1.5 GHz dedicated machine. A uniform beampipe radius of 7.5 cm was 
taken for the definition of lost particles. This may need to be somewhat reduced in order 
to account for the beampipe thickness. The rf profiles and brho curves were derived by 
L. Rybarcyk [4]. 

Macroparticle distributions for the injection process are presented in Fig. 3. 

    

    

      
 

 

 
Figure 3.   B9L Injection Macroparticle Distributions. 
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5.  Full booster cycle tracking 

 
The Booster was tracked for the full acceleration cycle of approximately 99,000 turns. 
The beam exhibited both emittance growth and beam loss for the first few thousand 
turns, then settled down and was accelerated smoothly for the remainder of the cycle. 
Typical macroparticle plots during the acceleration cycle are presented in Fig. 4 and 
plots representing the full beam behavior during the cycle are shown in Fig. 5. As can 
be seen from the emittance plots, the injection parameters need to be better optimized. 
The resultant beam at the end of the acceleration cycle has suffered an approximate 22% 

loss from the initial injected beam, or a reduction from 4.07 1012 total particles to 

3.17 1012.  
 
 
 
 

    

 

 

    
 

 

 

 
Figure 4.   B9L Macroparticle Distributions during the Acceleration Cycle. 
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Figure 5.   B9L Beam parameters During the Acceleration Cycle.

6.  Booster Tune-Density Plots

During the booster tracking, Fast Fourier Transformations (FFT) were performed on the
macroparticle distributions periodically. Each FFT scanned the entire 20,000
macroparticle distribution over 128 turns and calculated the individual macroparticle
tunes. These tunes were then plotted, using the program POSTER [5]. The resultant tune
plots are presented in Fig. 6. Horizontal and vertical tunes are plotted on the X & Y
axis. In these plots, the solid and dashed blue lines represent regular and skew
systematic resonances, while the gray lines indicate simple error resonances.
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Figure 6.  B9L Tune-Density Plots. 
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The green cross indicates the injection tune point. The color scale to the right of 
each plot denoted the point densities plotted. Note that the scale changes from plot to 
plot. It is interesting to note that some particles initially stream out along the normal 
resonance line Qx + 2Qy = 13. As can be seen from the plot of the first 128 turns, the 
beam core crosses this resonance. During the crossing, increased beam loss is observed. 
An improved injection painting will reduce this resonance-line crossing; however, it 
would be prudent to correct this resonance with a set of harmonic sextupole correctors. 
Again, it should be noted that this simulation contains all of the individual magnet 
systematic and random errors, as described in the above section, as well as magnet 
misplacement and misalignment errors. The Qx + 2Qy = 13 resonance is driven only by 
the random magnet errors and those induced by space-charge forces, as this is not a 
systematic resonance, and as such is not driven by the chromaticity-correcting 
sextupoles, to first order. 

 
 

7.  Conclusions 

 

For the first time, tracking in 3-D through an entire synchrotron acceleration cycle has 
been possible, including magnet errors, misalignments and space charge. 
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Parallel simulation algorithms for the three-dimensional
strong-strong beam-beam interaction

Andreas C. Kabel†
Stanford Linear Accelerator Center,
2575 Sand Hill Road, Menlo Park, CA 94025 ‡

Abstract. Adding a third dimension to the simulation of the strong-strong beam-beam effect
can, by mechanisms such as the hourglass effect and phase averaging, significantly change the
results of the simulations. However, CPU requirements for such simulations are beyond the
reach of single-processor machines. We discuss a set of parallel algorithms for the treatment
of the problem, based on particle-mesh methods and rapid elliptic solvers. Particle tracking,
particle-mesh deposition, and field calculation are three tasks which have to be parallelized;
they have competing requirements for localization of the tasks on the parallel machines. We
discuss different possible parallelization schemes. We present a code based on spatial domain
decomposition in the longitudinal direction, which shows good scaling behavior for the case
of storage rings with small synchrotron tunes.

1. Introduction

The strong-strong beam-beam effect is one of the most important effects limiting the
luminosity of ring colliders. Little is known about it analytically, so most studies utilize
numeric simulations. The two-dimensional realm is readily accessible to workstation-class
computers (cf.,e.g.,[1, 2]), while three dimensions, which add effects such as phase averaging
and the hourglass effect, require vastly higher amounts of CPU time. Thus, parallelization
of three-dimensional simulation techniques is required; in the following, we consider several
approaches, emphasizing computational aspects such as scalability. While the correctness
of the code has been checked for analytically accessible cases, physical benchmarking and
comparison with experimental results will be subject of a forthcoming paper.

2. The Pool algorithm

A solver for the weak-strong beam-beam problem is embarrassingly parallelizable: a pool of
test particles, representing the weak beam, is distributed among processors. In each step, the
field of the immutable strong beam is calculated, and the phasespace coordinates of the weak
beam’s particles are updated accordingly. Inter-process communication is only necessary
for the calculation of collective quantities, such as the moments of the weak beam’s particle
distribution and luminosity.

† E-Mail: andreas.kabel@slac.stanford.edu
‡ Work supported by Department of Energy contract DE–AC03–76SF00515.
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2.1. Two dimensions

For the strong-strong problem, both beams are represented by test particles. We are now
presented with two parallelizable problems: the application of fields to the particles and the
calculation of the fields due to the current particle distribution. The latter problem is typically
approached by a Particle-on-lattice (POL) algorithm: A discretized, two-dimensional charge
density ρ�i is used to calculate the equally discretized electric potential φ�i by solving a

discretized version of Poisson’s equation. A particle is deposited on ρ�i (�i, �k,. . . are two-
dimensional integer vectors, corresponding to positions x = x0 + hxi1,y = y0 + hxi1 on the
grid) by adding charge to the lattice sites nearest to it with distance-depending weights.
There are a number of choices for these weights, we use a third-order momentum-conserving
approach[3]. For the two-dimensional sub-problem, we make use of algorithms introduced
and validated in [1, 2].

Generalizing the weak-strong approach, we divide the particles into pools local to
processors. For the two-dimensional problem, a single grid is placed in the interaction point,
perpendicular to the directions of motion. A parallelized solver step now looks like this:

(i) (local) collect ρ�i from test particles
(ii) (global) add all ρ�i from particle pools

(iii) (global) distribute sum ρ�i to solver processors

(iv) (local) calculate �E�i from ρ�i

(v) (global) distribute �E�i to particle pools

(vi) (local) apply �E to test particles
(vii) (local) transport particles around the complete ring or to the next interaction point (IP)

Each step, of course, needs to be executed for both bunches. There are alternatives to steps 5
and 6, which are discussed below.

The transport operation involves all of the particle dynamics between IPs; for a proton
machine, it can be as simple as the application of a symplectic 6×6 matrix to the particles’
phasespace coordinates; for an electron machine, the transformation also has to include
damping and excitations due to synchrotron radiation processes.

As the deposition and field interpolation step involves the same particles on the same
grid, only one interpolation step has to be done, the results of which (namely, the coordinates
of the nearest grid points and the weight vectors) can be stored with the particle. As the
interpolation step is quite cheap, but storage of the results with each particle needs substantial
memory, cache locality effects may make it cheaper to recalculate these quantities on real
machines.

2.2. Three dimensions

For the solution of the three-dimensional problem, we divide the bunches into nz longitudinal
slices of equal lengths hz and slice numbers iz ∈ [0,nz), 0 representing the leading slice. We
now need to place (for both bunches) 2nz − 1 grids numbered 1− nz . . .nz − 1 at positions
1−nz

2 , . . . , nz−1
2 around the IP.

For each encounter of bunches, we now need to execute 2nz − 1 steps, numbered
s∈ [0,2nz−2]. In step s, particles in slice k ∈ [max(0,s−nz+1),min(s,nz−1)] are deposited
on grid ±(k− s) (sign according to the direction of flight). All updated grids are then
used to calculate fields, and the resulting fields are applied to the opposing bunch’s particles
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longitudinally nearest to the respective grid. Each bunch encounter thus consists of n2
z slice

encounters, each involving one two-dimensional deposit/solve/kick step.
Note that the longitudinal particle-to-grid assignment needs to be done only once per

bunch encounter, as the longitudinal motion is ’frozen’ in the IP.
To move the particles onto the slice, we can either simply project to the slice (i. e. just

set the z-coordinate to the grid position) or transport the particle to the grid by applying the
transfer matrix of a drift space of appropriate length. Our code leaves the choice to the user.

When the bunch length is comparable to the β function in the IP, the hourglass effect
becomes significant, meaning that the grids far away from the IP have to accommodate a
larger bunch diameter than the grids close to it. To optimize resolution, we scale the grid

resolutions according to hx,y ∝
√

1+ z2

β ∗
x,y

2 .

2.3. Field calculation

The field calculation is based on a convolution algorithm. The discretized charge distribution

ρ�i is convoluted with the discretized Green’s function G�i−�k ∝ log∑i
(ii−ki)2

h2
i

for the two-

dimensional Coulomb problem. The convolution can be done efficiently by Fast Fourier
transforming ρ , doing a point-wise multiplication with the Fourier transform G̃ of G, and
transforming back. If we choose a lattice of dimensions L = [0,2hxnx)⊗ [2hyny), but restrict
the support of ρ to L′ = [0,hxnx)⊗ [0,hyny), the (2nx,2ny) periodicity of G̃ will not modify the
potential in L′, i. e. the method will obtain the correct potential for open boundary conditions.
This is the famous Hockney trick [3].

To avoid the singularity of the Green’s function at the origin, we choose a natural
smoothing prescription: we shift the Green’s function by 1

2
�h, such that G0 = 0, and evaluate

the fields at a position shifted by −1
2
�h.

Figure 1 shows the x-component of the electric field as a result of the particle deposition,
Poisson solver, and interpolation algorithm; the lattice has a size of 512⊗ 512 and spans
±15σ (so there are 100 lattice points used for the interpolation), and the charge density
was created by depositing 106 Gauss-distributed (for random number generation, see below)
particles from a round beam onto the lattice.

The Green’s function is pre-calculated at program start. Note that using different lattice
resolution for lattices on different z positions means that different Green’s functions for each
pair of grids centered around each IP have to be pre-calculated, since G obeys no simple
scaling law for the case of β ∗

x �= β ∗
y .

The convolution approach makes it easy to handle non-congruent lattices, i. e. the case
of non-concentric beams (’parasitic crossings’); all that is needed is the convolution with an
appropriately shifted Green’s function. Similarly, G̃ can be precalculated for the case of the
lattice spacings of the charge deposition and the field evaluation lattice not being the same.
We plan to implement these generalizations in a future version of our code.

Parallelizing the convolution method amounts to parallelizing the local multiplication
with G̃, which is trivially done, and parallelizing the Fast Fourier Transform. For the latter,
we use the high-performance, open-source FFT library ’FFTW’[4], which provides an MPI
compliant parallel version. The parallel FFT works by dividing the field and charge matrices
into slices consisting of adjacent rows. Each solver process then does a one-dimensional
fast-Fourier transform of all row vectors in its assigned slice. In an all-to-all communication
step, the charge matrix is transposed, and the row transform step is repeated. A subsequent
transposition is unnecessary, as we can account for it by using G̃	 instead of G̃. The inverse
transformation of ρ̃	 � G̃	 works the same way, again leaving out one transposition and thus
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Figure 1. Field calculation vs. analytic results

returning a correctly oriented potential matrix φ :

ρik →
FFT

ρik̃ →	 ρk̃i →
FFT

ρk̃ĩ = ρ̃	
ik →̃

G	�

(G̃� ρ̃)	ik = φ̃	
ik = φk̃ĩ →

FFT−1
φk̃i →	 φik̃ →

FFT−1
φik . (1)

Calculation of the electric field is done by discretized differentiation with an appropriate
weight algorithm[2]. In theory, the discretized differentiation algorithm could be absorbed
into the fourier-transformed Green’s function, in practice, this solution turns out to be slower,
as the CPU time for the backwards fourier transform roughly doubles (one needs two real-to-
real transforms instead of one for φ ).

There are two basic choices for the application of kicks:

(i) Particle-scattering methods: the particles’ coordinates are scattered to the appropriate
local support, the fields are sampled and the appropriate kicks applied on the owner
process of the local support. The particles can either be retained by the owner process
of the local support, or the kicks can be transferred back to the particle’s owner process.
The former solution, however, involves more data transfers (complete particle state in
one direction vs. two real numbers back and forth)

(ii) Field-gathering methods: each process gathers the fields of the entire support and applies
them to the particles owned by it. As this requires constant time for a given grid
resolution and number of processors, this will be the more time-efficient solution beyond
a certain number of particles; we choose this solution in our code.
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2.4. Improvements

2.4.1. Loose coupling between rings We can make use of an additional symmetry property
of the system: as there are two rings involved, we split the processors into two subgroups, each
assigned to one of the bunches. The only communication necessary between these subgroups
is then the exchange of the charge density ρ�i, which can be done after collecting it to the root
process of the solver. Thus, only a single pair of communicators between processes assigned
to different bunches is necessary.

The advantage of this procedure is due the hardware configuration of the computer
system available to us. On the IBM SP at NERSC, 16 processors share a node and can
communicate via shared memory. Communications between nodes will be over a fast
network, but still be substantially slower. Thus, it is advantageous to limit the distribution
of the Poisson solver, which will involve a large amount of all-to-all communications, to one
node. By the bisection of the problem the communications overhead penalty will start to set
in at 32 processors instead of 16 processors.

2.4.2. Parallel two-dimensional steps Communications overhead can be further reduced by
using another possible parallelization. As soon as the longitudinal slice number nz > 1, each
encounter will involve the independent encounters of several slices. Particle deposition and
solving the Poisson equation can then be done in parallel, making it possible to keep both local
to a single node by setting the number of processors in a solver to nsp < np/2 . However, not
every encounter step involves the encounter of an integer multiple of nsp, so ... solvers will
have been idling during one encounter. The optimum choice for nsp depends on the hardware
setup and the ratio of CPU time usage for solving the Poisson equation and particle-grid-
dynamics, resp., so it has to be found experimentally for each given number of particles and
grid size.

Tables 2.4.2 and 2.4.2 show typical computation times for two different setups; the
column is the number of processors used for a single poisson solver. (e.g, 32 processors
and 4 processors/solver would handle 32/2/4=4 deposit/solve/kick-cycles for each bunch in
parallel, leaving a maximum of 6 processors idle)

Table 1. Pool algorithm: 3.1 ·105 particles, 128×64×31 grid, time (in s) for 5 encounters

Number of Processors
Proc./Solver 2 4 8 16 32 64 128

1 292.4 154.0 85.8 53.4 42.8 41.5 46.3
2 – 175.0 94.6 56.9 40.6 39.1 43.0
4 – – 98.7 58.0 40.3 36.8 38.3
8 – – – 62.3 42.7 35.4 37.0

16 – – – – 47.1 39.8 39.0
32 – – – – – 94.3
64 – – – – – – n/a

3. Adding a Particle Manager: The Slice algorithm

While the algorithm described above allows for a great flexibility with respect to variable
computer parameters such as number of processors, number of processors in a fast sub-cluster
etc., its performance for a higher number of processors is somewhat disappointing.
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Table 2. Pool algorithm: 2.5 ·104 particles, 256×256×5 grid, time (in s) for 10 encounters

Number of Processors
Proc./Solver 2 4 8 16 32 64 128

1 94.4 58.7 41.2 39.0 39.9 41.6 43.0
2 – 56.4 36.6 27.9 26.6 28.0 29.6
4 – – 31.4 22.8 18.6 19.3 20.4
8 – – – 20.6 16.5 15.2 16.0

16 – – – – 15.2 14.4 14.4
32 – – – – – 16.2 16.4
64 – – – – – – n/a

This is, of course, due to the choice of a common “pool” of particles, shared among
all processors, with no attempt at localization in physical space, making it necessary to
communicate calculated fields to all processors. An obvious modification would be to assign
particles of a certain, limited part of configuration space uniquely to one processor or group
of processors, making field communication local to that processor or group of processors.

The obvious drawback is the need to re-distribute particles among processors, as the
dynamics will move a particle from one processor’s responsibility into another’s. Care must
be taken not to lose in particle management communication what was gained by saving field
communication.

3.1. Longitudinal domain decomposition

Consequently, particles should be assigned to processors according to their longitudinal
coordinate: The longitudinal dynamics in a storage ring usually is much slower than the
transverse one, meaning that a relatively small number of particles will change processors
during a single turn.

A complication arises from the fact that a simple equidistant slicing will lead to a
very uneven distribution of particles, leaving most of the tracking work to the processors
responsible for the center slices. This can be remedied by chosing a Hirata-type slicing [5],
choosing borders ζi,ζ0 = ∞,ζzn =−∞ such that the number of particles in [ζi,ζi+1) = Np/nz;

the encounter points between slices i and k are chosen at a distance
zi−z′k

2 from the IP, where
zi,z′k are the centers of gravity of the slices in the respective bunch. Again, the grids’
resolutions are scaled according to zi and β .

3.2. The Wraparound algorithm with idle cycles

Another problem is the fact that the processors assigned to the head of the bunch will be idle
after the centers of the bunches have passed each other (Fig. 2; slices atop each other are in a
deposit/solve/kick step, single slices are idle. Each slice is on one or more CPUs) .

We can, however, apply the transfer map of the lattice up to the next IP (or to the
beginning of the same IP) in the first of these idle steps, and do the next collision in the
next step (Fig. 4)

A complication arises from the fact that particles from the trailing slices may move into
a slice when they are transported through the lattice after they have encountered their last
collision partner. This can be partially cured by inserting a ’hiatus’, i. e., a slice, after having
been transported, waits for one or several additional idle steps, leaving CPUs unused, for
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Figure 2. Idle CPUs in a longitudinal domain composition

Apply Transfer Map

Acausal particles

Figure 3. Wraparound algorithm for longitudinal domain composition

particles from the slices behind it to catch up. Fig. 3 shows this setup. But even then, further
catch-up events are unavoidable: For any phase advance ∆µ > 0 there will be a particle with
a single particle action high enough to translate the phase advance into a sufficiently high
spatial advance.

Assuming a matched distribution (i. e., ρ(p,q) = ρ̃(H(p,q))) and a quadratic
Hamiltonian, and scaling the canonical variables to σp,q = 1, the number of particles moving
from a slice q1 < q≤ q2 to a slice q3 < q≤ q4 in two-dimensional phasespace during a phase
advance ∆φ = 2π∆ν (or vice versa, as the distribution is invariant under rotations) is given by
the integral over the parallelogram obtained by overlapping one slice with the other, rotated
slice:

∆N = NP

∫ q4

q3

dq
∫ q2/sin∆φ+qcot∆φ

q1/sin∆φ+qcot∆φ
dpρ(H(p,q)) . (2)
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Apply Transfer Map

Acausal particles need to skip 2 slices

Figure 4. Wraparound algorithm with a hiatus of 2 for longitudinal domain composition

For a gaussian distribution, this integral has to be evaluated numerically.
The acausal leakage rate can now be calculated by use of 2, a plot of the maximum

acausal leakage rate per turn vs. the number of inserted idle cycles is given in Fig. 5. The
synchrotron tunes are 0.04,0.02, and 0.00072 (PEP II HER, PEP II LER, and Tevatron, resp.),
the number of slices is 11. For the Tevatron, the leakage rate is completely benign even for
just 1 idle cycle, resulting in near-optimal CPU utilization.
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Figure 5. Acausal leakage rate for typical machines and a longitudinal decomposition into 11
slices

For the sake of clarity, we give the wraparound algorithm in some detail for a
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configuration of 5 slices and a hiatus of 2. We get the following table of operations:

Table 3. Sequence of parallel operations for 5 slices and a hiatus period of 2

Slice/Step 0 1 2 3 4 5 6
0 K4L F01 F02B02 K′

0F03 K′
1F04 K′

2 K′
3

1 K3 K4LF01 F02B02 F03B13 K′
0F04 K′

1 K′
2

2 K2 K3 K4LF02B02 F03B13 F04B24 K′
0 K′

1
3 K1 K2 K3 K4LF03B13 F04B24 B34 K′

0
4 K0 K1 K2 K3 K4LF04B24 B34 1

Here, Ki stands for a kick due to slice i of the opposing bunch, K′
i for a kick due to slice

i of the opposing bunch in the next IP, L for the transport to the next IP, Fik for a forward
re-shuffling operation involving slices [i,k] (k being the originating slice), Bik for a backward
re-shuffling operation involving slices [i,k] (i being the originating slice).

Each K operator involves the transport to the appropriate encounter point and the
(un)projection on/off the slice before/after the actual kicks step. Each L operator involves
the transport into the IP. Thus, each sequence of steps expects and releases the particles in
completely overlapping bunches, transported into the IP. Note that the arrangement above has
related collective operations occurring in the same step number on each processor and leaves
no collective operation open after the encounter.

The B operator’s scope is different from the F operator: while we have to accept the
occasional causality-violating particle being transported forward, we can avoid causality
violations in the other direction by transporting no further backwards than to the youngest
slice in hiatus. Particles not belonging there will move out when it is this slice’s turn to be
originator of a backwards re-shuffling operation.

The arrangement above takes into account that

(i) Bii = Fii = 1
(ii) A B operation should originate as late as possible (i. e., immediately before K′

0) to avoid
having to transport particles twice

(iii) An F operation should originate as early as possible (i. e., immediately after L) to
minimize causality violations.

We have test-run the code on the NERSC facility; this time, we observe an almost linear
behavior of the CPU time vs. CPU number (Fig. 6). Due to the much more favorable
localization of particles on CPUs as opposed to the pool algorithm, a breakdown of this
behavior will not set in before the most communication-intensive process, field solving, is
distributed among more than 16 CPUs. Thus, for a typical slice number of 32, we expect this
point to be reached for 1024 CPUs.

3.3. Bunch setup and random number generation

The simulation codes makes use of pseudo-random numbers during the initial setup of the
particles and, in the case of electrons, for the simulation of noise induced by synchrotron
radiation.

It is desirable that the code’s result is independent of the number of processors used; this
means that not only the initial conditions should depend only on the number of particles used
(and possibly on a free ’seed’ parameter), but also that the history of synchrotron radiation
effects should be the same for a given particle, whatever processor it is assigned to.
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In the case of the pool approach, this can be realized by assigning each particle a unique
tag number ∈ [0,N). Then, each processor uses an identical pseudo random number generator
(RNG) and interleaves its output, such that particle i’s phasespace coordinates are initialized
with elements x6i, . . . ,x6i+5 of the random number generator’s sequence. Other elements
(belonging to other processors’ particles) are discarded, which wastes CPU time, but makes
inter-process communication between the RNGs unnecessary. A similar approach is used for
the generation of synchrotron radiation noise.

This approach would not work in the slice approach, as particles are exchanged between
processors, possibly making it necessary to use random number sequence elements already
discarded.

A simple solution to this difficulty is to have each particle carry its own unique RNG. We
use a 64-bit linear congruential generator, which generates the sequence

Xk+1 = aXk + p mod m , (3)

where a is an integer multiplicator which can be chosen the same for each generator, m = 264,
p is a prime number, and xk = 2−64Xk ∈ [0,1). The generator can be made unique by chosing
p the ith prime for the ith generator. Normal-distributed numbers yk can be generated pairwise
by the prescription yk + iyk+1 = e2πixk+1

√−2log(1− xk).
Each generator thus has to carry its state X (a 64-bit number) and the parameter p

(for which a 32-bit number is sufficient for typical number of particles used), only slightly
increasing the payload for a particle data structure.

4. Conclusion and outlook

A naive implementation of a strong-strong beam-beam solver on parallel machines lead to
disappointing results due to high inter-process communications. We have developed an
alternative algorithm which decouples the problem as far as possible, making use of the
slow dynamics of the system in the longitudinal phase plane and the binary symmetry of
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the problem. We have observed an almost linear CPU time scaling on the NERSC facility.
The code is transparent with respect to CPU number.

Further improvements improvements will include:

• Nonvanishing crossing angles
• Offset beams (parasitic crossings)
• Dynamically adapting grid resolution
• Dynamic reslicing, keeping the particle number in each slice constant
• Different number of longitudinal partitions in different IPs (for handling of crossings

with low phase advance: the required z resolution will be much smaller)
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A parallel code for lifetime simulations in hadron storage
rings in the presence of parasitic beam-beam interactions

Andreas C. Kabel†, Y. Cai
Stanford Linear Accelerator Center,
2575 Sand Hill Road, Menlo Park, CA 94025 ‡

Abstract. When two beams of charged particles share the same beam pipe, traveling in
opposite directions, nonlinear forces are introduced due to the presence of beam-beam forces.
These forces may excite incoherent resonances, eventually leading to particle loss and thus to a
finite beam lifetime. Beam-beam interaction will occur as head-on collisions in the designated
interaction points of the machine as well as as parasitic crossings along the circumference of
the machine. In the case of protons, damping mechanisms are absent; this can lead to very
long time scales for the dynamics of this system.

We developed a code which models a proton/anti proton storage ring as a sequence of
symplectic transformations due to the lattice and momentum kicks due to weak-strong beam-
beam interaction. The relevant information for the setup is extracted from a MAD description
file of the machine and translated to speed-optimized C++ code. By distributing test particles
among computers running in parallel, we are able to track them for a relatively long time:
On a 64-processor cluster, and for a storage ring with 100 parasitic crossings, we are able to
calculate beam lifetimes in the range of several hours. We present typical results and discuss
possible applications.

1. Introduction and motivation

1.1. Beam-beam effects

Beam-beam effects play an important role in the design and operation of storage ring colliders.
A close encounter of charged particle beams traveling in opposite directions will lead to
strong transverse forces exerted on the respective other bunch. Depending on the ratio of the
forces, one distinguishes between the weak-strong (in which one beam can be considered as
unaffected by the force of the other) and strong-strong regime (in which both beams influence
each other with comparably sized effects).

The beam-beam effect will lead to linear effects due to the additional focusing (or
defocusing) forces near the center of the beam, resulting in tune shifts and new effective Twiss
functions. Non linear components of the forces lead to amplitude dependent tune shifts, thus
introducing a tune spread. Other non-linear effects include the flip-flop effect.

The most prominent occurrence of beam-beam forces is in the design interaction point
(IP), in which the beams collide head-on, leading to maximum transverse forces.

Interaction points other than the design IP are referred to as ’parasitic crossings’. In
a circular machine with N bunches circulating, the opposing beam will see 2N crossings
(provided the beams share the same beam pipe)

† E-Mail: andreas.kabel@slac.stanford.edu
‡ Work supported by Department of Energy contract DE–AC03–76SF00515.
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1.2. Beam-beam effects in the Tevatron§

In its current setup, the Tevatron operates with 36× 36 proton/anti-proton bunches, which
share the beam pipe in a helical scheme. During the injection stage, which takes place at
150GeV, all 72 interaction points are parasitic.

During injection, a relatively fast decay of the anti-proton current is observed; the
lifetimes obtained by fitting to an exponential decay behavior are of the order of 1 hour. In the
absence of the proton beam, the anti-proton lifetime is well beyond 20 hours. The proton beam
itself is unaffected, having a vastly higher charge. Thus, it seems justified to assume that the
lifetime behavior is due to weak-strong beam-beam effects; the particle loss might be caused
by diffusion processes or incoherent resonances, driving a particle to the physical aperture of
the machine (which is, due to the need to open the helix wide to mitigate beam-beam effects,
very narrow)

In the rest of the paper, we discuss methods and a parallel code to simulate this behavior.

2. Lifetime calculations

The beam lifetimes we would like to simulate are of the order of 1hour. For the Tevatron, this
corresponds to a loss rate of < 5.8 ·10−9N/turn, where N is the number of particles in a weak
bunch.

We choose a direct particle tracking approach to lifetime calculations, as opposed to the
usual dynamic aperture calculations. As we are dealing with a proton machines, synchrotron
radiation damping mechanisms are absent, so there is no natural limit on the number of turns
one needs to track. Assuming that we need to observe 102 particles being lost during the
tracking procedure to get decent statistics, we need to simulate > 1.7 · 1010Particles ·Turns.
As we are interested in the injection stage, where we assume that all parasitic crossings will
contribute to the dynamics of the beam, > 1.2 · 1012 weak-strong interactions need to be
simulated. An aggravating factor for the calculation is the dependence of the beam-beam
interaction pattern a bunch experiences on the longitudinal position within a train and on the
cogging stage it is currently in. Thus, the computational effort necessary is clearly out of the
range of single processor machines.

3. A parallel weak-strong code

Parallelization clearly is needed to tackle the problem described above. But even when
parallelized, the computational demands of a proton tracking code for lifetime calculations
are pushing the limits of the computing resources available to us. Thus, a carefully designed,
speed optimized code is necessary; only the physics relevant to the problem should be
included.

The code PlibB (Parallel Lifetime Calculations with beam-Beam) was written with this
goal in mind. It is not an optics code; rather it assumes a machine description prepared for
it using MAD8[], using a defined convention of marking the interaction points within the
beamline.

Using the MAD input file, a PERL script then runs MAD several times to

• calculate Twiss parameters for the proton and anti-proton beams at the IPs
• calculate the closed orbit of both beams

§ This section is based on personal communications by N. Gelfand, V. Lebedev, P. Lebrun, T. Sen, M. Syphers,
V. Shiltsev, and M. Xiao, to whom we are deeply indebted. Any inaccuracies in this section, however, should be
attributed to the author.
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• calculate the linear transfer matrices for the anti-proton beam between interaction points
with respect to the closed orbit . This requires the undocumented trick of doing an
’empty match’ on the RMATRIX of a beamline subsection. Furthermore, MAD had to be
modified to output the transfer matrix with full internal precision to ensure symplecticity.

The Twiss parameters and transfer matrices are then used by the script to generate a
C++ program file, containing an alternating sequence of beam-beam kick elements and linear
transformations, as well as a single ’aperture’ element (see below). This file is then compiled
and linked into the main code.

4. Analytic treatment of the beam-beam kick

The integrated transverse kick of a gaussian bunch can be expressed by the Bassetti-Erskine
Formula[1]:
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where σx,y are the RMS sizes of the strong beam, and w(z) is the complex error function:

w(z) = e−z2
erfc(iz) (2)

The evaluation of w turns out to be the most time-critical component of the code. Thus,
we surveyed a number of implementations, (for a comprehensive list, see [2]); the fastest we
found are

• The Chiarella-Matta-Reichel algorithm ([3]). This is an exponentially converging series;
stripped down to 10−5 precision, whree only 6 rational functions need to be summed. Its
most prominent downsides, namely, bad accuracy near the origin and near the zero of
the denominator of the summands can be avoided by following the prescription given
in [4]: there are two pre-calculated coefficient series for slightly different poles, of
which we chose the more distant one for a given argument. Also, we switch to a Padé
approximation for |z| � 1

• Brute force: a pre-calculated 2-D lookup table and bilinear interpolation. This is good
for 10−6 accuracy. The method works very well on the IBM SP, which has a large data
cache; on the PC platform, the first method turns out to be faster.

The implementations were checked with a reference implementation [5]. Numerical
experiments showed that a 10−5 relative accuracy or better everywhere is sufficient for typical
simulation lengths; lifetime estimates (see below) are in excellent agreement with code using
10−16 accuracy implementations; test particles begin to show a visible deviation from the
reference implementation not before 105 . . .106 turns.

4.1. Other optimizations

Although conventional wisdom has it that hand-optimizing floating-point code is hardly
worthwhile, this is not true for modern CPU architectures in which FP operations are of the
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execution speed of integer arithmetic and where cache locality effects and vectorizability can
have a substantial impact on the execution speed.

We concentrated our efforts on speeding up the particle transport and the beam-beam
kick on the architectures available to us (INTEL Xeon processor and IBM SP). In our code,
each particle carries two 6d-vectors of phasespace coordinates and a flag to switch between
them. This way, load-to-store operations and storing of intermediate results can be avoided
when updating coordinates. For the linear transport on the INTEL platform, we use hand-
coded SSE instruction, making use of the parallelizability of FP operations on Intel. On the
IBM SP, we use the array of phasespace coordinate vectors as a 6×N matrix, multiplying
it by the transfer matrix using the optimized ESSL library routines. For the implementation
of the Matta-Reichel complex error function, care was taken to exploit vectorizability of the
inner loops (e.g., no direct summations of intermediate results, but store them in an array and
sum later)

By these methods, we gained about a factor of 3 in speed over an initial version of the
code. Currently, the speed achieved is 106 (kicks,transforms)/second on the Intel Xeon and
6.7 ·105 (kicks,transforms)/second on the IBM SP.

4.2. Parallelization

The Weak-Strong is embarrassingly parallelizable; a parallel code merely assigns different
chunks of particles of a common particle pool to each processor. Communications between
processes is only necessary when collective quantities (lost particles, beam sizes, ...) are
calculated.

4.3. Simplified distributions

Usually, one would not expect particles in the core of the beam to be lost. Therefore, one can
use ’de-cored’ distributions where particles near the center of the distribution are left out, thus
increasing the effective speed of the simulation. Different strategies are possible. Clearly,
a simple cutoff in each phase space dimension is not sufficient, as it will not be a matched
distribution. In action space, different cutoffs are possible , the limiting cases of which are
(with an obvious notation referring to phase space coordinates normalized to unity)

• An all-dimensional cutoff, i. e., a 2d-hypersphere of radius R cut out: ρ(�x) ∝ Θ(|�x| −
R)e−|�x|2/2d(|�x|2d)dΩ ; the ratio of particles within that distribution is

N/N0 = e−R2/2
d−1

∑
i=0

R2i

22ii!

• pairwise radial cutoff, i. e., the direct product of distributions with a disc of radius R cut
out: ρ(�x) ∝ ∏i Θ(x2

i + p2
i −R2)e−(x2

i +p2
i )/2)ddxdd p, here

N/N0 = (1− exp(−R2/2))n

For d = 3 (six dimensional phase space), the latter choice (which we use in our code)
eliminates more particles for typical choices (R≈ 1σ . . .2σ ) of the cutoff.

5. Lifetime estimates

In the tracking procedure, the particles are tracked through the sequence of transfer elements.
In the aperture element, the action of the particle (with respect to the Twiss parameters at the
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Figure 1. Typical ’waterfall’ plot for NLost(Ix, Iy;t = t f ixed)

aperture’s position) is determined. The action is recorded in the particle’s data structure if it
is greater than actions recorded before. Thus, after completion of each turn, one has a record
of the maximum action for each particle.

Scanning through Ix, Iy-action space, one can count the number of particles beyond
a certain Ix, Iy. Assuming that this action pair represents the physical aperture of the
machine, one gets a number NLost(Ix, Iy; t) (where t represents the number of turns), which
is a monotonously falling function with respect to Ix, Iy for fixed t and a monotonously rising
function with respect to t for fixed Ix, Iy. In order not to slow down the code, this scan is
typically run after each 103 . . .104 turns. The unstable particles are identified and their tag
number printed out; in a subsequent run, the code can be run with only the unstable particles
in the initial distribution; phase space dumps then are used to help; identify the instability
mechanism. Looking at NLost for fixed Ix, Iy, one can observe typical lifetime patterns: a
quick loss of particles (due to fast resonances or mismatching effects), going over into a
linear behavior for large turn numbers. Extrapolating the linear behavior, one can estimate
the lifetime, assuming a certain aperture, by looking at the slope of the linear part of NLost .
An advantage of this procedure is, of course, the fact that it allows to check the connection
between physical aperture and lifetime for a number of apertures with a single run.

Figures 1–3 illustrate the method for a toy example (the tevatron collision lattice, run
at injection energy and with the closest parasitic crossings around the IPs included). In this
example, a fifth-order resonance was the mechanism driving the particle loss.

For the real Tevatron lattice, we were, so far, unable to find lifetimes compatible with the
experimental observations; simulated particle loss rates were much smaller (compatible with
> 50h lifetimes) than observed. Our simulations, however, display the right signature both in
the temporal behavior of particle loss (a fast-loss stage and a linear asymptotic beahvior) and
in the relative lifetimes of bunches in different cogging stages (the first bunch suffering most
losses).
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Figure 3. Poincaré section of instable particles in the toy example

This might be due to inaccurate depiction of the actual physics in our model (see
discussion below) or due to our insufficient knowledge of machine parameters. Further
simulations, including parameter scans, are required.

6. Conclusion and further directions

Through parallelization and optimized implementation of tracking procedures, the PlibB
code is able to calculate finite lifetimes caused by parasitic beam-beam crossings based on the
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tracking simulation of ≈ 1010 particles·turns, which, as it produces measurable quantities, can
be viewed as a distinct advantage over dynamical aperture results produced by other tracking
codes. While we are able to reproduce the signatures of anti-proton loss in the injection
stage of the Tevatron, the actual lifetimes obtained by our code are much longer than actually
observed. A possible cause of this might be the beam-physical austerity of our code, which
only considers beam-beam elements and linear transport elements. In its current stage, the
code misses elements of beam physics that could turn out to be important:

• Magnet nonlinearities/chromaticities: This might be the single most important physics
element we are missing. The natural chromaticity of the Tevatron due to sextupole
elements is extremely high (it is compensated down to 8 units, however). While we
have implemented the effective global lattice chromaticity, the high local sextupole
content may lead to strong non linear effects. A full implementation of this effect would
lead either to a high number (≈ 102 . . .103) of non-linear kick elements (which would
preserve symplecticity) or to high-order differential algebra mappings. Either method
will dramatically slow down the code.
If the full, high order map is not a viable option for speed reasons, we still can ’fudge’
in chromaticity. MAD is used to calculate ξi = ∂ µi/∂δ at all interaction points. Then,
δ µ = δ (ξi+1 − ξi) is the phase advance a particle with momentum deviation δ has on
top of that due to the transfer matrix.
The phase advance can be applied by sandwiching the transfer matrix between two thin
pseudo-quadrupoles with appropriate strengths (independent strengths for x and y). A
generalized quadrupole of δ -dependent strength results from a Hamiltonian potential
V = κxδx2 +κyδy2. To preserve symplecticity, the coordinate l, conjugate to δ , needs to
be kicked by ∆l = −2(κxx2 +κyy2).
While this procedure certainly preserves symplecticity, we encountered unreasonably
high loss rates when implementing it with the current Tevatron lattice. This might be
due to the fact that we apply the kicks at fixed relative phase locations, namely the
parasitic crossings; a smoother (or random) distribution of the kicks might get rid of
this phenomenon.

• Finite length of beam-beam interaction: When transporting a particle to the longitudinal
position of a beam-beam interaction (which might deviate from the one of orbit particles
due to a longitudinal offset of the weak particle), the surrounding element is assumed
to be a drift space. This is generally true for head-on collisions in the IPs, but not for
parasitic crossings in the Tevatron. Given the length of the bunches, this effect might be
important.

• Coupling between planes is not consistently considered. While the motion of the particles
due to linear elements is fully 6-D coupled, the strong beam’s transverse distribution is
assumed to have its principal axes along x and y; in reality, however, it can be tilted by
some degrees. This sould be fairly easy to implement; all that is required is the absorbtion
of an appropriate rotation matrix into the neighboring linear transfer elements.
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Using macroparticles with internal motion for beam 

dynamics simulations*

M. Krassilnikov, T. Weiland 
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Abstract. In order to simulate the beam dynamics in particle accelerators 
the Ensemble Model has been developed [1,2]. The Model divides a parti-
cle beam in a set of sub-beams or Ensembles. Besides the motion of the
macroparticle center in phase space an internal motion inside Ensemble is 
considered. Within linear approximation for acting forces one can possible 
to build a compact self-consistent model based on 6 first- and 21 second 
order moments of the distribution function. This reduces the number of 
required macroparticles drastically. It was shown [3], that even with one 
Ensemble the simulation of the beam sizes and correlations in photo-
injector yields good agreement with conventional beam dynamics codes, 
while the Ensemble Model has demonstrated significant advantage in 
computation time. In contrary to the conventional macroparticles the sizes 
and correlations of the Ensemble change in accordance with gradients of
applied forces. The space charge model for the Single Ensemble Model 
(SEM) is based on the homogeneously charged ellipsoid (known as K-V 
distribution [4]). Such an approach, being very efficient for the SEM, has
significant difficulties for application to Multi Ensemble Model (MEM).
As an alternative approach the 6D Gaussian distribution has been consid-
ered, and Multi-Centered Gaussian Expansion for the space charge force 
calculation has been studied [5]. The V-Code, based on the Ensemble 
Model, has been developed for the on-line beam dynamics simulations 
[3,6,7]. 

1. Introduction 

Numerical algorithms, based on macroparticles techniques, are very useful tools for the 
simulation of beam dynamics in particle accelerators. The beam phase space is repre-
sented by a set of macroparticles which are traced individually through a beamline, using 
external accelerating and focusing fields. In the case of intense and/or low energy charge 
particles beams not only external electromagnetic fields determine motion of the individ-
ual macroparticle but also the internal space charge fields. In order to reproduce smooth 
particle distribution function large number of macroparticles has to be taken into consid-
eration. Charge assignment algorithms with smooth shape function can reduce the num-
ber of required macroparticles, but unfortunately not so drastically and they need model-
ling parameters, such as macroparticle size, which is fixed and under circumstances can 
produce some unphysical effects [8]. 

* The work is supported in part by DESY, Hamburg. 
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The Ensemble Model [1,2] represents a particle beam as a set of subbeams or Ensembles, 
which are described not only by position of the Ensemble center but also by different 
correlations in phase space. These correlations, (i.e. Ensemble rms sizes) obey time equa-
tions with corresponded Lorentz force gradient, this implies internal motion within the 
Ensemble. Therefore the Ensemble collective parameters (i.e. rms sizes) develop in time
consistently. Superposition of the distribution function of Ensembles yields smooth beam
distribution even with smaller number of macroparticles (Ensembles), so the number of 

required macroparticles can be reduced drastically. 

2. Ensemble Model 

The Ensemble Model represents a particle beam as a superposition of Ensembles. Main 

equations are derived from Vlasov equations for the distribution function  
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2.2. Main Assumptions 
The Ensemble Model assumes that for the applied force F

�
 and a Ensemble parameter �
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what is equivalent to the Ensemble phase area (normalized emittance) invariance [1].
Moreover, the Ensemble energy spread is not very large, so the inverse normalized en-
ergy can be expanded as 

� �1 1 3 21
2 n nm m n n n p p

n
p p p M� � �� � � � �� �  �  �� �� , (2.5) 

where the mean energy m�  includes energy spread 
22 1

n nm n p p
n

p M� � �� � �� �� . 

2.3. Time Equations 
After averaging the Vlasov equation (2.1) gives (here Ensemble parameter �  has the

same meaning as in (2.4)) 
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Using Lorentz force expansion till linear terms 
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one can obtain 6 time equations for the first order moments ,r p� �
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and 21 equations for the second order moments: 
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Elements of the auxiliary matrices ˆ ˆ,W V , used in (2.9) and (2.10) are 
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3. 1D Ensemble Model: Two-Stream Instability Simulation 

The simplest physical plasma microinstability is that when two equal streams of electrons 
flow throw each other [8]. Simplified one-dimensional Ensemble model can be applied to 
simulate such an instability. Equations (2.9) and (2.10) can be simplified, the Ensemble 
center motion obeys the equations:  
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the second order moments time equations are 
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For the nonrelativistic case vzp c , the electrostatic approximation for the field calcu-

lation can be applied zF z��� � , 2 2X
zzF z�� � � , 0P

zzF .  

Parameters were used 00.25; v v 25; 0.4; 64p T DDT H L H� � � �� 	 � � � � � . Here 

p�  is frequency of beam plasma oscillations, initial beams have Maxwellian distribution 
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with mean velocities 0v�  and thermal velocity vT , vD T p� ��  is the Debye length.

Numerical parameters are time step DT and cell width H . The system has length L , 
more appropriate boundary conditions for the present example are periodic conditions.
Simulations were done with 10 Ensembles per cell (640 total number), initial Ensemble
sizes were about cell size, velocity spreads were chosen in order to satisfy Maxwellian 

distribution, no initial correlations 
zzpM  have been introduced. 

Poisson equation has been solved for the field calculations. The Ensemble Model makes 
possible to simulate smooth charge density distribution even with small number of 
macroparticles in calculation cell. By choosing Gaussian charge distribution function 

with time dependent parameters ( ), ( )zzz M� � , a contribution of an Ensemble to grid 

charge density can be expressed in terms of error function. 
The phase space plots for different times are shown in Figures 1-2a). The interaction of 
the beams causes bunching of the macroparticles, leading to potential wells which further 
enhance the bunching. Figures 1-2b) illustrate an evolution of the field and field gradient, 
which smoothness is provided by distributed macroparticles with varying sizes (Figures. 
1-2c)). Field gradient affect firstly the Ensembles velocity spreads (correlated and uncor-
related), what is depicted in Figures 1-2d). 
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Figure 1. Two-stream instability, quasi-linear regime at time 35 DT� � � . 

a) Phase space plot; b) Field (solid line) and field gradient (dotted red 
line); c) Ensembles rms sizes; d) Ensembles rms velocity spreads. 

Since dimensions of an Ensemble becomes large enough (for instance, Ensemble rms 
size is about characteristic length of field nonlinearity), the “Ensemble multiplying” pro-
cedure can be applied. This procedure divides a “large” Ensemble in several distributed 
in phase space smaller Ensembles with moments satisfying the invariance of the phase 
area (or Ensemble emittance). In this manner nonlinear phenomena, resulting in beams 
heating (emittance growth), can be simulated more accurately.
It should be noted, that the main difference between the Ensemble Model and the con-
ventional Particle-In-Cell algorithm is that the Ensemble size changes consistently with a 
local field gradient. The distribution function is reproduced with more accuracy. More-
over the Ensemble Model implies momentum spread within one Ensemble, whereas the 
conventional PIC code consider macroparticles without internal motion. 
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Figure 2. Two-stream instability, strongly nonlinear regime at time

55 DT� � � . a) Phase space plot; b) Field (solid line) and field gradient 

(dotted red line); c) Ensembles rms sizes; d) Ensembles rms velocity 
spreads. 

4. 3D Single Ensemble Model (SEM) 

Since the Ensemble Model implies internal motion in macroparticle, even with one En-
semble collective effects in beam dynamics can be simulated [3]. In the case of the in-
tense particle beams not only forces due to external electromagnetic fields act on an En-
semble but also the internal space charge forces. In this section we shall discuss applica-
tion of SEM to the simulation of beam dynamics in accelerators and in particular in 
photoinjector. 

4.1. SEM: Space Charge Implementation 
The space charge implementation makes an Ensemble charge distribution function an 
issue. The rigorous problem consists of determining the stationary charge distribution 
(which does not explicitly depend on time), which corresponds to the linear applied 
forces. The distributions in which the forces are linear and the phase space areas remain 
constant is known as microcanonical distribution. A homogeneous ellipsoidal beam dis-
tribution, known as K-V distribution [4] leads to a perfect linear space charge force 
within the beam radius. The space charge model for the Single Ensemble Model (SEM) 
is based on the homogeneously charged ellipsoid. The Lorentz force between two mov-
ing charged particles is 

� �� � � �� � 3 22
2eF p pR R pR R�

	

� 
 � 

� � � �� � �

,  (4.1) 

where R
�

 is a radius-vector between two-particles. To calculate a resulting force at small 
offset from the homogeneously charged ellipsoid it is necessary to integrate (4.1) over 
thin shell of uncompensated charges [2]. The integration yields  

� � 2

2ˆ z

x y G

r reQ
VF G �

� � �
� 	


� � �
� ��

,  (4.2) 
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where R r r� �
� � �

, ��  - rms ellipsoid sizes, 1/ 2ˆ(det )GV ��
�� M  is a ellipsoid geometrical 

volume, the geometrical factor Ĝ  is 

� � � �� �ˆ ( ) 1 exp( ) 1ij ij izG u u u� � 	� 
 � 
 � . (4.3) 

Formula (4.2) has been implemented for the calculation of space charge force contribu-
tion to the matrices (2.8).

4.2. Photoinjector Simulations 
RF-gun, being a remarkable object for simulations with PIC and tracking codes, has been 
simulated with V-Code, based on the SEM [3,6,9]. For the comparison with V-Code a 
PIC code MAFIA TS2 [10] and tracking code ASTRA [11] have been used. Results of 
comparison are shown in Fig.3. 
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Figure 3. Simulations of beam dynamics in rf-gun using different codes: 
MAFIA TS2, ASTRA, V-Code. a) Beam kinetic energy; b) RMS beam
radius; c) RMS beam energy spread; d) RMS bunch length; e) RMS nor-
malized transverse emittance. 

Beam parameters, including collective (such as beam sizes, energy and momentum
spreads) simulated with conventional tools and V-Code (which uses one Ensemble for 
beam dynamics simulation) are in good agreement, whereas V-Code demonstrates sig-
nificant advantage in calculation time. Such an advantage of the Ensemble Model in 
simulation time has been used for the practical purposes. A beam line data base of the V-
Code has been designed in order to be compatible with a given accelerator control sys-
tem. One of the main principle of the V-Code is capability of on-line beam dynamics
simulations [6]. A dedicated Alignment Utility based on V-Code solver, has been devel-
oped and applied to the misalignment study and Beam Based Alignment of the TTF rf-
gun [7]. 
As it was already mentioned under assumptions of the Ensemble Model, the phase area 
(normalized emittance) of the separate Ensemble is invariant, and Fig. 3e) illustrates the 
difference in emittance development. Emittance changing as well as additional energy 
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spread growth are caused by nonlinear space charge field and correlation within an elec-
tron beam. Because the SEM takes only linear part of applied forces, for the nonlinear 
effects simulations Multi Ensemble Model (MEM) has to be developed. 

5. Multi Ensemble Model (MEM).

External fields can be implemented in Multi Ensemble Model (MEM) by a simple exten-
sion of the SEM approach, but the space charge implementation in MEM needs special
considerations. 
A model of homogeneously charged ellipsoid is very useful for the calculation of the 
space charge force gradient at the center of the Ensemble. But in the case of several En-
sembles it is necessary to calculate not only a space charge gradient at the center of the 
driving Ensemble, but also Lorentz force and its gradient at positions of others Ensem-
bles. The most probable macroparticles configuration is a set of overlapping Ensembles
(the distance between two Ensembles is less than their rms sizes). 

5.1. MEM: Space Charge Implementation 
The problem of space charge implementation for the case of several Ensembles is to find 
a Lorentz force (with gradient) from driving Ensemble at the position of a test Ensemble. 
A smooth Ensemble charge distribution function provides the field continuity. The Gaus-
sian distribution is the most probable candidate for it: 

� � � �3 1 1ˆ ˆ( , ) 2 det exp 2Tr p� � � �� � �� �� 	 	�M M
� � � �

 (5.1) 

where � � �� � �
� � �

, 
 �,r p� �
� � �

 and M̂  is 6 6�  matrix of the second order moments.  

To find a fields generated by an Ensemble with charge distribution (5.1) several methods
are available. 
1. Direct Integration implies straightforward calculations [12]: 

� � � �

1
( , ) , ( , ) rot ,

( , , )
, ( , ) 1, .

r r
c

AE r t B r t A
r c t

Q r p tA r t dr dt t t t
r r



� � � ��

� �
� � � �

� �
� � �� � � �� � � �� 	 � �� � � � ���

� �

�
�� �� �

�

� �� �� �
� �

 (5.2) 

This approach includes many physical effects (such as a synchrotron radiation), but mul-

tidimensional integration and singularity makes it slow and complicated. 

2. Using Poisson Solver with Lorentz transformations assumes no momentum spreads are 

taken into account. After coordinates transformation (which corresponds to the matrix M̂

diagonalization) and integration (5.1) in pulse, we have for charge distribution function: 

( , , , , , ) ( , )
i

z

x y z G i
i x

x y z �� � � � � � �
�

� �� �� � � � � �� , (5.3) 

where � �2 2 2( , ) exp 2 2G iu u� � � ��� �  is one dimensional Gaussian distribution. In 

the Ensemble rest system the Poisson equation has to be solved: 

4 ( , , , , , )x y zQ x y z � � � � �� � � 	� � � � � �� .  (5.4) 

In general case the z  axis does not coincide with direction of vector 

1p p p� � � 	
� � � �

, so the coordinates transformation can be performed as 

� �ˆr r r� 	 �T
� � �� ,  (5.5) 

where T̂  is a transformation matrix: 
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� � 1/ 2ˆ ˆ ˆ ˆ ˆ ˆ; 0,0, ; [1 ]
T

M ij ij iz� � � � � � � � �� � � � � � � � �T

� � � �
. (5.6) 

Matrix ˆ
M  has to be found from the diagonalization of the matrix ˆ G

M : 

2ˆ ˆ ˆT G
M M i ijij

� �	 
� � �� �M � (5.7) 

The equation (5.4) with boundary conditions (exact or asymptotic), can be solved using 

grid based methods, which give solution at all points of discretization, what significantly 

exceeds needs of the Ensemble Model. Moreover most of these methods are valid for any 

arbitrary right part of the Poisson equation, so the regularity of the Gaussian distribution 

is not used.  

3. One of the algorithms, based on distribution function expansion is Multi-Centered 

Gaussian Expansion (MCGE). Various types of expansions in series of Chebyshev-

Hermite polynomials currently are used in astrophysics for weakly non-normal distribu-

tions [13]. From the other side, a multi-centered Hermite expansion basis is successfully 

used for more accurate Vlasov-Poisson simulations [14]. Multi-Centered Gaussian Ex-

pansion (MCGE) is based on the expansion of the Ensemble charge density in distributed 

basis functions with known solutions of the field equation. 

5.2. Multi-Centered Gaussian Expansion (MCGE) 
For symmetrical basis function 

 �  �  �0 0 0, , ,nml G n G m G lx x y y z z� � � � � � �� � � �  (5.8) 

electric field can be calculated analytically: 

0
2 2
0

( , , ) nmlrnml nml
nml

nml

q rE x y z S
r��

	 
� � �� �
�

��
� (5.9) 

where  �� �2 2( ) erf( ) 2 expS x x x x x��� � � � � �  and � �, ,nml n m lr x x y y z z� � � �
�

 is a ra-

dius-vector from the basis function nml�  center to the observation point, nmlq  is a weight 

part of the Ensemble charge. 

Exact distribution function (5.3) is approximated by a series 

ex appr

, ,

nml nml
n m l

w� � �� � �� ,  (5.10) 

where /nml nmlw Q q� . Unfortunately the basis (5.8) is not orthogonal, but factorization of 

the weights x y z
nml n m lw w w w� � �  reduces three dimensional weights problem to three inde-

pendent one dimensional ( , ,x y z� � ): 

 �  �2 2

2 2
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( ) 0

2 2
exp expj

j
j

w
�

� � ��
� �

�

�
�

�� � � � ��  (5.11) 

Standard procedure yields a system of linear equations for weights jw� , the matrix ele-

ments can be calculated analytically.

The main approximation parameters are: 1)�  is normalized distance between two basis

functions ( 0j j� � �� ); 2) 0K N� � ��� ��  is asymptotic parameter, determined by N�  - 

a number of terms in sum (5.10) for truncation; 3) 0�  is rms basis function size. By 

choosing 0 min � �� � �� �  we obtain 0N� �  and 0 1w� � . Centers of the basis functions 

are located at the plane 0�� � . If all three dimensions of the Ensemble are significantly 
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different triangular truncation in 2D sums can be used to reduce computation time. An 
example of Ensemble distribution function approximation is shown in Fig. 4. A proper
approximation parameter set can be found by parameter scan, the optimal parameters

yielded a discrepancy less than 0.1% are 1 1.5� � , 3K� � . 

Using MCGE a space charge field at the point of interest ( , , )x y z  can be calculated by

summing up of (5.9): 

( , , ) ( , , )nml
nml

E x y z E x y z��
� �

,  (5.12) 

moreover a sum with index equal �  is degenerated, so it can be simply omitted. Other 

advantage of the MCGE is the capability of analytical expressions for derivatives of the

space charge field, what is necessary for matrices (2.8) computation. 

a)

b)

Figure 4. Distribution function approximation by multi-centered Gaussian 

basis functions. Approximation parameters: 1.25� � , 4.0 ( 16)z zK N� � , 

0 5.0z z� � �� � . a) Exact and approximated distribution function and 

first three weighted basis functions. b) Approximation discrepancy. 

5.3. MCGE Calculations of Space Charge Fields of a Single Ensemble 
Electric field of a round ( x y� � �	� � ) Gaussian distribution calculated with conven-

tional Poisson solver (solid lines) and using MCGE (markers) is shown in Fig. 5a,b for

different z� � �	�  values. MCGE gives formulas for electric field:
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 (5.13) 

Figure 5. Radial (a) and longitudinal (b) electric field and field gradient

(c) of round Gaussian Ensemble, calculated using MCGE in comparison 

with conventional Poisson solver. 

a) b) c) 

159

=

=



The results are in very good agreement, 100 100�  mesh has been used for Poisson solver,

whereas the MCGE for the fields calculation treats ( ) 1 30zN � � �  terms in sum (5.12) 

(for the round beam two sums in (5.12) are degenerated). Field gradients 

� �;r zE r E z� � � �  at the driving Ensemble center are calculated using Single Ensemble

space charge analytical model (4.2) and MCGE are shown in Fig. 5c). 

Field gradient calculated using analytical approximation (4.2) is 

� � � �2 2

2 2 2 20 0
0 0

 1 exp ;  1 exp ,z z
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whereas the correspondent expressions calculated within MCGE are 
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The analytical model (4.2) demands less calculations, but it can be applied for the calcu-

lation space charge field gradient only at the driving Ensemble center, the MCGE is ca-

pable of gradient calculation at any point. The MCGE algorithm demonstrates good ap-

proximation properties, moreover linear momentum spread in Ensemble can be simulated 

by introducing of corresponding momentum to a Gaussian basis function. 

6. Conclusions 

The Ensemble Model, being alternative to conventional macroparticles models, has been 

developed for the large scale and fast beam dynamics simulations. In contrary to conven-
tional macroparticle algorithms the Ensemble Model implies an internal motion within a

macroparticle, the Ensemble correlations in phase space change in time in consistency

with local Lorentz force gradient.  

Nonlinear effects can be simulated using Multi Ensemble Model. The beam charge in-

duced field calculation is an issues of the Model, several approaches can be applied. The 

Multi-Centered Gaussian Expansion demonstrates good agreement with conventional 

space charge routines, whereas the MCGE has advantages in implementation as a space 

charge routine into MEM. 
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Abstract. The software ModeRTL (Modeling of Radiation-Technological Line) 

was developed by authors for simulation of radiation processes, that used as an 

irradiation source of the pulsed or continuous type of electron accelerators with 

electron energy in the range from 0.1 to 20 MeV. The ModeRTL is intended for: a 

choice of optimum layout of the radiation equipment at realization of specific 

radiation-technological process; an optimization of parameters of radiation 

treatment of products in view of features of radiation-technological process; a 

validation of the chosen parameters. A physical basis, mathematical aspects, and 

operation of the software ModeRTL in some radiation technologies will be 

discussed in this paper. 

 

 

1. Introduction 

At present the electron beam (EB) and X-ray (bremsstrahlung) processing based on 

electron accelerators are widely used in different industrial radiation technologies, such 

as sterilization of medical devices, in particular, for mail sterilization; food irradiation; 

advanced composites modification; wire and cable cross-linking; bulk polymer 

modification; polymerization of monomers and grafting on monomer onto polymers; 

tire and rubber pre-cure treatment; purification of water and gas wasters, and others.  

An absorbed dose of electron and X-ray beams within the irradiated product is one 

of the most important characteristic for all radiation-technological processes. Irradiator 

operating regimes for execution of a radiation-technological process depend on a large 

number of factors to be specific for this process [1]. These parameters can be obtained 

both by experimental methods and at use of computer models of process and special 

computational methods. Experimental determination of these parameters, in particular, 

the absorbed dose distribution of the X-rays and electrons within of the heterogeneous 

materials demands considerable efforts and much time. The computer simulation and 

calculation of process of electron/gamma–matter interaction permit solving these 

problems accounting of both a radiation process and a processing system specificity at 

much lesser time and expenditure of labour.  

Necessity of further development of methods of dosimetric support is connected, 

first of all, with continual diversification of objects under radiation treatment, and with 

sophistication of irradiation modes. Besides, the conventional methods of dosimetry 

within the irradiated materials do not ensure the data gaining accuracy to be necessary 

for modern radiation technologies in the case of heterogeneous systems irradiation. 

Lastly, there are no methods permitting to solve effectively the problems of optimum 

choice of irradiation modes for the vast list of practically important cases. 

Now there are a few powerful universal packages such as ITS [2], EGS [3], 
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GEANT [4], PENELOPE [5] for simulation of electron and photon transport through 

complex multi-element constructions. These packages permit obtaining by Monte Carlo 

method numerical data sets to solve practical problems. 

These packages are just the sets of program blocks accelerating notable coding of 

Monte Carlo methods for simulation of transport of ionizing radiation through 

construction. To realize a computer experiment, that one could interpret as the physical 

one, the scientific elaboration of the physical experiment model is necessary, as well as 

model error evaluation of results of computer simulation. 

The analysis of the artifacts appearance under the use of these packages shows that 

any universal computer package, even the most reliable and thoroughly tried one, such 

as ITS, EGS or GEANT, can not be used without continual detail expert control of 

obtained results. Therefore, for simulation of irradiation processes with use of a 

complex of equipment, a detail theoretical investigation is necessary. In particular, one 

needs construct models reflecting adequately variety of effects and phenomena 

observing by passing and interacting of ionizing radiation with all elements of this 

complex.  

Note that, due to specific features of Monte Carlo method, data to be obtained on 

the basis of process simulation do not permit applying to them standard mathematical 

devices and methods of search of optimum parameters of irradiation process. It 

decreases largely the practical worth of the method for solving of problems of radiation 

technology. In this connection, development of semiempirical models of phenomena 

and corresponding them analytical formulas for well-grounded and physically correct 

handling of simulation results have a special interest. 

Authors for solving above mentioned problems have developed the software tools 

kit that is intended for a simulation of irradiation process on the radiation-technological 

lines using scanning electron and/or X-ray (bremsstrahlung) beams. This tools kit 

includes the following programs the EMID, SIRTEL, ModeRTL, RT-Soft, RadCad, X-

ray-Soft [1, 6].  

The main feature of these programs is the use of hybrid scheme of calculation using 

the formulas of analytical models and simulation of transport of electron and gamma 

radiation by a Monte-Carlo method.  

The architecture and operation of the software ModeRTL (Modeling of Radiation-

Technological Line) which was developed by authors for simulation of radiation 

processes, that used as an irradiation source of the pulsed or continuous type of 

scanning electron beams will be discussed in detail in this report.  

 

2. The software ModeRTL consideration  

The software ModeRTL is a complex of physical and mathematical methods included in 

an uniform program shell. This software uses the Monte Carlo simulation and 

calculations based on analytical model of irradiation processes, gives an opportunity to 

compare calculated results with each other and to compare distributions of absorbed 

dose of electrons in different materials with the world-wide data base. It provides high 

verification of calculated results and decisions accepted on this base.  

The software ModeRTL ensures a fast, scientifically-justified choice of parameters 

and modes of operations of a radiation-technological line for optimization of irradiation 

process by scanning electron beams of the products of radiation technologies. The 

choice is carried out in view of features of the used equipment of the RTL, 

configuration of the irradiated product and requirements of technology to conditions of 

irradiation. It is reached due to a combination in one software of a set of various modern 

methods: 
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• Hybrid scheme of calculation using the formulas of analytical models and simulation 

of transport of electron and gamma radiation by Monte-Carlo method. 

• Problem-oriented interface supplied with specially developed system of the expert 

control of the input information. 

• Pliable scheme of the assignment conformed geometrical and physical models for each 

functional element of simulated system. 

• Expert control of the input and output information for prevention of occurrence of 

artefacts and problem-oriented cognitive visualization of calculation results. 

• Special theoretical models of process and analytical relations for handling and 

representation of the statistical information obtained by a Monte-Carlo method. 

• Methods of the solution of optimization problems for multiparameter system at 

presence of implicit conditions and restrictions on tolerance region of parameters. 

The software ModeRTL is a program shell containing five various functional 

modules and technology processing data base. The interaction between functional 

modules and data bas is carried out by means of a set of service blocks. The software 

architecture is schematically shown in Figure1.  

Figure 1. A schematic view of the software ModeRTL architecture. 

The program shell contains the following functional modules: 

The Analytics module - implements semiempirical models for calculation of a 

spatial distribution of a dose and integral characteristics of action of scanning electron 

beam on irradiated objects.  

The Monte Carlo module - implements methods of statistic trials for calculation of 

a spatial dose distribution and integrated characteristics of action of scanning electron 

beam on irradiated product.  

The Comparison module - implements methods of mathematical physics for 

handling and comparative analysis of calculation results obtained in modules Analytics 

(deterministic data) and Monte Carlo (statistic data). This module ensures procedure of 

a choice of optimum modes of irradiation and estimation of reliability of the accepted 

solutions on the basis of comparison of calculation data for various parameters of the 

radiation equipment and at use of various models for realization of calculations.  

The Calorimetry module - implements numerical methods of evaluation of spatial 

distribution of radiation-induced temperature and analytical estimations of integral 

characteristics of a heat transmission for process of cooling of the irradiated products in 

a thermostable environment.  

The Dosimetry module - implements methods of mathematical physics for entering, 
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processing and comparative analysis of experimental dosimetry data with calculation 

results, and with the world-wide data base.  

The processing technologies database consists of a user guide, an archive database, 

and a dynamic database.  

The user guide contains the detailed description, the rules and instruction for users - 

“how to get results”, which allows them successfully to work with all modulus of the 

software.   

The archive database stores geometrical and operational characteristics of all 

construction elements of RTL and their mutual layout, detailed description and 

characteristics of the current radiation-technological process, the optimum parameters of 

electron beam, the peculiarities and limitations for radiation treatment parameters of the 

current radiation-technological process, the calibration data for monitoring equipment, 

the parameters of irradiated materials, the material and size of the package for irradiated 

product. The archive database stores table data from the world-wide data base for 

comparison theirs with a calculated absorbed dose data and with an experimental data 

[7]. 

The dynamic database stores input files with monitoring data received in the course 

of current radiation-technological process from beam monitor system, a scanner control 

system, and a conveyor line system; output files with reconstructed data of critical 

process parameters which are used for determining of an operation value of the 

absorbed dose within irradiated product; data related with permissible level of 

uncertainties and deviations between operation and limited values of absorbed dose for 

irradiated product.  

The ModeRTL program shell ensures parallel operation of the basic functional 

modules, that enables essentially to reduce a latency period of results gained by a Monte 

Carlo method during a choice of optimum modes of an irradiation and estimation of 

reliability of the accepted solutions. 

3. Physical basis and mathematical aspects of the software ModeRTL 

The program ModeRTL uses a combination of two methods for calculation of dose field 

in an object irradiated by electrons: the formulas of analytical models and simulation of 

transport of electron and gamma radiation by a Monte-Carlo method.  

Analytic calculation. The principles. 

It is supposed, that the process of scanning ensures a quite high uniformity of the 

electrons flux on all surface of the target. It is achieved in a case, when the scan 

frequency f, the target driving velocity V  and effective beam diameter  satisfy the 

following condition  and the width of a scanning zone  exceeds the width 

of the target 
TW  on magnitude, more than on  i.e. . Within the 

framework of this supposition, the spatial dose distribution in the target does not depend 

on scan frequency and beam diameter. Besides, the model does not take into account 

boundary and edge effects at description of the spatial dose distribution. 

d

fdV SW

d2 dWW TS 2

The semiempirical model. 

In semiempirical model, the analytical relations for dependence of dose  on 

depth 
),( ExD

x  in a semi-infinite target uniformly irradiated with the normally incident beam 

of monoenergetic electrons with energy E  are used [8]. The computational scheme for 

an one-dimensional spatial dose distribution  was implemented in the program 

EMID [6]. The comparison of results of analytical calculations with results of 

simulation by the Monte Carlo method by the program ITS shows a small data 

discrepancy (less than 3 %) for energies of electrons 

),( ExD

E  from 0.1  up to 20  

and materials of a target with the atomic numbers Z  from 4 up to 92 [6]. The 
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generalization of one-dimensional model is carried out in the supposition of a smallness 

of an electron cross deviation in comparison with its path length in substance.  
The analytical expressions for calculation of two-dimensional spatial dose 

distribution can be submitted in a form 
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where I is the beam current ( A), V - the conveyor velocity (cm/sec), SW  - the width of 

scanning (cm), 
TW  - the target width (cm), 

M
 - the maximum angle of incidence of the 

beam on the target (radian),  - the- normalized electron flux intensity on target 

surface  in point y, defined by the mode of operations of a scanning system. 
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As it is supposed in the formula (1), the target is located in area and 

scanning is executed along axis Y  symmetrically in relation to a point  within 
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At the sawtooth shape of a time dependence of a current in deflecting magnets of the 

scanner and small angles of the beam deflection, the function  looks like: )( yKS
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The absorbed dose within the irradiated target with account the cover box thickness h, 

the energy spectrum  and angular E  distributions of electrons in the beam 

),,,,,( EhEyxD  is calculated by formula:  
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where xh = h s/ , s,  - density of substance of object and cover, correspondingly, the 

variables  are related to variables yy, ,  by equation (1).  

The atomic number Z
*
 and the atomic weight A

*
 to be used for compounds and 

mixtures are given by the following formulas:  
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where wi denotes the fraction by weight of the i-th constituent element with atomic 

number Zi and atomic weight Ai.  

 

Monte Carlo simulation. Physical model. 

This is a few decades as the Monte Carlo method applies successfully to calculate 

spatial electron dose distributions in various objects, therefore physical models of 

calculation are well known today. The following elementary processes are traditionally 

taken into account: elastic scattering of electron on atom, inelastic collision of electron 

with atomic structure, generation of electron and generation of bremsstrahlung quantum. 

For realization of computer experiment on transition electrons through matter, a scheme 

of grouping of collisions is used.  
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A scheme of grouping of collisions is implemented with the following parameters: 

the critical energy e of electron formation, the critical energy 
p
of bremsstrahlung 

quantum formation and critical angle C

E E

of elastic scattering of electron on atoms. For 

construction of the electron trajectory, a free parameter S  of the scheme is specified. 

This parameter - energy of stopping of electron - is determined by field of applicability 

of used descriptions of elementary processes. 

E

The necessity of introducing of the averaging domain for calculation of spatial 

distributions of physical quantities is the feature of the Monte Carlo method. For 

calculation of the spatial dose distribution, sizes of a domain of averaging of energy, 

which is transmitted in the act of electron- matter interaction, are specified.  

The features of MC method. 

The specially designed analytical interrelations are used for the reasonable choice of 

free parameters of the physical model for adjusting statistical and model errors of 

computer experiment and minimizing time of calculation for obtaining of data with a 

given accuracy. 
The feature of implemented statistical estimation of the dose distribution is the use 

of the method of translations in some spatial domains of the object. This method is used 

in regions, where variation of magnitude and direction of the electron flux leads to dose 

variation to be smaller than the established model error. The sizes of these regions are 

determined according to expert equations, on the basis of parameters of irradiation 

process and the established model error for obtained results.  

 

4. The software ModeRTL operation  

The software ModeRTL was used on the radiation-technological line (RTL) based on 

pulsed electron accelerator with scanning electron beams and a conveyor line at stages 

of planning, starting-up and adjustment works of radiation facility and realization of the 

different radiation-technological processes. As a source of the scanning electron beams, 

a linear accelerator of the type Electronica - U003" is used with the following 

characteristics: electron energy 5-8 MeV; electron beam current up to 0.5 mA; mean 

beam power up to 5 kW; pulse duration 1-4 microsecond; pulse frequency 1-250 Hz; 

scanning frequency of electromagnetic scanner 1-8 Hz. Schematic layout of the RTL 

major components is shown on Figure 2. Scanning system of the RTL has the modes of 

operation, that creates the triangular irradiation treatment field in target material. 

The software ModeRTL was tested in the following radiation processes: 

sterilization of medical devices and polymer composite materials formation [11]. These 

technological processes differ by a method of a product irradiating. In the process of 

medical devices sterilization the product is irradiated on the continuously moving 

conveyor, and conveyor speed governs the absorbed dose in the product. In the process 

of polymer composite materials (PCM) formation the irradiated compound are 

stationary in the irradiated zone, and irradiation time governs the absorbed dose in 

compound. The set of required dose for full radiation-induced polymerization of 

compound is carried out in the time interval from 1 to 20 minutes in the stationary 

position. Results of calibration measurement by Cellophane DPTs-2/25 dosimetry films 

of the depth-dose distribution within irradiated product are in agreement with calculated 

results by Analytical and Monte Carlo methods of the software ModeRTL.  
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  Figure 2. Schematic layout of the RTL major components. 

 

The software ModeRTL decides the following problems in current technological 

processes: carries out a choice of optimum layout of the construction elements of RTL 

and an irradiated product, optimizes configurations of packing; optimizes of parameters 

of radiation treatment for irradiated product in view of features of radiation-

technological process; calculates a depth-dose, charge and temperature distributions at 

one- and two-sided irradiation of material by scanning electron beam, the average dose, 

the coefficient of utilization of electron beam energy; in case of necessity carries out of 

the equalization the depth-dose distributions in irradiated materials with help of special 

filters, one- and two-sided irradiation; evaluates an economic parameters of a planned 

work. 

The processing rate and absorbed dose distribution within of the irradiated 

materials depend on a lot of parameters of the radiation facility of RTL and 

characteristics of target material. Input data for the program ModeRTL are the 

following: 

 Parameters of electron beam: electron energy, spectrum energy, beam current, 

beam diameter and spatial distribution of the electron beam intensity, pulse duration and 

repetition frequency in pulsed accelerators. 

 Parameters of scanning system: modes of operation, the triangular or non-

diverging irradiation treatment field in target material; beam and form of current in 

magnet of scanning system; repetition frequency of scanning; angular distribution of 

electron beam at the outlet of a scanning system.  

 Parameters of conveyor line: speed and geometrical characteristics of the line. 

 Parameters of irradiated product: geometrical characteristics of the irradiated 

product; elemental composition of the target material and weight concentrations of 

component; material and size of the covering for irradiated product. 
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  Regimes of irradiation: one- and two-sided irradiation. 

For searching optimum solutions, the program ModeRTL calculates and represents 

the following functions and parameters: in convenient for comparative analysis graphic 

and tabular forms, the spatial distributions of absorbed electron dose and temperature in 

object irradiated by scanning electron beam; maximum, minimum and average values of 

absorbed electron dose; total energy transmitted to the target; factor of utilization of 

electron beam energy; electron ranges; relative deviations of maximum and minimum 

values from the average value for dose profiles at center and boundary of the target; 

root-mean-square deviation of dose distribution from average dose in the target, and 

other important characteristics.  

Figure 3 represents the calculation results of equalization of the depth-dose 

distribution within the PCM target and determining of the optimal thickness of the PCM 

target treated by electron beams which was partly overlap by of the special Al filter. The 

predicted by the program ModeRTL of the optimal thickness of PCM wares treated by 

electron beams at one-and two-sided irradiation have a good agreement with 

experimental data. We choose the optimal thickness of PCM that corresponds to the 

most uniform depth-dose distribution of the electron beams.  

 

Figure 3. Depth-dose curves in the target with the use of the special Al filter for electrons 

beam (curve 1), without filter (2) and with converting of the beam part (curve 3 - one-

sided irradiation, curve 4 - two-sided irradiation).  

 

The comparison of the depth-dose distributions within an irradiated samples of 

PCM obtained both by experimental and calculated with Mode RTL program was 

carried out. The depth-dose distribution for an electron beam in samples was measured 

by Cellophane DPTs-2/25 dosimetry film placed within the sample of PCM along and 

perpendicularly of an electron beam axis. The absorbed dose within the range of 20-250 

kGy was determined by the measurements of optical density of the film at  =515 nm. 

Experiments were made for a wide beam (diameter Db = 4 cm ) and a narrow beam (Db 

= 1 cm). A comparison of experimental dosimetry data and results obtained by 

Analytical and Monte Carlo methods are shown in Figure 4.  

In a first case (curve 1) a beam diameter is approximately equivalent to Ro 

(continuous slowing-down approximation range ) and dose distribution in target is close 



169

5. Conclusion 

The software ModeRTL was used for simulation of irradiation process on radiation 

technological lines (RTL) incorporating an electron accelerator with a scanner of 

electron beam and a conveyor. The main feature of the program is the use of hybrid 

scheme of calculation using the formulas of analytical models and simulation of 

transport of electron and gamma radiation by a Monte-Carlo method.  

The software ensures a prompt, scientifically-justified choice of parameters and 

modes of operations of a radiation-technological line for optimization of process of 

irradiation of products of radiation technologies. The choice is carried out in view of 

features of the used equipment of the line, configuration of the irradiated product and 

requirements of technology to conditions of irradiation. 

The use of the program ModeRTL for simulation and calculations of electron and 

gamma irradiation transport within irradiated products has allowed essentially to reduce 

the volume of routine dosimetric measurements of an absorbed dose within materials, 

irradiated with scanning electron beams, at stages of planning, starting-up and 

adjustment works of radiation facility and realization of the radiation-technological 

processes.  

The ModeRTL program is available for Windows -98/NT/ME/XP PC' s, is written 

in the Delphy language, has a convenient user interface which users can use intuitively, 

and can be easily adapted to PC-based control system for all industrial RTL with 

scanning electron beams.  
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Abstract. The ion optics of a large-acceptance magnetic spectrometer is 

discussed. General techniques based on a minimum of multi-purpose magnetic 

elements are described. A trajectory reconstruction algorithm is used to strongly 

enhance the energy resolving power. The influence of straggling of ions and 

finite detector resolutions on the achievable energy, mass and angular resolutions 

is studied using a library of routines (COSYMAG) which combines the 

calculation possibilities offered by the two codes COSY INFINITY and 

SRIM2000. The simulations show that a very high order of the trajectory 

reconstruction should be used in order to achieve the required energy resolution 

in the full phase space. This entails high precision in the magnetic field 

reconstruction. Different methods for the interpolation of the grid are tested 

especially with regard to the  application of Differential Algebraic techniques. 

1. Introduction 

In the past a variety of techniques have been set up to solve the problem of the correction 
of aberrations, usually based on the use of corrective magnetic elements. When a large 
acceptance magnetic spectrometer has to be built, these techniques cannot be 

conveniently applied for a number of reasons [1]. First, a considerable number of 
corrective lenses is needed to compensate a large number of aberrations, which cannot be 
neglected due to the large acceptance. Secondly, the large beam envelope implies 

magnetic elements with a high section to length ratio. This creates a long fringe field fall-
off which could induce strong high-order effects. So a large acceptance magnetic 
spectrometer should be conceived in such a way that the number of magnetic elements 

should  be  as  small  as  possible. As  a  consequence,  a large number of aberrations will  
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Figure 1. The MAGNEX spectrometer schematic layout, showing the 

quadrupole and dipole magnets and the detection system. 

 
remain uncorrected and “software” techniques should be applied to reduce their 
detrimental effects on the energy resolution. 

The MAGNEX spectrometer, presently under construction at the LNS Catania, is an 
innovative device designed to offer an high energy and mass resolution in a very large 
accepted phase space, thus allowing the exploration of the “new nuclear physics” 

connected with the use of radioactive ion beams from the EXCYT ISOL facility [2,3]. It 
will also be available for experiments at low to intermediate energy with stable beams 
accelerated from the Tandem Van de Graaff and the K-800 superconducting Cyclotron.  

As shown in Fig. 1, MAGNEX consists of two magnetic elements, a quadrupole and a 
multipurpose bending magnet, the former to provide focusing strength in the vertical 
plane and the latter both momentum dispersion and horizontal focus by field boundary 

not perpendicular to the reference trajectory at the entrance and exit. Such a non-normal 
field boundary is often referred to as a “rotated pole face”. A Focal Plane Detector (FPD) 
is located at the focal surface in order to reconstruct the ion’s trajectory and impact 

position at the focal plane, while simultaneously identifying the nuclear species in terms 
of nuclear charge and mass.  
 

Table 1. Main features of the large acceptance spectrometer MAGNEX. 

 

Angular acceptance ~ 50 msr 

Momentum acceptance  10 % 

Energy resolving power 1000 – 2000 

Mass resolution 1/200 

Maximum magnetic rigidity 1.8 Tm 

Threshold energy ~ 0.5   MeV/u 
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In addition, a Position Start Detector (PSD) is placed after the target both to generate a 
start signal for Time Of Flight (TOF) and to measure the vertical angle. In Table 1 the 

main features of the spectrometer are listed. 

2. The trajectory reconstruction algorithm 

2.1   Differential Algebraic Techniques 

The recent advent of the trajectory reconstruction algorithm [4] has made it possible to 
face the problem of the software correction of aberrations from a different and more 
fruitful point of view. In general the differential equations, describing the motion of ions 

throughout the spectrograph, are solved by perturbative methods and the Taylor 
coefficients of the flow linking the initial phase space with the final one are obtained. In 
this way by measuring the positions and direction of the ions at the focal surface one can 

reconstruct the full trajectory and consequently the scattering angle and the initial  
momentum. The most efficient perturbative technique relies on the use of the so-called 
Differential Algebras (DA) [5]. In this mathematic environment the integration of 

differential equations becomes a simple algebraic task and very high-order of the 
perturbation series can be treated. 

2.2   Trajectory reconstruction in the MAGNEX spectrometer 

In our work we have studied the application of the trajectory reconstruction algorithm 
and DA-techniques to the case of MAGNEX. A first question connected with the use of 
Differential Algebraic techniques is about the order of the reconstruction. To answer this, 

a realistic simulation of the algorithm itself should be carried out taking into account the 
straggling effects that the ions undergo when they cross the active volume of the 
detectors and the finite resolution of the measurements. 

 At the energies where MAGNEX should operate (0.5 - 8 MeV/u), straggling 
phenomena cannot be neglected and the effectiveness of the trajectory reconstruction 
algorithm could be seriously reduced if a careful shaping of the magnetic fields is not 

carried out. Indeed, in order to achieve a given momentum resolving power with the 
trajectory reconstruction algorithm, the effective image size at the focal surface should be 
less than the product of the dispersion and the given momentum resolution. Applying the 

standard formulas for the errors propagation, this requirement can be expressed by the 
following inequality:  
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Note that the derivatives that appear in the left-hand side of Eq. (1) can be expressed as a 

function of the aberrations whereas the measurement errors depend both on the straggling 
effects and finite detector resolution. Such a coupling between the straggling, finite 
detector resolution and optical aberrations puts severe constraints on these latter once the 

former two cannot be reduced below certain practical limits. Consequently an appropriate 
approach [6] for the hardware minimisation of aberrations needs to be adopted. 

2.3   Minimisation of the  aberration effects for the MAGNEX spectrometer 

It is well known that minimisation of a single aberration can induce higher order effects  
that  cannot  be  neglected  in  a  large acceptance devices. On the other hand, for the 
design   of   a   spectrograph   the  goal  is  not the minimisation of single aberration value   
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Figure 2. Two-dimensional projection, (xf , f) and (xf , yf), of the final phase 

space before (top) and after (bottom) the last step of the optimisation procedure 

(see text). 

 
but the minimisation of physical quantities such as the straggling and resolution - 

aberration coupling,  the focal plane size and the focal plane angle. 
The first step of our algorithm [6] was to deduce analytical formulas describing these 
physical quantities in terms of the aberrations. In this manner we directly monitored the 

main optical properties of different possible layouts for the spectrograph. High precision 
was not requested at this level, therefore only aberrations up to 3rd order were considered. 
The program ZGOUBI [7] was used to calculate the particle trajectories through the 

spectrometer and extracting aberrations. In a second step the physical quantities of 
interest have been minimized using ZGOUBI fitting routines where some geometrical 
quantities has been left as parameters to be fixed within given intervals. As a result the 

general layout of the spectrometer was defined in a way that intrinsically guarantees 
reasonable optical properties. A final improvement has been achieved by a careful 
shaping of the dipole Effective Field Boundaries (EFBs) . In particular the latter have 

been modelled with 8th order polynomials and through powerful fitting routines, similar 
to the ones previously mentioned, the coefficients have been extracted.  
 In Fig. 2 the two-dimensional projections of the final phase space at the focal surface 

are plotted. A set of particles spanning all the phase space for five different values of the 
assigned fractional deviation momentum, was generated by the MonteCarlo routines of 

                                                                                                                                             



175

ZGOUBI and tracked through the spectrometer. Before the 3rd  step of the optimisation 
procedure, a strong enlargement of the final image is observed, mainly due to the non-

linear chromatic effects and the uncorrected aberrations. After modelling of the EFBs the 
situation improves dramatically. The size of the image at the focal plane is strongly 
reduced and chromatic effects are negligible. This result entails a good compensation for 

the coupling effects we discussed before. 
 In conventional spectrometers for nuclear physics the actual orbit of each particle 
throughout the system is not traced. Nevertheless using a suitable set of detectors, it is 

possible to simultaneously determine the positions and angles of each particle at the focal 
surface. We can consider the final particle positions and angles as functions of the initial 
ones and fractional deviation momentum. If one neglects the initial horizontal 

coordinates the initial observables can be expressed as a function of the final ones as it 
follows: 
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The Eqs. (2) represent the principle of the trajectory reconstruction algorithm. This 
standard procedure cannot be conveniently applied in the MAGNEX case due to its small 

vertical angular magnification [1], which would require a too high precision in the final 
vertical angle measurement. Then we use a modified trajectory reconstruction algorithm 
based on the measurement of the initial vertical angle instead of the final one. 

 The high order transfer and the relative inverse maps for the modified trajectory 
reconstruction algorithm have been calculated using COSY INFINITY (Vers.8.1) [8]. 

2.4   COSYMAG simulations 

COSYMAG is a FORTRAN-g77 library of routines that has been developed by us in 
order to test the performance of MAGNEX based on the trajectory reconstruction 
algorithm [9]. 

A MonteCarlo simulator generates an arbitrary number of particles with initial conditions 
randomly distributed in the studied phase space. The straggling effects in the target and 
in the PSD (Fig. 1) are calculated using the code SRIM2000 [10]. A random noise is 

added to the coordinates of the particles after they cross the detector, in order to account 
for the detector’s intrinsic resolution. The particles are tracked through the spectrometer 
using the maps given by COSY INFINITY. The order of tracking is directly set from the 

order of map used in the calculation. At the focal surface the FPD (Fig. 1) measures the 
coordinates of the particles in two different planes in order to extract horizontal and 
vertical positions and angles. Straggling in the window and detector gas is accounted for 

by SRIM2000 calculations. Noise is then added to the effective coordinates to simulate 
the intrinsic FPD position and angular resolutions.  
The final reconstructed coordinates are then used to get the initial conditions by applying 

the inverse maps. A comparison with the simulated initial observables is possible at this 
stage and the energy, mass, angular resolution are calculated based on statistical analysis 
of the reconstructed distributions. 
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Figure 3. Behaviour of the mean error on the scattering angle measurement and 

of the mean energy  and mass resolving power as a function of the reconstructive 

order for the three magnetic rigidities studied for 16O. 

In the simulations different ions and energies have been considered. In each case the 
behaviour of the angular, energy and mass resolution with respect to the reconstructive 

order was studied. Some results for the 16O at three different magnetic rigidities are 
shown in Fig. 3. For simplicity we only show results averaged on the initial phase space. 
As can be seen, the error on the resolution on angle measurement is almost constant, 

starting from the 4th order. Also the mass resolving power is not critically dependent on 
the order of the reconstruction, except for the lower energies. The behaviour of the 
energy resolving power is much different. At higher energies it strongly depends on the 

reconstruction order and no saturation seems to be reached even at the 11th order, which 
is the highest we studied. Saturation is observed only at low energy, where the straggling 
phenomena become predominant. Results obtained for other ions look quite similar to 

those obtained in the 16O case. Thus we conclude that, in the energy range of interest for 
us, trajectory reconstruction up to 10th order or even more is needed to reach the optimal 
energy resolving power. As consequence DA - techniques should be used to calculate the 

MAGNEX map. Obviously, this kind of trajectory reconstruction also implies an high 
level of accuracy in the reconstruction of the magnetic field. 
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3. Magnetic field reconstruction 

The reconstruction of magnetic field for ray reconstruction purposes is constrained by 

two main requirements. First of all one has to consider that every measured field contains 
a level of uncertainty due to the experimental resolution of the devices used and stray 
background fields. Second one is interested in interpolation models that maintain the 

symplecticity of the field in order not to violate Maxwell equations and consequently 
disturb the calculated trajectories. As a result one needs to find an interpolation model 
that is weakly influenced by errors while preserving physical meaning to the whole 

algorithm.     

3.1   2D-interpolation of measured field data 

For magnetic devices with mid-plane symmetry the knowledge of the field on the median 

plane usually guarantees a detailed reconstruction of the whole 3D field. We expect that 
this would not be enough in the case of the MAGNEX dipole due to the large vertical 
acceptance (18 cm).  

To have a quantitative answer we tested the technique firstly using a 2D polynomial 
interpolation to the 4th order for a 2D grid whose values were obtained by TOSCA [11]. 
A random noise (1 ‰, 0.5 ‰ and 0.25 ‰ compared to the maximum strength) was added 

to the data in order to simulate the experimental errors in the measurement. The full 3D 
field was then calculated by analytical extrapolation (4th order for vertical component and 
3rd order for the transversal ones) from the medium plane data, using the standard 

ZGOUBI algorithm. Then a MonteCarlo simulation, similar to that described in 
subsection (2.3), was done in order to observe the effect of the noise on the image at the 
focal plane. Some results are shown in Fig.4. One observes that even the least noise, 

which corresponds to practical limit for standard measurement devices, can strongly 
deteriorate the image at the focal plane which compromise the effectiveness of the 
trajectory reconstruction algorithm.  
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Figure 4. A similar plot as Fig.2. In the MonteCarlo the dipole field has been 

interpolated by polynomial functions. The noise level on the grid points was 

0.25 ‰.   

Much better results are obtained using a gaussian wavelets model for the 2D interpolation 
of the mid-plane data [4]. This leads to a smoother field distribution and consequently to 
a strong attenuation of the influence of noise on the images, as shown in Fig.5. 

Nevertheless, a residual noise is still present if the off medium plane field is extrapolated 
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Figure 5. A similar plot as Fig.2. In the simulation the dipole field has been 

interpolated by gaussian functions. The noise level on the grid points was 

0.25 ‰. 

as explained before, that could limit the achievable energy resolution. So in our case a 
full 3D interpolation algorithm is desirable to reconstruct the magnetic vector field. 
Therefore, we need to know the three components of the field in a convenient number of 

planes above or below the medium one. 

3.2   Reliability of field data interpolation 

The large acceptance condition has important consequences to the field measurement and 

therefore to the interpolation algorithms. One needs accurate measurements with small 
errors (0.5 ‰ or less) but one should consider that the total number of measurements has 
the practical limit of the time needed. In the case of MAGNEX the beam envelope inside 

the dipole covers a volume of about 6*105 cm3. Measurements with grid step sizes of less 
than 1 cm in each plane would require several months of uninterrupted work for a single 
field of excitation and are consequently prohibitive. So one must consider at least 1 cm 

step size for the mid-plane measurements while even larger step sizes must be used in the 
vertical direction.  
To investigate the reliability of gaussian wavelets representation of such a field we used a 

2D grid for the medium plane calculated by TOSCA for a maximum field of 6625 Gauss. 
A step size of 1 cm was used for the grid, giving a total of 83160 points. The data were 
then interpolated for different values for the width parameter of the gaussian functions. 

At each point of the grid the interpolated values were compared with the TOSCA ones in 
order to get the absolute and fractional discrepancy. In Fig. 6, the distribution of the 
absolute error across the grid is shown for a width parameter of the gaussians equal to 1.4 

(corresponding to a standard deviation of 1.4 cm). A worsening of the interpolation is 
observed in the fringe field region of the dipole where the field varies rapidly. 
Discrepancies up to 10 Gauss are obtained, which are too high for a good reconstruction 

of the field. Moreover, the sharp oscillations in the fringe field region could induce noise 
in the focal plane images.  
Different values for the width parameter of the gaussians have been used. As indicators 

of the quality of the interpolation we calculate for each case the mean of the fractional 
error distribution and its standard deviation. 
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Figure 6. Space distribution of the discrepancy between TOSCA field data and 

the gaussian interpolation for the dipole mid-plane. The step size for the TOSCA 

data was 1 cm while the width parameter for the gaussian wavelets was 1.4.  

As shown in Fig.7 better conditions are found for width parameter around one where a 
mean value about 2 Gauss and a standard deviation of 3 Gauss are observed. Worse 

values are obtained for larger step sizes of the grid. Simulations show that for values of 
the Mean Absolute Error (MAE) larger than 0.8 Gauss the overall energy resolving 
power of the spectrometer is sensibly influenced by the precision of the ray 

reconstruction algorithm [9]. 
 
 

0

2

4

6

8

10

12

0,8 1,0 1,2 1,4 1,6 1,8 2,0

S

M
A

E
 (

G
a
u

ss
)

 
 
 

 
 
 

 
 
 

 
 
 

Figure 7. The Mean Absolute Error (MAE) of the 2D gaussian wavelets 

interpolation for the mid-plane dipole field versus the width parameter.  

mean of the distribution ; standard deviation. 

We conclude that gaussian interpolation method cannot be used for a good reconstruction 
of the magnetic field in the MAGNEX spectrometer. An alternative approach [12], 
presently under study, is based on a modified charge density method and allows the use 
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of measurements in several planes resulting in a global Maxwellian field that suppresses 
local measurement inaccuracies.   

4. Conclusions 

A large acceptance magnetic spectrometer has been designed and it is presently under 
construction at the LNS, Catania. High energy and mass resolving power are expected 

due to the innovative design. To test the trajectory reconstruction algorithm together with 
the magnetic layout, we made a complete simulation of the whole spectrometer taking 
into account the straggling effects and the finite resolution of the detectors. These 

simulations show that high reconstructive orders are needed to achieve the required 
energy resolution. Under these conditions the standard methods to interpolate magnetic 
field cannot be applied. Instead one needs an interpolation based on the construction of 

an analytical function that is a solution of the Maxwell’s equations such that the 
boundary values problem can be applied. In this case, the uniqueness theorem ensures 
that the solution found is the one we are looking for. Moreover, this analytical function 

has to be infinitely differentiable, such that DA techniques can be applied, and should 
provide an efficient smoothing of the experimental errors.  
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Study of RF coupling to dielectric loaded accelerating 

structures 
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Abstract.  A new method of coupling rf to an X-band dielectric loaded 
accelerating structure is described here. In common with a technique developed 
earlier [1] we taper the dielectric to obtain efficient coupling, but we also 
incorporate a mode conversion section that results in compactness, flexibility and 
improved resistance to breakdown at high power. Numerical results demonstrate 
that enhanced microwave transmission can be achieved with a shorter dielectric 
taper section.  The dielectric taper can also be modified without redesign of the 
metal structure hosting the tapered section, resulting in time and cost savings 
during the development cycle.   

 

 

1.  Introduction 

Dielectric loaded accelerating structures were proposed in the early 1950’s [2].  Since 
then, this class of device has been studied both theoretically and experimentally [3-6].  
The advantages and potential problems of using dielectrics are discussed in the above 
references and summarized in [1]. Some potential long-term challenges of using 
dielectric material in a high power RF environment are breakdown and thermal heating. 
One practical problem that has arisen during prototyping the dielectric accelerator is the 
difficulty of efficiently coupling RF power into the structure [1, 6].  One scheme for 
solving this problem proposed and studied in [1] by P. Zou consists of a combination of 
a side coupling slot and a tapered dielectric layer near the slot. Simulations and low 
power test results show that the scheme is adequate; high power tests however were 
unsuccessful due to rf breakdown in the vicinity of the coupling slot [7].   

To solve this problem, we have adapted a new coupling scheme proposed by Tantawi 
and Nantista [8] that uses a TE-TM mode converter as coupling structure.  A similar 
technique was also studied by I. Syratchev for use in the CLIC accelerating structure 
[9].  Our new scheme is shown in Figure 1. A transition section is used to convert the 
TE mode (from the rectangular WR90 feed waveguide) to a TM mode (in a cylindrical 
copper waveguide).  A tapered dielectric section is then used to transmit RF power into 
the dielectric accelerator section. This scheme separates the dielectric loaded accelerator 
from the coupling structure by a tapered section.  Such scheme makes the coupler 
independent of the dielectric properties, and the highest fields are developed in the 
accelerator section.  Because the coupler is implemented in a section of circular 
waveguide, the aperture of the coupling slot is much larger than in the old scheme [1] so 
that the peak value of the EM field at the coupling aperture is much smaller than that of 
the old scheme under the same input power.  
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One could also separate the structure shown in Figure 1 into several modules:  1) 
Coupling section; 2) Dielectric tapered section and 3) Dielectric accelerator section.  
This would greatly simplify the experimental implementation of high power testing 
since each of the three components could be built and tested separately. 

In this paper, we will concentrate on details of the design of the tapered sections only. 
The properties of the acceleration section have been studied in detail previously [1, 6].   
The coupling section and a simple taper section design are discussed in [10].  For this 
simple scheme, the length of the taper section should vary with the dielectric constant, 
with higher permittivity requiring a longer taper.  Another disadvantage of the old 
scheme is that the dielectric taper is not tunable.  To improve the performance of the 
taper section, a new scheme is proposed and discussed here.   
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RF  out   

2b   2a   
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2c   
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Figure 1.  Example of an 11.424 GHz Dielectric Structure incorporating 
the new TE-TM mode conversion technique 

 

 

2.  Taper section conceptual design 

As shown in figure 2, the new taper design is defined by the geometric parameters a, b, 
c, t1, t2 and t3.  a is the inner radius of the dielectric accelerating section, b is the outer 
radius of the section and c is the radius of the circular waveguide of the output port of 
the TE-TM converter.  Unlike our old scheme (shown in figure 3), this design is much 
more flexible.  There are 3 independently adjustable geometrical parameters, t1, t2 and 

t3.  This makes it possible for us to change the dielectric taper without any change to the 
metal structures.  This property also makes it tunable.  Another advantage of this new 
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Figure 2.  The new dielectric taper 
concept 
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design is that we can achieve acceptable transmission using a relatively shorter taper 
section especially when the dielectric constant is high.   
 
3.  EM simulation and results  

As the mode pattern of TM01 inside the dielectric loaded accelerating section will 
change with the frequency, it is nearly impossible to get correct results in time domain 
simulation if we define a waveguide port at the end of a partially dielectric loaded 
waveguide.  So what we do is to define only one waveguide port at the end of the 
ordinary circular waveguide and put an absorbing boundary condition at the other end.   
By doing this, we can obtain the reflection parameter S11 from the simulation.  The 
software we use is Microwave Studio™ [11].   
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Figure 4. S11 of taper section, old 

scheme, 4.9r , 9.7, 9.9.  

We have used the old scheme to design tapered sections for an X-band dielectric 
loaded accelerator structure [10].  The dielectrics used in these two accelerators are 9.4 
and 20 respectively.  Figure 4 gives S11 as a function of taper length for a structure with 
permittivities in the range of 9.4-9.9.  We would be able to achieve good transmission 
when l is over 37 mm.  Figure 4 also shows that if the dielectric used for the taper is 
slightly different from which we used in the accelerating section, the EM property of 
taper section will change.  But as the envelope of these curves decreases fast while the 
taper length increases, so that this effect can be ignored when l is greater than 40 mm.   
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Figure 7. S11 of taper section, new 

scheme, 4.9r , 8.2, 
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Figure 5 gives the S11 dependence on taper length for r=20.  The bandwidth of each 
relative minimum is narrow and the envelope of the curve decreases very slowly as a 
function of taper length. This makes the performance of taper section very sensitive to 
machine error and material properties, making it difficult to achieve our goal with a 
reasonable length of the taper section. For the new scheme, as shown in figure 6, the 
bandwidth of the minima is relatively wider than those of old scheme.  This makes the 
structure less sensitive to machine error and material properties. Because the new 
scheme is tunable simply by adjusting the geometry of the taper, it is easy to make 
adjustments during prototyping. 
    Figure 7 gives the S11 of taper section under new scheme for the X band dielectric 

loaded traveling wave accelerator using dielectric with 4.9r .  Comparing to the 

results in figure 4, figure 7 shows that with the same length of taper section, the new 
scheme can achieve better performance even though the dielectric constant of the taper 
section changes to 8.2. We can still use the same metallic structure designed for 9.4 by 
simply changing t2 of the taper which has nothing to do with the profile of the copper 
jacket.   

 
4.  Summary 

A new concept for a dielectric taper section is proposed here for application in X-band 
dielectric loaded accelerating structures. Compared with the earlier concept, this new 
scheme is more compact and flexible.  Numerical results show that enhanced 
microwave transmission can be achieved with a shorter dielectric taper section. As there 
are 3 independent geometric parameters in the new scheme, one can change any of these 
3 parameters to change the EM properties of the taper section.  Under this scheme, the 
dielectric taper could be changed without redesign of the metal structure hosting the 
dielectric taper.  This new scheme can reduce time and costs during the development 
phase.   This work is supported by DOE, High Energy Physics Division, Advanced 
Technology Branch under the contract W-31-109-ENG-38. 
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Abstract. In this paper the modern map method for electron optics has been discussed in detail
and third order aberrations of several electron lenses have been computed through the method. A
cross-check of the numerical results has been made with those evaluated by using the electron optical
aberration integrals. They are very consistent with each other. In conclusion, the map method is
not only concise and efficient, but very precise for electron optical aberration analysis and COSY
INFINITY is an excellent programming code for such methods.

1. Introduction

Modern map methods have been widely used in particle beam physics and accelerators with great success
[1] and COSY INFINITY [2,3] is an arbitrary order beam simulation and analysis computer code that
is suitable for such methods. However, the feature of electron optics is that a rotating coordinate
frame is always used in order to simplify the analytical expression of the paraxial trajectory equation of
rotationally symmetric electron optical systems. As a result, the aberration of lenses is always expanded
in rotating coordinates and must be corrected by the object magnetic immersion (OMI) effect if the
object is immersed in the lens magnetic field [4]. Therefore, there exist three types of differential
algebraic (DA) descriptions for electron optical aberrations.

By using the DA descriptions for aberrations developed in this work, numerical computation of
third order aberrations of electrostatic, magnetic, and combined electromagnetic lenses has been carried
out and the computational results have been cross-checked with those evaluated through the electron
optical aberration integrals. In addition to references [5,6], the present work has also proved that the
map method has advantages in conciseness, efficiency, and high precision and that COSY INFINITY
is an excellent programming code for such methods. It is expected that modern map methods would
become a powerful tool for aberration analysis in electron optics, especially for high order aberrations.

2. Three types of DA descriptions for electron optical aberrations

2.1. The DA description in fixed coordinates

For this type of the DA description the general electron trajectory equation [7,8] is used, which has the
form of

X
′′
= ρ2

2Φ (
∂φ
∂X −X ′ ∂φ

∂Z ) +
ηρ2
√

Φ
(ρBY − Y ′Bt),

Y
′′
= ρ2

2Φ(
∂φ
∂Y − Y ′ ∂φ

∂Z ) +
ηρ2
√

Φ
(−ρBX +X ′Bt),

η =
√

e
2m , ρ =

√
1 +X ′2 + Y ′2, Bt = 1

ρ(BZ +X ′BX + Y ′BY ).

(1)

Note that in this context we use the uppercase letters, X and Y , to represent the position coordinates
in the fixed coordinate frame. For aberration analysis the transfer map is found by tracking Eq.(1) from
the object plane to the image plane by means of a DA integrator. Then, the DA description in fixed
coordinates for third order aberrations is expressed as

∆X3i =
∑k+l+m+n=3

k,l,m,n=0,1,2,3 Mf (1, klmn)Xk
oX

′l
o Y

m
o Y

′n
o ,

∆Y3i =
∑k+l+m+n=3

k,l,m,n=0,1,2,3 Mf(3, klmn)Xk
oX

′l
o Y

m
o Y

′n
o ,

(2)
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whereMf(1, klnm) andMf (3, klmn) are the third order transfer map elements in fixed coordinates and
subscripts ”i” and ”o” signify the object and image planes. Since the DA description in fixed coordinates
is only a special case of the DA description in rotating coordinates for aberrations of electron optical
rotationally symmetric systems, we will not discuss it in detail and concentrate more on the latter.

2.2. The DA description in rotating coordinates

In electron optics the rotating transformation of coordinates [7,8] are

X = x cos θ − y sin θ,

Y = x sin θ + y cos θ,

X ′ = (x′ − θ′y) cos θ − (y′ + θ′x) sin θ,

Y ′ = (x′ − θ′y) sin θ + (y′ + θ′x) cos θ,

Z = z, θ = η
2

∫ z

zo

B(z)√
V (z)

dz, θ′ = η
2

B(z)√
V (z)

,

(3)

where θ is the rotation angle of the rotating coordinate frame relative to the fixed one and the lowercase
letters, x, y, and z, imply the rotating coordinates in the context.

At the object plane θo = 0 we have

Xo = xo, Yo = yo,

X ′
o = x′o − θ′oyo, Y ′

o = y′o + θ′oxo,

θ′o =
η
2

B(zo)√
V (zo)

,

(4)

For the third order aberration there is the transformation

∆X3i = ∆x3i cos θi −∆y3i sin θi,

∆Y3i = ∆x3i sin θi +∆y3i cos θi.
(5)

Similarly, the DA description in rotating coordinates for third order aberrations takes the form

∆x3i =
∑k+l+m+n=3

k,l,m,n=0,1,2,3 Mr(1, klmn)xk
ox

′l
o y

m
o y

′n
o ,

∆y3i =
∑k+l+m+n=3

k,l,m,n=0,1,2,3 Mr(3, klmn)xk
ox

′l
o y

m
o y

′n
o ,

(6)

where Mr(1, klnm) and Mr(3, klmn) are the third order transfer map elements in rotating coordinates.
Comparing Eq. (6) with the electron optical expansion of the third order aberration in Glaser’s nota-
tion, we immediately obtain the corresponding relationships between the map elements and aberration
coefficients, which are shown in Table 1. Furthermore, combining Eqs. (2) and (4-6), the expressions of
Mr(1, klmn) and Mr(3, klmn) have been found as the function of Mf(j, klmn) for j = 1 or 3 as well as
θi and θ′o. Below, we only write those simplest relationships defined as the DA description in rotating
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coordinates for the third order aberration coefficients,

B =Mr(1, 0300) = B1 cos θi +B2 sin θi,

F =Mr(1, 1002) = F1 cos θi + F2 sin θi,

C = 1
2Mr(1, 1011) = 1

2 (C1 cos θi + C2 sin θi),

D =Mr(1, 0120) = D1 cos θi +D2 sin θi,

E =Mr(1, 3000) = E1 cos θi + E2 sin θi,

f = 1
3Mr(3, 1002) = 1

3 (F2 cos θi − F1 sin θi),

c = 1
2Mr(3, 1011) = 1

2 (C2 cos θi − C1 sin θi),

e =Mr(3, 3000) = E2 cos θi − E1 sin θi.

(7)

where B1, B2, ......, and E2 have the form

B1 = G3[Mf(1, 0300), 0, 0, 0, θ′o],

B2 = G3[Mf(3, 0300), 0, 0, 0, θ′o],

F1 = G3[Mf (1, 1002), 3Mf(1, 0003), 0, 0, θ′o],

F2 = G3[Mf (3, 1002), 3Mf(3, 0003), 0, 0, θ′o],

C1 = G3[Mf (1, 1011),−Mf(1, 1101) + 2Mf(1, 0012),−2Mf(1, 0102), 0, θ′o],

C2 = G3[Mf (3, 1011),−Mf(3, 1101) + 2Mf(3, 0012),−2Mf(3, 0102), 0, θ′o],

D1 = G3[Mf (1, 0120),−2Mf(1, 0210), 3Mf(1, 0300), 0, θ′o],

D2 = G3[Mf (3, 0120),−2Mf(3, 0210), 3Mf(3, 0300), 0, θ′o],

E1 = G3[Mf (1, 3000),Mf(1, 2001),Mf(1, 1002),Mf(1, 0003), θ′o],

E2 = G3[Mf (3, 3000),Mf(3, 2001),Mf(3, 1002),Mf(3, 0003), θ′o],

G3(α0, α1, α2, α3, θ
′
o) = α0 + α1θ

′
o + α2θ

′2
o + α3θ

′3
o .

(8)

2.3. The DA description in hybrid coordinates

The object magnetic immersion effect has been discussed in reference [4] in detail. What is emphasized
here is that the OMI correction of aberration coefficients becomes very simple when the map method
in hybrid coordinates is employed. For the third order aberration it is expressed as

∆x3i =
∑k+l+m+n=3

k,l,m,n=0,1,2,3 Mh(1, klmn)Xk
oX

′l
o Y

m
o Y

′n
o ,

∆y3i =
∑k+l+m+n=3

k,l,m,n=0,1,2,3 Mh(3, klmn)Xk
oX

′l
o Y

m
o Y

′n
o ,

(9)

where Mh(1, klmn) and Mh(3, klmn) are the third order transfer map elements in hybrid coordinates.
The corresponding relationships between the map elements and aberration coefficients are similar to
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those in Table 1. Combining Eqs. (2), (5), and (9), we obtain all the third order aberration coefficients
which have been OMI corrected as follows:

Bm = Mh(1, 0300) = Mf (1, 0300) cosθi + Mf(3, 0300) sin θi,

Fm = Mh(1, 1002) = Mf(1, 1002) cosθi + Mf (3, 1002) sinθi,

Cm = 1
2Mh(1, 1011) = 1

2 [Mf(1, 1011) cosθi + Mf (3, 1011) sinθi],

Dm = Mh(1, 0120) = Mf (1, 0120) cosθi + Mf (3, 0120) sin θi,

Em = Mh(1, 3000) = Mf (1, 3000) cosθi + Mf (3, 3000) sinθi,

fm = 1
3Mh(3, 1002) = 1

3 [Mf (3, 1002) cosθi − Mf (1, 1002) sin θi],

cm = 1
2Mh(3, 1011) = 1

2 [Mf (3, 1011) cosθi − Mf(1, 1011) sin θi],

em = Mh(3, 3000) = Mf(3, 3000) cosθi − Mf (1, 3000) sin θi;

(10)

3. Computational examples

Hutter’s electrostatic [9,10], Glaser’s magnetic [7,8], and Ximen’s combined electromagnetic [11] lenses
have been chosen for computation and COSY INFINITY has been used for programming. However, in
the present work some global variables, functions, and procedures for electron optics have been added
to the program COSY.FOX [12].

The axial potential and magnetic induction distributions of these lenses respectively have the form

Hutter′s electrostatic lens : V (z) = V0 exp(K arctan z
d ),

Glaser′s magnetic lens : B(z) = B0

1+ z2
d2

,

Ximen′s combined electromagnetic lens :

V (z) = V0 exp(K arctan z
d),

B(z) = B0 exp( K
2 arctan z

d )

1+ z2

d2
.

(11)

For each lens Eq. (1) has been tracked from the object plane to the image planes by using an eighth
order Runge-Kutta integrator [13] under the given lens parameters and magnification. Then, the third
order aberration coefficients have been calculated according to Eqs. (7) and (10). The numerical results
are respectively shown in Tables 2, 3, and 4, together with those evaluated through the aberration
integrals [7,8] and Mathematica [14].

4. Discussion and conclusion

The DA description in fixed coordinates for aberrations, Eq. (2), reflects realistic aberrations at the im-
age plane for all electron optical rotationally symmetric systems, including electrostatic, pure magnetic
and combined electromagnetic lenses, while the aberrations described by the DA description in rotating
coordinates, Eq. (6), are aberrations at the corresponding rotating image plane without the inclusion
of the OMI effect. As for the DA description in hybrid coordinates, Eq. (9), it is meant by the DA
description in rotating coordinates with the inclusion of the OMI effect. So the relation between the
DA descriptions in fixed and hybrid coordinates is a rotating transform.
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For electrostatic round lenses there is no difference between the fixed and rotating coordinates nor
the OMI effect, so the three types of DA descriptions are identical and the numerical results calculated
through Eqs. (7) and (10) should be equal, as is shown in Table 2. In fact, because both θi and θ′o
vanish in the case of an electrostatic lens, we have

B = Bm =Mf(1, 0300) =Mr(1, 0300) =Mh(1, 0300),

F = Fm =Mf (1, 1002) =Mr(1, 1002) =Mh(1, 1002),

C = Cm = 1
2Mf (1, 1011) = 1

2Mr(1, 1011) = 1
2Mh(1, 1011) ,

D = Dm =Mf (1, 0120) =Mr(1, 0120) =Mh(1, 0120),

E = Em =Mf (1, 3000) =Mr(1, 3000) =Mh(1, 3000),

f = fm = 1
3Mf (3, 1002) = 1

3Mr(3, 1002) = 1
3Mh(3, 1002),

c = cm = 1
2Mf(3, 1011) = 1

2Mr(3, 1011) = 1
2Mh(3, 1011),

e = em =Mf (3, 3000) =Mr(3, 3000) =Mh(3, 3000),

(12)

Therefore, all the third order aberration coefficients of electrostatic lenses can be directly extracted
from the map elements in fixed coordinates expressed in Eq. (12). It has also been revealed in Table
2 that only isotropic aberrations exist in electrostatic lenses and the anisotropic aberration coefficients,
f, c, and e, are all equal to zero, which is consistent with theory of electron optics.

From Tables 2, 3 and 4 it is clear that all the aberration coefficients calculated through the map
method are in excellent agreement with those evaluated by using the aberration integrals and OMI
correction formulas, the relative errors being very small. In the meantime, it has been shown that the
OMI effect does influence all aberrations to a certain extent except for spherical aberration and isotropic
coma. As a result, consideration of the OMI effect is of importance if all the third order aberrations are
investigated in the case of oject magnetic immersion.

In conclusion, the DA description in hybrid coordinates is the most important among the above three
types of the DA descriptions; the modern map method has the advantage of conciseness and efficiency
in aberration analysis, with high precision remaining unchanged; and COSY INFINITY is an excellent
computer code for such methods. In addition to the electron optical canonical aberration theory [15,16],
it would be expected that the modern map method will become another important method for high
order aberration analysis in electron optics.
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Table 1. Relationships between the map elements and third order aberration coefficients in the
rotating coordinate frame.

Map elements Aberr. coeff. Map elements Aberr. coeff.
Mr(1, 3000) E Mr(3, 3000) e
Mr(1, 2100) 2C +D Mr(3, 2100) c
Mr(1, 1200) 3F Mr(3, 1200) f
Mr(1, 0300) B Mr(3, 0300) 0
Mr(1, 2010) −e Mr(3, 2010) E
Mr(1, 1110) −2c Mr(3, 1110) 2C
Mr(1, 0210) −3f Mr(3, 0210) F
Mr(1, 2001) c Mr(3, 2001) D
Mr(1, 1101) 2f Mr(3, 1101) 2F
Mr(1, 0201) 0 Mr(3, 0201) B
Mr(1, 1020) E Mr(3, 1020) e
Mr(1, 0120) D Mr(3, 0120) −c
Mr(1, 1011) 2C Mr(3, 1011) 2c
Mr(1, 0111) 2F Mr(3, 0111) −2f
Mr(1, 1002) F Mr(3, 1002) 3f
Mr(1, 0102) B Mr(3, 0102) 0
Mr(1, 0030) −e Mr(3, 0030) E
Mr(1, 0021) −c Mr(3, 0021) 2C +D
Mr(1, 0012) −f Mr(3, 0012) 3F
Mr(1, 0003) 0 Mr(3, 0003) B

Table 2. Third order aberration coefficients computed through the map method and aberration
integrals for the Hutter’s electrostatic immersion lens with the lens parameters: V0 = 100 V, K = 1,
and d = 0.01 m and under the condition of M = −1000.

Aberr. coeff. Map method − Eq. (7) Aberr. integrals Rel. error
B (m) −8.38764500096× 101 −8.38764500091× 101 5.96126× 10−12

F −1.98510655925× 103 −1.98510653299× 103 1.32285× 10−8

C (m−1) −4.91180246598× 104 −4.91180246615× 104 −3.46105× 10−11

D (m−1) −6.40984204833× 104 −6.40984204850× 104 −2.65216× 10−11

E (m−2) −1.48053226042× 106 −1.48053226042× 106 0.
f 0. 0. 0.
c (m−1) 0. 0. 0.
e (m−2) 0. 0. 0.

Aberr. coeff. Map method − Eq. (10) OMI corrected Rel. error
Bm (m) −8.38764500096× 101 −8.38764500091× 101 5.96126× 10−12

Fm −1.98510655925× 103 −1.98510653299× 103 1.32285× 10−8

Cm (m−1) −4.91180246598× 104 −4.91180246615× 104 −3.46105× 10−11

Dm (m−1) −6.40984204833× 104 −6.40984204850× 104 −2.65216× 10−11

Em (m−2) −1.48053226042× 106 −1.48053226042× 106 0.
fm 0. 0. 0.
cm (m−1) 0. 0. 0.
em (m−2) 0. 0. 0.
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Table 3. Third order aberration coefficients computed through the map method and aberration
integrals for the Glaser’s bell-shaped magnetic lens with the lens parameters: V = 1000 V,
B0 = 0.01 T, and d = 0.01 m and under the condition of M = −1000.

Aberr. coeff. Map method − Eq. (7) Aberr. integrals Rel. error
B (m) −1.22774962370× 102 −1.22774962355× 102 1.22175× 10−10

F −3.24099974570× 103 −3.24099931553× 103 1.32728× 10−7

C (m−1) −7.42852841026× 104 −7.42852840963× 104 8.48082× 10−11

D (m−1) −1.42976644081× 105 −1.42976644075× 105 4.19650× 10−11

E (m−2) −3.25193084150× 106 −3.25193084149× 106 3.07498× 10−12

f −9.38230480762× 102 −9.38230480760× 102 2.13153× 10−12

c (m−1) −4.33646936433× 104 −4.33646936433× 104 0.
e (m−2) −8.74371281419× 105 −8.74371281418× 105 1.14369× 10−12

Aberr. coeff. Map method − Eq. (10) OMI corrected Rel. error
Bm (m) −1.22774962370× 102 −1.22774962355× 102 1.22175× 10−10

Fm (m−1) −3.24099974570× 103 −3.24099931553× 103 1.32728× 10−7

Cm (m−1) −7.98375704337× 104 −7.98375704277× 104 7.51526× 10−11

Dm (m−1) −1.26319785088× 105 −1.26319785081× 105 5.54148× 10−11

Em (m−2) −3.13011678803× 106 −3.13011678110× 106 2.21397× 10−9

fm −4.45639641034× 102 −4.45639641092× 102 −1.30150× 10−10

cm (m−1) −1.73579776896× 104 −1.73579811414× 104 −1.98860× 10−7

em (m−2) −3.38107934296× 105 −3.38107934322× 105 −7.68984× 10−11

Table 4. Third order aberration coefficients computed through the map method and aberration
integrals for the Ximen’s combined bell-shaped electromagnetic lens with the lens parameters:
V0 = 100 V, B0 = 0.01 T, K = 1, and d = 0.01 m and under the condition of M = −1000.

Aberr. coeff. Map method − Eq. (7) Aberr. integrals Rel. error
B (m) −2.49579806656× 100 −2.49579806621× 100 1.40236× 10−10

F −4.13402045499× 101 −4.13402014037× 101 7.61051× 10−8

C (m−1) 7.33956465391× 104 7.33956465390× 104 1.36229× 10−12

D (m−1) −2.44272558705× 105 −2.44272557783× 105 3.77447× 10−9

E (m−2) −3.63429552342× 106 −3.63429552348× 106 −1.65095× 10−11

f −4.39205425904× 102 −4.39205425904× 102 0.
c (m−1) −8.50459338269× 103 −8.50459338286× 103 −1.99891× 10−11

e (m−2) −1.64076435079× 107 −1.64076435079× 107 0.

Aberr. coeff. Map method − Eq. (10) OMI corrected Rel. error
Bm (m) −2.49579806656× 100 −2.49579806621× 100 1.40236× 10−10

Fm −4.13402045629× 101 −4.13402014037× 101 7.64169× 10−8

Cm (m−1) −1.57685763474× 103 −1.57685764232× 103 −4.80703× 10−9

Dm (m−1) −1.93550461832× 104 −1.93550452387× 104 4.87986× 10−8

Em (m−2) −3.27206878871× 106 −3.27206872180× 106 2.04488× 10−8

fm −7.60603390810× 101 −7.60603391317× 101 −6.66576× 10−10

cm (m−1) 3.52562042045× 103 3.52561950111× 103 2.60760× 10−7

em (m−2) −1.07246671507× 106 −1.07246685034× 106 −1.26130× 10−7
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Aspects of parallel simulation of high intensity

beams in hadron rings

Alfredo U. Luccio § and Nicholas L. D’Imperio
Brookhaven National Laboratory. C-AD Department. Upton, NY 11973, USA †

Abstract. A PIC code to simulate high intensity beams in hadron circular
accelerators, BNL-Orbit, has been implemented on parallel computers already in 1999.
The issues of 3-dimensional tracking for long bunches of high energy hadrons and the
relevant approximations are discussed, as well as solvers for the space charge problem
in the presence of walls.

1. Introduction

The code Orbit [1] has been designed for PIC tracking of a particle beam in a high

intensity and high energy circular hadron accelerator. In the code, space charge forces

are continuously calculated and applied to the individual macroparticles of the herd as

transverse momemtum kicks and as longitudinal energy kicks.

The Brookhaven edition of the code Orbit, or BNL-Orbit was made fully

MPI [2] parallel, typically running on a Unix Linux platform. The parallelization

of Orbit, with space charge calculation done is structured around the concept of

longitudinally partitioning the beam into segments, the number of which can be

varied. The parallelization possesses the capability to efficiently handle almost any

beam configuration ranging from coasting beams of uniform longitudinal density with

lengths equalling the circumference of the machine to bunched beams of non-uniform

longitudinal density with lengths a small fraction thereof.

2. Split Operator. 3-D Treatment of Long Bunches

In Orbit the propagation of the beam is controlled by a Split Operator technique. At

each stage the herd is transformed through maps calculated for a bare lattice, followed

by the application of space charge kicks. Maps are provided by an optical program as

MAD [3] and are arranged sequentially along the circumference of the machine. Space

charge kicks are applied at certain locations in the lattice: “SC nodes”.

In PIC simulation the independent variable can be either time t, or space s. While

time can be a natural choice, because the space charge interaction must be calculated

§ To whom correspondence should be addressed (luccio@bnl.gov)
† Work performed under the auspices of the U.S.Department of Energy

Inst. Phys. Conf. Ser. No 175
Paper presented at 7th Int. Conf. Computational Accelerator Physics, Michigan, USA, 15–18 October 2002
©2004 IOP Publishing Ltd
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with the position of all the macros at the same time, in a cyclic accelerator, where particle

traverse the same position in the lattice many times, the position is a convenient clock.

Orbit uses s as the independent variable.

To solve the space charge problem in the presence of accelerator chamber walls, we

use a pre-calculated impedance budget, or direct calculation of the electromagnetic field

from charges and currents in the beam and image charges and currents induced on the

wall. Impedances are useful to represent lump properties of the entire wall structure,

direct calculation is done to address in detail local wall properties.

Given beam and wall image charge and current distribution, and assuming steady

state current flow, the electromagnetic problem can be solved via two partial elliptic

differential equations, Poisson Law and Ampere Law (in the Coulomb’s gauge)

∇2Φ(P ) = −ρ(Q)
ε0
, ∇2 �A(P ) = −�j(Q)

µ0
, (1)

with ρ the beam charge distribution, and �j the current distribution at a source point

Q. The solution would yield the scalar electric potential Φ and the magnetic vector

potential �A in each field point P , from which space charge kicks are calculated.

To find ρ, one should bin the macroparticles on a suitable grid according to their

position coordinates (x, y, z), and to find �j one should bin the herd according to the

momentum coordinates (px, py,∆p/p).

For long bunches, as it is common in circular accelerators like synchrotrons, Orbit

makes at the present the customary approximative assumption that the flow of beam

current is parallel to the walls, thus representing the partial compensation between space

charge repulsion and space current attraction by only solving the Poisson equation

and multiplying the kicks by a factor 1/γ2. Then, transverse momentum kicks and

longitudinal energy kicks assume the form

δp⊥
p
= ℘∂φ

∂r
LT ,

δ∆E
E
= β2℘∂φ

∂z
Ls, (2)

where LT and Ls are the “lengths” of a kick, and ℘ the perveance

℘ =
4πλqhr0
∆xβ2γ3m0

, (3)

with λ the longitudinal current density, h the harmonic number and ∆x the (Cartesian)

grid mesh size.

In principle, equations (1) should be solved in 3 Dimensions. For a numerical

treatment the herd is binned to a grid of points and the equation is solved on that grid

by finite difference methods. The approximation for 3-D solvers for high energy beams

of very small aspect ratio (diameter/length < 10−3) must sensibly take into account the

following facts:

• it is impractical and unnecessary to make the longitudinal grid step as small as the
transverse,

• the longitudinal space charge distribution varies only smoothly along the beam,
• the longitudinal motion of particles within the beam is much slower than the transverse
motion,



195

• because of Relativity, the high energy flattens the field produced by the beam into a

transverse disk, so much that the interaction between particles at different longitudinal

positions vanishes very quickly with the distance,

• it is essential that before the interaction is calculated all particles are considered at the
same time, to allow a correct calculation between adiacent longitudinal grid partitions.

According to the above, the transverse grid is terminated at the wall boundary, and

the longitudinal grid that covers the whole length of the beam bunch consists of beam

segments, long enough that the average density in each segment, the transverse aspect

ratio of the segment, and the wall configuration around the segment can be considered

constant. A perturbative treatment, not yet fully implemented in the code, is indicated

in Section6.

In Orbit, in approximation 0, we then write for the beam space charge

ρ(x, y, z) = ρu(x, y) ρz(z). (4)

with ρz(z) a constant within a segment. This approximation simplifies the problem,

since we can now only solve the transverse Poisson problem simultaneously in each

segment by parallel computation.

Fig. 1 [4] shows a comparison of the longitudinal energy kick, calculated as above

along the beam, with the prediction by the standard expression for a beam of radius a

in a round pipe of radius b, for the same conditions.

(∆E)SC ∝ Z0
λ′

2γ2

[
1 + 2 ln

b

a
+ f(r)

]
(5)

where Z0 is the impedance of free space and ‘λ
′ the charge gradient along the beam.

3. Problem Decomposition and Load Balancing

In two dimensions the space charge calculations in Orbit take place at given points called

nodes, situated around the circumference of the ring. The herd of macro particles, or

macros, which compose the beam, arrive at each node independent of time and are

transversely represented as a flat disk. The particles are then binned onto a 2-d mesh

from which the potential is calculated using a sparse LU solver.The directional derivative

of the potential is the respective component of the force which is then applied to each

particle as a kick proportional to the length of the space charge element. Proceeding in

this manner the entire ring is traversed for a given number of turns.

In a trivial parallelization for 2-D the herd would be evenly subdivided over the

number of processors. The processors then separately track their particles around the

ring. At a space charge node, the processors bin their particles onto a local mesh and

then communicate the local meshes to a global mesh. The calculations then proceed on

the global mesh as before. This scheme scales linearly.

In three dimensions a different approach must be used. The simulation can no longer

be independent of time, because to correctly represent the longitudinal interactions

between adjacent beam segments, all segments must be populated by macros all
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Figure 1. Longitudinal SC energy kick in a 9-slice beam (AGS). Each line:
distribution of kick for various x, y. Thick line: standard equation

considered at the same time. Therefore, at each space charge node the beam, still

represented as a flat disk up to this point, is expanded longitudinally to bring each

particle to their appropriate position at a given time.

In this case the parallelization is not trivial any more. The beam can be divided into

longitudinal segments whose boundaries are delineated by the space charge elements in

the ring. The processes each take a number of these segments and do all calculations

independently. The problem is still decomposed by subdividing the herd, however, the

subdivision of the herd is dependent on the longitudinal locations of the particles.

In a typical run for a ring with K space charge elements, N total macros, and

P processes, N/P macros would initially be injected into the ring by each process.

Each macro has no constraint regarding its longitudinal position upon injection and

therefore may be found in any of the K elements. When the first space charge element is

encountered, the processes synchronize and expand their respective herds longitudinally.

The ring is spatially decomposed along its length and so each process is assigned K/P

space charge elements with one of the processes taking the remainder. The macros are

then exchanged among the processes based on their longitudinal positions. After the

exchange each process contains all the macros in the global herd that belong to its K/P

slices. The communication involved is large only for the first space charge element as

the synchrotron motion is relatively slow and particles will infrequently migrate between

processes. The processes then do a 2-d transverse space charge calculation for each of
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theirK/P slices before collapsing the beam and continuing to track. The process repeats

itself at the next space charge element though with less particle exchange.

This idea works well for a uniform beam. If the beam is not longitudinally uniform

the simulation will not be efficiently load balanced, as one process may have many more

macros than another. Therefore, several factors must be considered when decomposing

the problem over the process domain.

The computational burdens which have the greatest effect on the performance of the

code are dependent on two variables. The number of space charge elements over which

the Poisson equation must be solved and the number of macros in the herd. Therefore,

rather than simply dividing the the number of elements evenly among the processes it is

more efficient to consider the number of elements assigned as a function of the number

of macros contained within them. Load balancing is an important part of the MPI

implementation of BNL-Orbit, that dynamically calculates an optimal decomposition

scheme between each space charge element, as suggested by figure 2. For this, we use a

genetic algorithm that finds out the fittest configuration to optimize run time.

Figure 2. Process decomposition superimposed on the longitudinal phase space of a
herd at (a) injection and (b) at a later time. Example for the SIS [5]

4. Details of Longitudinal Beam segmentation

The longitudinal beam segmentation is established using as a guide the shape of the

beam envelope represented by the square root of the twiss functions β. The length of a

segment is a fraction of a β-wavelength, as shown schematically in figure 3. The local

accelerator chamber profile is associated to each segment. When the herd, that can be

Figure 3. Slicing a beam. The wavy lines represent the envelope of the beam (beta-
wave). Dashed vertical lines represent planes where the Poisson equation is solved.
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imagined as a flat disk, reaches a SC node at a longituinal position sSC , all the macros

are there at different times. To calculate space charge kicks, the beam bunch is then

reconstructed bringing each macro to the position s at the (center of the) segment where

it was or will be at a common time, using the transfer maps between s and sSC . After

kicks are calculated and applied to the individuual macros, the beam is again flattened

and transfered to the next node. Figures 4 show a gaussian beam bunch thus expanded

in a FODO channel. Transfer maps for the expansion are for the bare lattice, within the
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Figure 4. Expanded Gaussian beam and its 3D rendition.In the lhs figure the beam
envelope is also shown

very approximation that leads to the concept of split operators.

5. 2D Poisson Solvers

The differential formulation of Poisson Law is in equation (1), the integral expression

for the potential in a field point P is

Φ(P ) =
1

4πε0γ2

∫
ρ(Q)

r
dQ. (6)

calculated by integration over the distribution at the source point Q with a Green

function G(r) = 1/r, r = |P −Q|.
In an integral formulation the image charge distribution on the walls is part of the

input of the problem and must be calculated in advance, conversely, in a differential

formulation the image is part of the solution.

Equation (6) can be solved by direct integration (Brute Force) or the integral can

be reduced to a convolution between the FFT transforms of ρ(Q) and G(r).

Φ(r) = Const× FFT−1
(
G̃(ω) ∗ ρ̃⊥(ω)

)
.

Both BF and FFT are implemented in BNL-Orbit.

The differential Poisson Equation, including boundary condition on the walls

(Dirichlet condition for the function or Neumann condition for its derivative at the

walls) can be numerically dealt with in various ways. At the present BNL-Orbit is
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Figure 5. Solving with perfectly conducting walls

limited to perfectly conducting walls, where it is Φ(Pwalls) = 0. The field outside is zero

and, by Gauss’s Theorem, the total wall (image) charge is equal to the beam charge.

Let us discretize equation (1) on a M ×N Cartesian grid with equal spacing in the

transverse coordinates x, y. The equation and its solution (implicit sum on subscript

and superscript indeces).can be written as

−4πρij = Lkl
ijΦkl, Φ(P ) = − 1

4π
L−1ρ(Q). (7)

Use the second order expression for the second partial derivative (in x)

∂2Φ

∂x2
=
1

h2
(Φi−1,j − 2Φi,j + Φi+1,j) , (8)

and write the Laplacian matrix ∇2 in discrete form over a Cartesian grid that extends

to the wall

Lkl
ij = −4δki δlj + δki+1δ

l
j + δ

k
i−1δ

l
j + δ

k
i δ

l
j+1 + δ

k
i δ

l
j−1. (9)

The set (7) is a system of linear equations. Figure 5 schematically suggests how to

achieve a solution for perfectly conducting walls. Walls are mapped to n empty dots,

and the interior to m full dots. The system of equations is exactly determined, with

n +m known quantities, i.e. Φ = 0 at the n empty dots and ρ at the m full dots, and

m+ n unknowns, i.e. m values of Φ to be calculated at the full dots and ρimage at the

n empty dots.

The solution is found in BNL-Orbit by using one of two alternate methods,

depending on the problem: (i) by LU decomposition and (ii) by iteration.

(i) The Laplacian is a symmetric band sparse matrix. To solve the sytem of

equations of the form Ax = b we use the LU decomposition for sparse matrices. By

replacing the coefficient matrix A by its LU factorization we have Ax = (LU)x =

L(Ux) = Ly, where y = Ux; This reduces one equation, Ax = b, to two equations,

Ly = b and Ux = y. Using forward substitution, one calculates y, after which x is

calculated using backward substitution. The LU factorization of a symmetric band

sparse matrix is itself a symmetric band sparse matrix and so is done only once at

the beginning of the program and stored in memory. This is very efficient for small to

moderate grids where storage of the sparse LU factorization is manageable [6].
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(ii) Instead of LU Decomposition, the discretized Poisson’s can be solved by

iteration. From equations (7) and (9) obtain

Φi,j =
1

4
(Φi−1,j + Φi,j+1 + Φi+1,j + Φi,j−1 − ρi,j) , (10)

and solve this by iteration, starting with a guess. At iteration k it is

Φk+1
i,j =

1

4

(
Φk

i−1,j + Φk
i,j+1 + Φk

i+1,j + Φk
i,j−1 − ρi,j

)
.

Since the beam density generally evolves slowly from one space charge node to the

next, iterative techniques benefit through more rapid convergence. Several techniques

were applied to the problem including: Successive Over Relaxation (SOR), SOR with

Chebychev acceleration, and Conjugate Gradient (CG). Preconditioned CG was also

considered but memory considerations precluded its use. As expected, CG showed the

most rapid convergence, however, the basic algorithm requires more operations than

either SOR technique and was therefore less efficient in this case. It was also found

that basic SOR was most efficient for small grids (N < 128) while SOR with Chebychev

acceleration was most efficient for large grids (N > 128). The number of iterations

required for convergence to 8 significant digits was approximately 4N for both SOR

methods using optimal relaxation parameters.

6. Approximations for the Longitudinal Dimension

In first approximation, as discussed before, we solve the 3D problem by segmenting the

beam longitudinally and solving the 2D equation (1) simultaneously in each segment. In

this approach, the longitudinal space charge forces will be calculated simply by taking

the differences of the potential at a given radius between adjactent slices. Still, within

this model we can do something better that takes into account details of the longitudinal

distribution. A perturbative approach is the following

In 3D, using the decomposition of equation (4), Poisson becomes

Φz∇2
⊥Φu + Φu

∂2Φz

∂z2
= − 1

ε0

ρzρu (11)

To 0-th order both ρz(z) and Φz(z) are piece-wise constant{
ρz(z) ≈ ρ‖
Φz(z) ≈ Φ‖

,
∂2Φz

∂z2
≈ 0.

Equating z functions and (x, y) functions on both sides, this yields

Φ‖ = ρ‖, ∇2
⊥Φu = − 1

ε0
ρ⊥(x, y).

That says that an approximate solution to the Poisson equation is obtained by solving

for Φu in the transverse space, using the transverse charge density, and then multiply

the result by a constant longitudinal Φ‖, or

Φ(0)(x, y, z) = Φ‖Φu(x, y).



201

A better solution may be found by a perturbative method. With φ a small longitudinal

potential, write

Φ(1)
z (z) = Φ‖ + φ(z).

and insert this into equation (11)

(
Φ‖ + φ(z)

)
∇2

⊥Φu + Φu
∂2φ(z)

∂z2
= − 1

ε0
ρzρu,

to find, after cancelling out the lowest order terms

∂2φ(z)

∂z2
+ ω2φ(z) = 0, with ω2 = − ρu

ε0Φu

. (12)

The complete solution is

Φ(1)
z (z) = Φ‖ + 1

ω
∂Φz

∂z
(0) cos(ωz), with Φz(z = 0) = Φ‖, (13)

Note that (i) the frequency ω in equation (12) is a (weak) function of (x, y). e.g.,

for a Gaussian shaped beam, the transverse charge density and transverse potential

have similar shape. (ii) The derivative of the longitudinal potential in the center of the

segment is approximately proportional to the longitudinal variation of current in the

beam at that location -remember that at the lowest order the longitudinal potential is

equal to the longitudinal charge density- This has nothing to do with the transverse size

of the beam but with its longitudinal phase space profile. (iii) The previous observation

is consistent with the impedance models, where the longitudinal space charge kick on

the particles is proportional to the charge per unit length in the beam.

This approach is under numerical experimentation.
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Abstract. Quadrupole scans in the HEBT of the 6.7 MeV LEDA RFQ were analyzed to
characterize the RFQ output beam. In previous work, profiles measured by the wire scanner
were fit to models (beam parameterizations and HEBT simulations) to determine the transverse
Courant-Snyder parameters α , β , and ε at the RFQ exit. Unfortunately, at the larger quadrupole
settings, the measured profiles showed features that were not present in any of our simulations.
Here we describe our latest analysis, which resulted in very good fits by using an improved
model for the RFQ output beam. The model beam was generated by the RFQ simulation code
TOUTATIS. In our fitting code, this beam was distorted by linear transformations that changed
the Courant-Snyder parameters to whatever values were required by the nonlinear optimizer
while preserving the high-order features of the phase-space distribution. No new physics in
the HEBT was required to explain our quad-scan results, just an improved initial beam. High-
order features in the RFQ output beam apparently make a significant difference in behavior
downstream of the RFQ. While this result gives us increased confidence in our codes, we still
have a mystery: exactly what high-order features in the beam are responsible for the the strange
behavior downstream. Understanding this phenomenon may be helpful to understanding our
halo-experiment data. We have begun to study this by comparing higher-order moments of the
TOUTATIS distribution with other distributions.

1. Introduction

1.1. Quadrupole scans

During commissioning of the 6.7 MeV Low-Energy Demonstration Accelerator (LEDA) radio-
frequency quadrupole (RFQ), we used a four-quadrupole high energy beam transport (HEBT)
line to transport the beam from the RFQ exit to the beam stop. Quadrupole scans in the
HEBT were used to characterize the transverse phase space at the RFQ exit. In this procedure,
only the two quadrupoles immediately downstream of the RFQ exit were used. Quadrupole
Q1 focuses in the y-direction and Q2 focuses in x. For characterizing the beam in the x-
direction, Q2 was varied and the beam was observed at the wire scanner, which was about
2.5 m downstream, just before the beam stop. The strength of Q1 was fixed at a value that
ensured that the beam was contained in both directions for all values of Q2. For characterizing
the y-direction, Q1 was varied with Q2 fixed.

For both the x- and y-scans, as the quadrupole strength is increased from its minimum
to its maximum value (we used about 10 settings in both cases), the beam size at the wire

† Work supported by US Department of Energy.
§ Present address: LBNL, Berkeley, CA 94720, USA.

Inst. Phys. Conf. Ser. No 175
Paper presented at 7th Int. Conf. Computational Accelerator Physics, Michigan, USA, 15–18 October 2002
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Figure 1. Comparison of a measured x-profile and an IMPACT simulation for Q2=−9.69 T/m.
The initial beam for the simulation is a truncated Gaussian having Courant-Snyder parameters
corresponding to the LINAC fit to the rms beam widths.

scanner goes through a minimum. At the minimum, the beam has a waist at the wire-scanner
position. For larger quadrupole strengths, this waist occurs somewhere between the RFQ and
the wire scanner. In this experiment, the wire-scanner profiles (beam intensities as functions
of x or y) were recorded for each quadrupole setting. Although quad scans were done for
several currents, we present results here for the highest current (nearly 100 mA) case.

1.2. Fitting to model of beam and HEBT

To determine the phase-space properties of the beam at the RFQ exit, we have to fit our data to
some model that describes the behavior of the beam in the HEBT under quad-scan conditions.
A model consists of two parts: a representation of the beam at the RFQ exit and a means
of computing the beam at the wire-scanner position, given this beam as input. The problem
is to find an input beam that best fits our data. We used input beams parameterized by the
Courant-Snyder parameters α , β , and ε in the three directions. The initial beam parameters
for the longitudinal direction were taken from the RFQ simulations (there was little coupling
between the three directions). For computing the evolution of the beam in the HEBT, we used
various simulation codes.

2. Previous results

2.1. Fit to LINAC rms sizes

Using the LINAC code and a uniform-in-4-D input distribution as our model, we could find
a set of α , β , and ε values that produced a good fit to the rms beam size as a function of
quadrupole gradient[1, 2]. However, for the larger quadrupole gradients, for the situation
in which the beam waist is upstream of the wire scanner, the simulated and the measured
beam profiles look quite different. The measured profiles had shoulders (triangular tails)
that did not appear in any of the simulations. The agreement was especially poor in the x-
direction. Figure 1 compares the measured and simulated profiles for one of the larger Q2
values, Q2=−9.69 T/m. Because of the inability to reproduce the measured profiles, we
did not believe fits to this model could be used to accurately determine the Courant-Snyder
parameters of the RFQ beam.
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2.2. Fit to IMPACT profile shapes

In an attempt to improve our fitting procedure, we made two changes. The first change was
to use the IMPACT code[3] to determine the evolution of the beam in the HEBT. IMPACT is a
3-D particle-in-cell (PIC) code with nonlinear space charge. The input beam was a truncated
Gaussian parameterized by the usual Courant-Snyder parameters. The second change was to
use all the profile data, not just the rms widths. For the x-scans, for each of the 11 values of Q2
and for each of the 51 x-positions of the wire, the difference between the measured intensity
and the simulated intensity at the wire positions was computed. It is the sum of the squares
of these 561 differences that was minimized by varying the values of αx, βx, and εx of the
input beam (beam at RFQ exit). Unfortunately, this improved fitting procedure still failed to
reproduce the shoulders in the profiles at the wire scanner position for the larger quadrupole
gradients[4].

The beams we were using in the fitting procedures described above were uniform or
truncated Gaussians in 4-D phase space. We also did IMPACT simulations (no fitting) using
collections of particles generated by the RFQ simulation code PARMTEQM[5], which was used
to design this RFQ. In addition, we investigated various distortions of the input phase-space
distributions. In no case did our simulations exhibit the shoulders on the profiles that were
seen in the measurements for the larger quadrupole gradients.

3. Improved input-beam model

Our latest improvement, which finally got good fits to the profiles, consisted of using the
RFQ output beam generated by the TOUTATIS code[6] as the input beam for the IMPACT
simulations. In the new fitting code, this beam (a collection of coordinates in phase space) was
distorted by linear transformations that changed the Courant-Snyder parameters to whatever
values were required by the nonlinear optimizer, while preserving the high-order features
of the original phase-space distribution. The transformation between the initial coordinates
(xi,x′i) and the final coordinates (x f ,x′f ) was


x f

x′f


=

√
ε f
εi




√
β f
βi

0

αi−α f√
βiβ f

√
βi
β f






xi

x′i


 , (1)

where (αi,βi,εi) are the Courant-Snyder parameters of the initial beam and (α f ,β f ,ε f ) are
those of the final beam.

Figure 2 shows the data flow for the latest fitting code. Data files are represented by
rectangular boxes and processes by boxes with rounded corners. The part of the figure inside
the dashed lines correspond to a normal IMPACT simulation (no fitting to data). The initial
particle file is partcl start.data, which in the present case is the output of the TOUTATIS RFQ
simulation. This distribution is transformed using equation (1) by the GENSIM code using new
Courant-Snyder parameters stored in the file beam.dat to generate the file partcl.data, which
is used by IMPACT as the initial beam. The optimizer process QSCANFIT looks at the final
particle coordinates in file fort.9, which describes the beam at the wire-scanner location. This
is done for all quadrupole settings. The error relative to the measured data is then determined.
The nonlinear optimizer in the QSCANFIT process suggests new Courant-Snyder parameters,
which are passed to the file beam.dat to use in the next iteration.

We started our new fitting calculation with a TOUTATIS beam having Courant-Snyder
parameters determined by our previous LINAC fits to the rms widths. We found, to our
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normal IMPACT run

beam.dat

sim.dat

GENSIM

IMPACT

fort.9

reset quad gradient

QSCANFIT

get experim
ental profile data

get exp. file names

α,β,ε

reset

measured profile 1

measured profile 2
.
.
.

measured profile m

get sim
ulation particle coordinates

expfiles

log

histogram

partcl.data

partcl_start.data

Figure 2. Data flow for fitting the quad-scan measured profiles to the TOUTATIS/IMPACT
model. Data files are represented by rectangular boxes and processes by boxes with rounded
corners.

surprise, that the optimizer could not find better Courant-Snyder parameters than this initial
guess. The reason was that the simulation with this initial beam accurately reproduced all the
structure of the measured profiles, including the shoulders on the profiles for the larger quad
settings.

Figures 3 and 4 shows these results for the x-scan. We show the x-scans because it was
this direction that gave the poorer fits in our previous work. The figure shows the measured
and simulated profiles at the wire scanner for ten different Q2 values. We see how the beam
width decreases as the strength of the quadrupole is turned up and then starts to increase
again. At this point (see case for Q2=−7.70 T/m), shoulders (triangular tails) appear in the
profiles. These tails were not present in any of our previous simulations that did not use the
TOUTATIS beam as a starting point. Compare figure 1 to the third graph in figure 4. The old
simulation did a very poor job of reproducing the shape of the distribution. It is important
to remember that the only difference between the old and the new simulations is that the
higher-order features of the initial beams are different. Both initial beams have exactly the
same second moments (Courant-Snyder parameters). We repeated some of the TOUTATIS
simulations with reduced and zero space charge. While this changed the beam size at the wire
scanner substantially, the shoulders on the profiles remained. It is clear the behavior in the
tails of the distribution is caused by the initial beam and not generated in the HEBT.
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Figure 3. Comparison of measured profiles in the x-direction with IMPACT simulations for
various values of Q2. The initial beam for all these simulations was an RFQ exit beam
generated by TOUTATIS and distorted by a linear transformation to have Courant-Snyder
parameters corresponding to those determined by fitting rms widths to LINAC simulations.
Fitting by IMPACT to the details of the profiles did not improve these already good fits.
Continued in figure 4.
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Figure 4. Continuation of figure 3. Some more Q2 values.

Table 1. Courant-Snyder parameters at the RFQ exit (unnormalized).

αx βx εx αy βy εy
(mm/mrad) (mm·mrad) (mm/mrad) (mm·mrad)

Prediction (PARMTEQM) 1.59 0.398 2.03 -2.74 0.726 2.04
Prediction (TOUTATIS) 1.99 0.464 1.68 -3.63 0.904 1.75
Measured (LINAC rms fit) 1.79 0.358 2.11 -2.48 0.892 2.62

Table 1 shows the Courant-Snyder parameters for the LINAC rms fit. Also shown are the
predictions from the PARMTEQM and TOUTATIS codes.

4. Discussion

In summary, we have seen that using a TOUTATIS beam as the basis for the input-beam
model correctly reproduces the previously mysterious shoulders in the wire-scanner profiles.
We have also seen that there is little feed-down from higher order. Our older rms fits
generated good values for the second moments (Courant-Snyder parameters) even though
those simulations got the higher-order features wrong.

The beam from the TOUTATIS simulation of the RFQ contains higher-order features
that are not in the uniform, truncated Gaussian, or even the PARMTEQM output beams.
It appears that features of the beam seen in the HEBT have their origins in the RFQ or
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Figure 5. Contours of equal density in phase space for the PARMTEQM (left) and the TOUTATIS
(right) RFQ exit distributions in the x-direction. Both of these beams have the same second
moments.

perhaps even upstream of the RFQ. The practical consequence of this is that we have to be
careful in preparing beams because high-order features can significantly influence behavior
downstream. The good news is that no new physics was required to explain our quad-scan
results, just a better input beam. The simulation codes accurately reproduce our experimental
results. Although the quad-scan procedure differs from the ordinary HEBT operation or beam
transport in a linac, the physics regime is still similar. We felt it was important that the beam
behavior we observed in the experiment be seen in the simulations. We now believe we have a
believable characterization of the RFQ output beam, but this is of secondary importance (quad
scans are probably not a good way to measure the LEDA RFQ beam properties). The fact that
the simulation codes correctly predict beam behavior increases our confidence in the design
work that is based on our codes.

Of course, there is still a mystery. Exactly what high-order features in the RFQ output
beam are causing the shoulders in the wire-scanner profiles? This should be investigated
because it may be related to halo generation in linacs having its origin upstream of the RFQ
exit. In particular, an understanding of this phenomenon may help us better understand our
halo-experiment data[7].

In the TOUTATIS code, the space charge and external (rf) electric fields are calculated
numerically with a multigrid finite-difference method using the actual vane geometry. This
provides a more accurate representation of the fields in the region outside a cylinder of radius
equal to the minimum aperture than the expansions used in PARMTEQM. Also, TOUTATIS uses
the actual vane geometry to determine which particles are lost by striking the walls instead of
the circular cylinder used in PARMTEQM. (The latter feature has been incorporated into the
latest version of PARMTEQM and the resulting beams are now more similar to the TOUTATIS
results.) Apparently, the details of the motion of particles in the RFQ near the periphery of
the beam are responsible for the interesting behavior we observed in the quadrupole-scan
experiments in the LEDA HEBT.

Figure 5 compares the PARMTEQM and TOUTATIS beams at the RFQ exit. Both beams
have been distorted to have the Courant-Snyder parameters α , β , and ε to correspond to
that of the LINAC rms fit. The contours shown for both beams are for phase-space densities
of 0.005, 0.015, 0.030, and 0.050 (mm·mrad)−1. The PARMTEQM distribution is smoother
than the TOUTATIS distribution because it has more particles (93k particles compared to 27k).
There is no obvious feature that explains why only the TOUTATIS beam leads to the shoulders
in the profiles at the wire scanner.

One way to analyze the high-order features of the beam is by higher moments. One well-
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Table 2. Invariant kurtosis for some distributions.

Distribution k2

uniform 2.31
Gaussian 3.46
PARMTEQM 2.96
TOUTATIS 4.46

known technique for 1-D distributions is to look at the kurtosis k, which is the fourth moment
of the distribution, normalized by the square of the second moment:

k =
<x4>

<x2>2 . (2)

This quantity has value 2 for a uniform distribution, 3 for a Gaussian distribution, and higher
values for more peaked distributions. Often, the kurtosis is defined with a 3 subtracted from
the ratio above making the kurtosis zero for a Gaussian distribution.

For phase space (x, p), we have two dimensions for one degree of freedom. If we want
to extend the definition of kurtosis to phase space we need to also account for correlations
between x and p. A reasonable definition is something like the halo variable in reference [8]

k2 =

(
<x4><p4>−4<x3p><xp3>+3<x2p2>2

)1/2

<x2><p2>−<xp>2 . (3)

The numerator and denominator are both moment invariants, which are functions of moments
that are preserved for linear motion. The denominator is the square of the usual rms emittance.
Other moment invariants exist and may also possibly be useful for describing halo. The
advantage of a definition like that of (3) is that its value is the same anywhere in a beamline
where the motion is linear. Thus the halo cannot hide just by being observed at some particular
point in the beamline. (Of course, this is only approximate if nonlinearities are involved.)
Because of this property, we can think of k2 as some kind of invariant kurtosis. Table 2 shows
the value of k2 for some distributions. Notice that the TOUTATIS distribution has a fairly high
value of the invariant kurtosis. It may be useful to study if high kurtosis is an indicator of
susceptibility to halo generation.
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Muon beam ring cooler simulations using COSY INFINITY
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Abstract. In this paper we present simulations using COSY INFINITY to study the behavior
of muon beams in a ring cooler designed by V. Balbekov[1]. Because of the substantial
transversal emittance, the nonlinearities play a very important limiting role that must be
understood and controlled well, which leads to the requirement of high order computation.
We describe the system, the approaches for the simulations of the large aperture solenoids and
magnetic sectors, and we show the nonlinear transfer maps as well as tracking simulations for
different field models, and compare with other methods based on various approximations.

PACS numbers: 02.60.Cb, 05.45.-a, 29.27.-a, 29.27.Eg, 41.85.-p, 41.85.Ja, 41.85.Lc

1. The ring and the simulation approaches

Various designs and ideas have been developed for cooling of short lived muon beams in
neutrino factories and muon colliders[2]. The concept of cooling is based on ionization
through material[3, 4, 5, 6], and to reduce cooling time, normally the system has a combined
structure, consisting of absorbing material, accelerating cavities and guiding magnets[2, 7].
Because of the huge transversal emittance of muon beams, the consideration of nonlinear
effects is an essential component in an earlier design stage. Lately, several designs of ring
coolers have been considered because of the ability to utilize cooling sections repeatedly, and
the additional potential for transversal and longitudinal emittance exchange. In this paper, we
analyze a muon beam ring cooler designed by V. Balbekov[1]. The layout of the system is
shown in Figure 1.

45

Solenoid coils
Direction of magnetic field
Liquid hydrogen absorber

Bending magnet

LiH wedge absorber
205 MHz cavity

6.68 m
D .619 m

D 1.85 m

1.744 m

Figure 1. The layout of the tetra muon cooler designed by V. Balbekov[1].
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J = 43.79 A/mm2
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3.5 cm

Figure 2. The parameters of the long straight solenoidal section[1].
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Figure 3. The parameters of the short straight solenoidal section[1].
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Figure 4. The hard edge model of the axial magnetic field in the long straight solenoidal
section (left) and in the short straight solenoidal section (right), assuming the solenoid coils
extend to infinity[1].

The ring consists of eight straight sections dominated by solenoids and eight
inhomogeneous bending magnets[1]. The four long straight sections have absorbing material
and accelerating cavities inside the solenoids, thus the aperture is very large. The parameters
of the solenoids in the long section are shown in Figure 2. The four short straight sections
have wedge absorbers to allow for transversal and longitudinal emittance exchange in the
middle, where the longitudinal magnetic field component flips direction. The parameters of
the solenoids in the short section are shown in Figure 3. Balbekov uses a hard edge model for
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all magnets, and for simplicity of design purposes, it is usually adequate to assume that the
coil of the magnets extend to infinity[1]. The profiles of the longitudinal component of the
axial fields are shown in Figure 4.

First, if the length of the solenoids is finite, the field profiles differ significantly. Second,
in the long section, due to the huge aperture, the fringe field extension is exceedingly long[8].
Third, the hard edge model is somewhat unrealistic even for the case of ferromagnetic
yokes designed to block the fall-off of the fields[1] because they apparently need to have
an aperture large enough for passage of the muon beams that have large transversal emittance.
Considering these, we study the effects due to the different treatment of the fields using the
code COSY INFINITY[9]. The perhaps most realistic field treatment in the design stage is to
assume finitely long solenoids as indicated in Figures 2 and 3 without assuming the presence
of ferromagnetic yokes. Such field profiles are shown in Figures 5 and 6, including the outside
fringe regions. The code COSY INFINITY allows the nonlinear treatment of such solenoidal
fields including outside fringe field effects[9, 8]. For the purpose of comparison, we also
study the hard edge model of the fields. Balbekov uses the following linear kicks applied
to the transversal components of momentum to recover the most important edge field effect,
namely the induced overall rotation of the particles:[10]

∆px =
C
2
Bzy, ∆py =−C

2
Bzx, (1)

where �p is in MeV/c, x and y are in meter, Bz is the longitudinal component of the axial field
at the edge in Tesla, and C = 299.79245. We also use the same linear kicks when the hard
edge model is used.

2. Transfer maps of solenoidal sections

We compare the effects of the different treatment of the solenoidal fields in the long and short
straight sections. A long section consists of three solenoidal parts, and a short section consists
of four solenoidal parts, with the longitudinal field flipping direction in the middle. Both the
long and the short sections are designed to have stronger current toward the middle. Due to
the flip of the field direction and the relatively small aperture, the short section is more readily
treatable by various approximations.

2.1. Short straight section

We compute the nonlinear transfer maps of the short section for different field models with
the beam kinetic energy of 250 MeV. We list the transfer maps of the hard edge model of
infinitely long solenoids first. For the purpose of comparison, we show the map without
and with the linear kicks (1). Below, parts of the nonlinear transfer maps are shown in the
notation of COSY INFINITY[9]. We observe that the linear x, a(= px/p0) terms and the
linear y, b(= py/p0) terms are almost decoupled when the kicks are applied, while they are
coupled without the presence of kicks. Thus, the linear kick approximation recovers the main
point of the linear motion and one of its important physical properties.

In the subsequent excerpts from transfer maps, the four columns represent final horizontal
position x (in meter), final horizontal slope a, final vertical position y (in meter), and final
vertical slope b, as a polynomial in the initial conditions. The exponents of the polynomial
are listed in the last column; for example, “4100” corresponds to the initial horizontal position
raised to the fourth power, and the initial horizontal slope raised to the first. The top lines of the
map represent the linear motion, and corresponds to the well-known transfer matrix (although
the latter is usually shown as the transpose of our format).
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Figure 5. The axial magnetic field profile of the short section with finitely long solenoids and
fringe fields.

Hard edge model with infinitely long solenoids (no linear kicks)

x_f a_f y_f b_f xayb
-0.1467136 -1.796260 0.9193886 -0.2657072 1000

1.015304 -0.1467136 0.3060451E-11 0.9193886 0100
... ... ... ... ....

-15.71585 27.23532 -23.72338 -33.63860 5000
-36.02640 5.753202 -21.46530 -55.14127 4100
-38.39075 16.29484 -33.88081 -55.16902 3200
-33.14696 -7.116152 -14.53667 -36.65477 2300
-14.27604 2.840011 -11.47237 -15.47623 1400
-7.567237 -3.099152 -1.462962 -6.833978 0500

Hard edge model with infinitely long solenoids with linear kicks

-0.1467136 -0.9637261 -0.2022731E-03 0.5845774E-04 1000
1.015304 -0.1467136 0.3060451E-11-0.2022730E-03 0100
... ... ... ... ....

-2.968705 1.388108 1.284507 1.099203 5000
-12.74829 -1.191336 1.970436 4.189763 4100
-22.23560 -5.817135 -0.2996768 5.761626 3200
-22.28744 -10.62269 -3.195642 4.297247 2300
-15.60109 -7.532831 -4.618497 1.461128 1400
-7.567237 -4.424200 -1.462962 0.1989097E-01 0500

We now list the same parts of the map of the hard edge model of finitely long solenoids.
As seen in Figure 5, the edge field strength is about half of that with infinitely long solenoids.
Thus, the map differs from the previous case, and the (x,x) and (a,a) terms show an obvious
difference.
Hard edge model with finitely long solenoids with linear kicks

0.3762572E-01-0.9144481 0.1324007E-03 0.9123892E-05 1000
1.092008 0.3762572E-01 0.1216993E-10 0.1324008E-03 0100
... ... ... ... ....

-4.559878 2.194351 1.925709 2.734348 5000
-14.03917 1.790312 1.247951 8.100432 4100
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-26.15120 -0.5027561 -4.741542 9.421870 3200
-29.55137 -6.150214 -9.833677 4.913186 2300
-20.98499 -6.094498 -8.584871 -0.5031165 1400
-8.419566 -5.823382 -1.776100 -0.7673755 0500

We compare this map with the one computed for finitely long solenoids with correct
outside fringe field consideration without using the linear kicks. These two maps agree well,
confirming that the kick approach works well so far.
Finitely long solenoids with correct fringe field consideration

0.9113584E-02-0.9101484 0.2707143E-04-0.8741688E-06 1000
1.098631 0.9113584E-02-0.1597370E-05 0.2707097E-04 0100
... ... ... ... ....

-4.919054 1.095873 0.6296333 1.603693 5000
-14.58589 0.6387705 -0.2037065 4.302134 4100
-24.12332 -1.227331 -3.197581 3.442199 3200
-26.81068 -7.088700 -4.268833 -0.1562313 2300
-19.59752 -9.127604 -2.390249 -2.335453 1400
-8.224955 -7.060173 0.1989972 -0.9178104 0500

2.2. Long straight section

We performed the same study for the long straight section with the beam total energy of 250
MeV (the kinetic energy of 144.32 MeV). The hard edge model is used for infinitely long
solenoidal field, and for finitely long solenoidal field, where the edge field strength is again
about half of that with infinitely long solenoids. The computed transfer maps are compared
to the one with the correct outside fringe field consideration. Since no good agreement was
found between those three maps even in linear terms, we list only a part of the linear terms
below.
Hard edge model with infinitely long solenoids with linear kicks

0.7201144 0.6140963 0.4256817 0.3629942 1000
-0.3623067 0.7201318 -0.2141606 0.4256523 0100

Hard edge model with finitely long solenoids with linear kicks

-0.1764031E-02 0.4682935E-01-0.3214589E-01 0.9457639 1000
-0.5217216E-01-0.1420209E-02 -1.053667 -0.3216291E-01 0100

Finitely long solenoids with correct fringe field consideration

0.2334781 0.7546891 0.8859026E-01 0.2042114 1000
-1.157656 0.2462930 -0.3132503 0.4123110E-01 0100

The main reason for the disagreement between the hard edge model and the correct fringe
field treatment is due to the limitation of the linear kick approximation in (1). Comparing
the field profiles between the short section in Figure 5 and the long section in Figure 6,
the edge field strength is almost the same, namely about 1 Tesla, but the extension of the
outside fringe fields behaves differently. The outside fringe fields of the short section vanish
rapidly, but those of the long section cannot vanish even for a very long distance. By setting
the inner radius of the solenoids to 1/10 of the original radius while keeping all the other
parameters fixed, we computed the linear maps for the hard edge model and the correct fringe
field treatment for finitely long solenoids, and we found reasonable agreement.
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Figure 6. The axial magnetic field profile of the long section with finitely long solenoids and
fringe fields.
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Figure 7. The disagreement of the linear transfer maps between the hard edge model and the
correct fringe field treatment for the finitely long solenoids of the long section as functions of
the aperture.

Hard edge model with finitely long solenoids with linear kicks
(The inner radius is 1/10 of the original size.)

-0.1162300E-01-0.1163328E-01 0.2318096 0.3343426 1000
0.9834308E-01-0.4517004E-02 -2.826397 0.2320568 0100

Finitely long solenoids with correct fringe field consideration
(The inner radius is 1/10 of the original size.)

-0.5651780E-02-0.8030099E-02 0.2324166 0.3343818 1000
0.6789750E-01-0.5511159E-02 -2.827323 0.2324200 0100

Figure 7 shows the correlation of the agreement of the maps for various aperture sizes.
The difference in the sum of the square of linear terms and the difference in the symplectic
error are plotted as functions of the ratio of the inner radius to the original size.
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3. Dynamics through the magnets in the ring

Since one half of the ring characterizes the whole system as seen in Figure 1, we compute
the transfer map of one half of the ring to study the beam dynamics through many revolutions
in the ring. Scanning the energies of the reference particle shows that under the presence
of dipole fringe fields and solenoid fringe fields, the linear motion is frequently unstable,
suggesting the need to re-fit the optical properties of the ring. To illustrate the performance,
we thus restricted ourselves to the design energy of 250 MeV total (=kinetic energy + muon
mass energy). Figures 8 and 9 show tracking for various cases. Figure 8 shows the hard edge
model of the solenoid with finitely long solenoids in the linear kick approximation. The left
picture shows tracking at order 9 with a hard edge model bending magnet, while the right
picture shows the effect of using a realistic bending magnet fringe field, which here leads
to unstable linear motion. Figure 9 shows the finitely long solenoids with correct fringe field
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Figure 8. Tracking 50 revolutions at reference energy of Etot =250 MeV with finitely long
solenoids in hard edge kick approximation, using hard edge dipole fields (left) and realistic
dipole fringe fields (right).
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Figure 9. Tracking 50 revolutions at reference energy of Etot =250 MeV with finitely long
solenoids with correct fringe field consideration, using hard edge dipole fields (left) and
realistic dipole fringe fields (right).
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consideration; again the left picture shows the situation for a hard-edge bending magnet, while
the right picture shows the effects of a realistic bending magnet fringe field.

Particle tracking in the x-a phase space is done for 50 full revolutions in the ring, and the
Poincare sections are in the middle of the short straight solenoidal section, i.e. the upper left
corner of Figure 1. In Figures 8 and 9, the horizontal axis is the horizontal position x in meter,
and the vertical axis is the horizontal slope a= px/p0. The particles with the initial positions
1, 2, ..., 7 cm are tracked in the ring, and the ends of lines showing the axes in the pictures are
±0.1 meter in x and ±0.2 in a.
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Abstract. We describe a full array of solenoidal elements in the high order transfer map
computation code COSY INFINITY, starting from a loop coil to any superposition of thick
straight solenoids. Since the fringe field of coils extends very far longitudinally, and at the
same time contains various nonlinearities due to the longitudinal dependence of the field,
accurate but fast field computation is necessary. In COSY, the 3D fields along the integration of
transfer map through such an element are computed using a Differential Algebra based PDE
solver, which is very fast and only requires information about the analytical axial potential.
By examples, we illustrate the feature of each solenoidal element and how to simulate realistic
beamlines containing combinations of solenoids and other elements.

PACS numbers: 02.60.Cb, 02.60.Gf, 02.60.Lj, 05.45.-a, 29.27.-a, 29.27.Eg, 41.85.-p,
41.85.Ja, 41.85.Lc

1. Introduction

The differential algebraic (DA) methods [1, 2] allow the efficient computation and
manipulation of high order Taylor transfer maps. When integrating transfer maps through
electromagnetic fields, the full 3D fields are computed as part of each integration time step
using DA PDE (partial differential equation) solvers. First, we address the mechanism of the
method of DA fixed point PDE solvers, and as will be seen, the method is very compact and
fast, and only requires the analytical axial potential for solenoidal elements.

After developing the theoretical background, we illustrate a variety of solenoidal
elements available in COSY INFINITY [3], and study their features. Compared to multipole
electromagnetic elements as dipoles, quadrupoles and so forth, the fringe fields of solenoids
extend for a long distance. Particularly because of this long extension of the fringe fields,
in practice it is important to be able to efficiently combine the fields consisting of several
solenoidal coils, which are also treated with the DA PDE solvers. This often even simplifies
the simulation efforts due to the shortened fringe fields created by the cancellation of fields
of counteracting coils, as will be seen in an example from a muon beam cooling cell
[4]. At last we show some examples of very atypical uses of standard electromagnetic
elements, producing solenoidal fields from non-solenoidal elements, or producing bending
fields from solenoidal elements. Such beam optical systems are particularly important in
several components of neutrino factory designs [4].

Inst. Phys. Conf. Ser. No 175
Paper presented at 7th Int. Conf. Computational Accelerator Physics, Michigan, USA, 15–18 October 2002
©2004 IOP Publishing Ltd
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2. DA fixed point PDE solvers

The idea of differential algebraic (DA) methods [1, 2, 5] is based on the observation that it
is possible to extract more information about a function than its mere values on computers.
One can introduce an operation T denoting the extraction of the Taylor coefficients of a pre-
specified order n of the function f ∈ Cn(Rv). In mathematical terms, T is an equivalence
relation, and the application of T corresponds to the transition from the function f to the
equivalence class [ f ] comprising all those functions with identical Taylor expansion in v
variables to order n; the classes are apparently characterized by the collection of Taylor
coefficients. Since Taylor coefficients of order n for sums and products of functions as well as
scalar products with reals can be computed from those of the summands and factors, the set of
equivalence classes of functions can be endowed with well-defined operations, leading to the
so-called Truncated Power Series Algebra (TPSA) [6, 7]. More advanced tools address the
composition of functions, their inversion, solutions of implicit equations, and the introduction
of common elementary functions[1]. For treatment of ODEs and PDEs, the power of TPSA
can be enhanced by the introduction of derivations ∂ and their inverses ∂−1, corresponding
to the differentiation and integration on the space of functions, resulting in the Differential
Algebra nDv. This structure allows the direct treatment of many questions connected with
differentiation and integration of functions, including the solution of the ODEs d�x/dt = �f (�x, t)
describing the motion and PDEs describing the fields [5].

To any element [ f ] ∈ nDv we define the depth λ ([ f ]) as

λ ([ f ]) =
{

Order of first nonvanishing derivative of f if [ f ] �= 0
n+1 if [ f ] = 0

.

In particular, any function f that does not vanish at the origin has λ ([ f ]) = 0.
Let O be an operator on the set M ⊂ nDmv , where nDmv is the set describing vector

functions �f = ( f1, ..., fm) from Rv to Rm. Then we say that O is contracting on M if for any�a,
�b ∈M with�a �=�b,

λ (O(�a)−O(�b))> λ (�a−�b).

In practical terms this means that after application of O , the derivatives in �a and�b agree to a
higher order than before application of O . For example, the antiderivation ∂−1

k is a contracting
operator. Contracting operators satisfy a fixed point theorem:

Theorem 1 (DA Fixed Point Theorem) Let O be a contracting operator on M ⊂ nDv that
maps M into M. Then O has a unique fixed point a ∈M that satisfies the fixed point problem
a = O(a). Moreover, let a0 be any element in M. Then the sequence ak = O(ak−1) for
k= 1,2, ... converges in finitely many steps (in fact, at most (n+1) steps) to the fixed point a.

The fixed point theorem is of great practical usefulness since it assures the existence of
a solution, and moreover allows its exact determination in a very simple way in finitely many
steps. The proof of the theorem can be found in [1]. The DA fixed point theorem has many
useful applications, in particular a rather straightforward solution of ODEs and PDEs [5].

The direct availability of the derivation ∂ and its inverse ∂−1 allows to devise efficient
numerical PDE solvers of any order. The DA fixed point theorem allows one to solve PDEs
iteratively in finitely many steps by rephrasing them in terms of a fixed point problem. The
details depend on the PDE at hand, but the key idea is to eliminate differentiation with respect
to one variable and replace it by integration. As an example, consider the rather general PDE

a1
∂
∂x

(
a2

∂
∂x
V

)
+b1

∂
∂y

(
b2

∂
∂y
V

)
+ c1

∂
∂ z

(
c2

∂
∂ z
V

)
= 0,
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where a1, a2, b1, b2, c1 c2 are functions of x, y, z. The PDE is re-written as

V = V |y=0+
∫ y

0

1
b2

{(
b2

∂V
∂y

)∣∣∣∣
y=0

−
∫ y

0

[
a1

b1

∂
∂x

(
a2

∂V
∂x

)
+
c1

b1

∂
∂ z

(
c2

∂V
∂ z

)]
dy

}
dy .

The equation is now in fixed point form. Now assume the derivatives of V and ∂V/∂y with
respect to x and z are known in the plane y = 0. If the right hand side is contracting with
respect to y, the various orders in y can be calculated by mere iteration.

As a particularly important example, consider the Laplace equation. It can be represented
in general curvilinear coordinates [8, 9]. In the special case of a curvilinear coordinate system,
the Laplace equation is obtained as [8, 9]

�V = 1
1+hx

∂
∂x

[
(1+hx)

∂V
∂x

]
+

∂ 2V
∂y2 +

1
1+hx

∂
∂ s

(
1

1+hx
∂V
∂ s

)
= 0.

In the case of a straight section, where h= 0, it reduces to nothing but the Cartesian Laplace
equation. The fixed point form of the Laplace equation in the planar curvilinear coordinates
is

V = V |y=0+
∫ y

0

(
∂V
∂y

)∣∣∣∣
y=0

dy

−
∫ y

0

∫ y

0

{
1

1+hx
∂
∂x

[
(1+hx)

∂V
∂x

]
+

1
1+hx

∂
∂ s

(
1

1+hx
∂V
∂ s

)}
dydy .

In this form, the right hand side has the interesting property that, regardless of what function
V is inserted, the parts not depending on y are reproduced exactly, since all integrals introduce
y dependence. Because of the integral operation, for a given choice of x and s and considering
only the y dependence, the right hand side is contracting. In COSY INFINITY [3], the planar
curvilinear Laplace equation is solved by the following very compact code

POLD := P ;
HF := 1+H*DA(IX) ;
HI := 1/HF ;
LOOP I 2 NOC+2 2 ;

P := POLD - INTEG(IY,INTEG(IY,
HI*( DER(IX,HF*DER(IX,P)) + DER(IS,HI*DER(IS,P)) ) )) ;

ENDLOOP ;

Here the boundary condition V |y=0 +
∫ y

0 (∂V/∂y)|y=0 dy is provided through the
incoming form of P, which is obtained using the DA expression in COSY. The DA fixed
point iteration converges to the solution potential P in finitely many steps. DA(IX) represents
the identity for x, NOC is the current transfer map computation order, and DER(I,...) and
INTEG(I,...) correspond to the DA derivative and the DA anti-derivative operations with
respect to the variable specified by the first argument I, namely “∂xI” and “

∫ xI
0 dxI”. The full

3D field is derived from the solution potential P, using the elementary DA derivations ∂x, ∂y
and ∂s. In coded form, we have

BX := DER(IX,P) ;
BY := DER(IY,P) ;
BZ := DER(IS,P) ;

The advantages of the method are:

• Only the field in the midplane is needed
• The resulting field will always satisfy the stationary Maxwell equations
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• The method works to any order

Another important coordinate system often suitable for computations under considera-
tion are the cylindrical coordinates, in which the Laplace equation takes the simple form

�V = 1
r

∂
∂ r

(
r

∂V
∂ r

)
+

1
r2

∂ 2V
∂φ 2 +

∂ 2V
∂ s2 = 0.

If V does not depend on φ , namely V is rotationally symmetric, as in solenoid magnets, the
fixed point form of the Laplace equation is simplified to

V = V |r=0 −
∫ r

0

1
r

∫ r

0
r

∂ 2V
∂ s2 drdr,

and the right hand side is contracting with respect to r. Since we are only interested in cases in
whichV (s,r) is expressed in DA, if ∂ 2V/∂ s2 is nonzero, the integral

∫ r
0 r∂ 2V/∂ s2dr contains

r to a positive power. Thus, the factor 1/r in the outer integral simply lowers the power of r
by one, and the right hand side of the fixed point form can be evaluated in DA without posing
trouble. To perform the DA fixed point iteration for the purpose of obtaining the full potential
V (s,r), one only needs to prepare the on-axis potential expression V (s,r)|r=0 as the boundary
condition.

3. Single coil solenoid elements

We showed in the last section that for solenoid magnets, the DA PDE solver only requires
an analytical expression of the potential on axis. In this section, we provide the on-axis field
and potential of some solenoidal elements in the code COSY INFINITY [3] and discuss their
features. In the following, R is the radius of the coil, R1 and R2 are the inner and outer radii
of the coil if non-zero thickness is considered, I is the current, n is the number of turns per
meter, and the coil extends from s = 0 to s = l. While the on-axis forms are easily obtained,
the out of axis forms can usually not be represented in closed form as they involve elliptic
integrals; thus the ability of the DA PDE solver to generate the power series representation of
the full 3D field to any order is very useful. Once the on-axis field Bz(s) is known, an on-axis
potentialV (s) can be determined viaV (s) =

∫
Bz(s)ds. It is customary to omit the minus sign

known for the electric case for magnetic scalar potential.
The first solenoid element is the current loop, consisting of a thin circular wire of radius

R carrying the current I.
Current loop (COSY element CMR)

Bz,CMR(s) =
µ0I
2R

1[
1+(s/R)2

]3/2
, VCMR(s) =

µ0I
2R

s√
1+(s/R)2

.

The derivation of Bz,CMR(s) can be found in various text books on electromagnetism, for
example, see eq. (5.40) (with θ = 0) in [10].

The next element is a thin coil extending from s = 0 to s = l, made up of a single layer
of thin wire carrying current I with n windings per meter.
Thin solenoid (COSY element CMSI)

Bz,CMSI(s) =
µ0In

2

(
s√

s2+R2
− s− l√

(s− l)2+R2

)
,

VCMSI(s) =
µ0In

2

(√
s2+R2 −

√
(s− l)2+R2

)
.
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Bz,CMSI(s) can be obtained by integrating individual current loops positioned from s = 0 to
s = l as Bz,CMR(s) = n · ∫ l0 Bz,CMR(s− x)dx. Derivations of Bz,CMSI(s) can also be found in
various text books, for example, see problem 5.2 in [10], where cosθ1 = s/

√
s2+R2 and

cosθ2 = −(s− l)/
√
(s− l)2+R2 in our case. It is worth observing that in the middle, we

have

Bz,CMSI (l/2) =
µ0In

2
· l√
(l/2)2+R2

,

and if l� R, the field approaches the expected asymptotic value Bz,CMSI (l/2)→ µ0In.
The next element is a thick coil extending longitudinally from s= 0 to s= l, and radially

from r = R1 to r = R2, wound out of wire with a winding density n and carrying current I.
Thick solenoid (COSY element CMST)

Bz,CMST(s) =
µ0In

2(R2 −R1)


s log


R2+

√
R2

2+ s2

R1+
√
R2

1+ s2


− (s− l) log


R2+

√
R2

2+(s− l)2

R1+
√
R2

1+(s− l)2




 ,

VCMST(s) =
µ0In

4(R2 −R1)


s2 log


R2+

√
R2

2+ s
2

R1+
√
R2

1+ s
2


− (s− l)2 log


R2+

√
R2

2+(s− l)2

R1+
√
R2

1+(s− l)2




+R2

√
R2

2+ s2 −R1

√
R2

1+ s2 −R2

√
R2

2+(s− l)2+R1

√
R2

1+(s− l)2
]
.

The derivation of the field for the thick solenoid is similar in spirit to the derivation of
Bz,CMSI(s). In fact, we have Bz,CMST(s) = 1/(R2 − R1) ·

∫ R2
R1
Bz,CMSI(s,R)dR. The factor

1/(R2 −R1) is necessary to maintain the meaning of n as the number of windings per meter,
i.e. In is the total current per meter. We observe that in the middle of the solenoid, we have

Bz,CMST (l/2) =
µ0In

2(R2 −R1)
l log


R2+

√
R2

2+(l/2)2

R1+
√
R2

1+(l/2)2


 .

If l � R1,R2, the log part in the right hand side of Bz,CMST (l/2) above is approximated as
follows:

log

(
R2+ l/2
R1+ l/2

)
≈ log

[(
1+

2R2

l

)(
1− 2R1

l

)]
≈ log

[
1+

2
l
(R2 −R1)

]
≈ 2
l
(R2 −R1) .

So the field approaches the asymptotic value Bz,CMST(l/2)→ µ0In.
Traditionally, also various other approximate representations of fields have been used

(see for example [11, 12, 13, 14]) that are based on particularly simple forms for the fields
or potentials; of these approximations, we have implemented two. One of them is the Glaser
lens, which is frequently used to approximately describe a lens made of a coil with finite but
short length and finite but small thickness.
Glaser lens (COSY element CML)

Bz,CML(s) =
B0

1+(s/R)2
, VCML(s) = B0Rarctan(s/R) .

The other frequently used approximation is for an extended coil of length l of small
thickness of the form.
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Figure 1. The axial field profile Bz(s) of various COSY solenoid elements. Left: Comparison
between the thin element CMSI, the tanh approximation element CMS, and the thick element
CMST. The length is l =1m. Right: Comparison of different lengths l =0.3m, 1m, 2m, 5m
and 10m for CMST. The (inner) radius is R1 =0.3m. For CMST, the outer radii R2 =0.33m
and R3 =0.5m are compared. The field strength is scaled relative to the asymptotic value µ0In.

Thin solenoid (tanh approximation) (COSY element CMS)

Bz,CMS(s) =
B0

2 tanh(l/2R)
[tanh(s/R)− tanh((s− l)/R)] , Bz,CMS (l/2) = B0.

VCMS(s) =
B0

2 tanh(l/2R)
R [log(cosh(s/R))− log(cosh((s− l)/R))] .

Here the hyperbolic tangents are used as simple approximations for the rise and fall-off of the
field at s= 0 and s= l, respectively.

As the analytical expressions of the on-axis field Bz(s) and the potential V (s) indicate,
the profiles of s-dependence are characterized by the ratio of the length l and the aperture
R. Figure 1 shows the axial field profile Bz(s) of the elements CMSI, CMS, and CMST of
length l =1m with the radius R1 =0.3m and the outer radius R2 =0.33m or R3 =0.5m (Left),
and the field profile of CMST of different lengths l =0.3m, 1m, 2m, 5m and 10m (Right).
The field strength is scaled relative to the asymptotic value µ0In, and B0 for CMS is given by
Bz,CMSI(l/2). As the length study picture shows, many realistic solenoids do not even reach
maximum fields close to the asymptotic value µ0In.

The tanh approximation as in the element CMS is commonly used because the on-axis
field drops more swiftly in the fringe region compared to the pure theoretical fields as CMSI
and CMST, which simplifies the simulation effort. On the other hand, the discrepancy from
the actual field becomes very large particularly for sufficiently thick solenoids, which are
important in practice because of their ability to provide high field strength. Figure 2 shows
the full 3D field distributions Bz(s,r) and Br(s,r) of the thick element CMST of length l =1m
with the radii R1 =0.3m and R2 =0.33m. The full 3D field is derived only from the on-axis
potential V (s) via the DA fixed point PDE solver.

Some matrix elements of fifth order transfer maps of these solenoid elements are listed
below in COSY notation for comparison, showing the differences in the linear and nonlinear
behavior. Similar to before, the length is l =1m, the (inner) radius is R= R1 =0.3m, and the
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Figure 2. The full 3D field distributions Bz(s,r) (Left) and Br(s,r) (Right) of the thick element
CMST (l=1m, R1=0.3m, R2=0.33m) derived only from the on-axis potentialV (s) =

∫
s Bz(s)

using the DA fixed point PDE solver. The field strength is scaled relative to the asymptotic
value µ0In.

outer radii used in CMST are R2 =0.33m and R3 =0.5m. The magnet strength is adjusted to
have µ0In= 1Tesla, and B0 for CMS is scaled to agree with Bz,CMSI(l/2).

CMSI:
x_f a_f y_f b_f xayb

0.7937713 -0.1431056 -0.4573031 0.8243452E-01 1000
0.8436961 0.7938225 -0.4860026 -0.4572141 0100
... ... ... ... ....

-0.4911018E-01-0.4490695 -0.3866000 -0.8418896 0014
0.2409343 -0.6962362E-01 0.1265599 -0.2574890 0005

CMS:
0.8152097 -0.1403695 -0.4257566 0.7331028E-01 1000
0.8629072 0.8152097 -0.4506673 -0.4257566 0100
... ... ... ... ....

-0.2386703E-01-0.3563119 -0.3615158 -0.7512712 0014
0.2331341 -0.5329836E-01 0.1522912 -0.2406150 0005

CMST with R1, R2:
0.7953672 -0.1399478 -0.4582230 0.8061561E-01 1000
0.8446078 0.7954184 -0.4865284 -0.4581341 0100
... ... ... ... ....

-0.4865521E-01-0.3911095 -0.3711714 -0.7356460 0014
0.2426523 -0.5600330E-01 0.1324498 -0.2326217 0005

CMST with R1, R3:
0.8034393 -0.1239508 -0.4628757 0.7140094E-01 1000
0.8494714 0.8034915 -0.4893318 -0.4627851 0100
... ... ... ... ....

-0.4406906E-01-0.2077903 -0.3039852 -0.3947231 0014
0.2456954 -0.1146626E-01 0.1444507 -0.1507266 0005
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The thinner case of CMST with R1 and R2 agrees with the map of CMSI to approximately
two digits. On the other hand, the map of CMS agrees with that of CMSI to approximately
only one digit. This again shows that the tanh approximation element CMS has to be used
with care.

4. Multiple coil solenoids

If a system consists of several solenoids, it is often crucial to be able to treat the whole
solenoidal system as one element with superimposed solenoidal field, because the fringe field
extension is particularly long for solenoids. In this section, we present such an example
from muon beam ionization cooling systems. The example is a 2.75m sFOFO muon beam
ionization cooling cell in Muon Feasibility Study II [4]. There are three coils in the cell,
and the starting position of each coil is 0.175m, 1.21m, and 2.408m. The outer two coils
are 0.167m long with the inner and outer radii 0.33m and 0.505m and the current density is
75.2A/mm2. The middle one is 0.33m long with the radii 0.77m and 0.85m and the current
density 98.25A/mm2 [4]. The pictures in Figure 3 show the coil layout and the superimposed
axial field profile Bz(s) as well as the full 3D field distributions of Bz(s,r) and Br(s,r) that
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Figure 3. The coil layout, the superimposed axial field profile Bz(s), and the full 3D field
distributions of Bz(s,r) and Br(s,r) of a 2.75m sFOFO cell [4]. Bz(s,r) and Br(s,r) are derived
only from the on-axis potential using the DA fixed point PDE solver.
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are obtained via the DA fixed point PDE solver. Since the thickness of coils is very large, the
superimposed field maintains high strength throughout the cell except for the ends of the cell,
where the axial field drops to zero due to the alternating field direction in the preceding and
following cells. In fact, the drop of the axial field to zero simplifies the computation of high
order transfer maps by beginning and ending the computation at a zero crossing of the field,
although of course the original reason for the design need for field flips is to enhance cooling
efficiency [4].

The muon beam cooling cell has accelerating cavities and absorbers situated inside the
solenoids. We can treat such systems with the transfer map in a split operator framework
approach by slicing the cell into short pieces so that the effects of each element can be
superimposed by inserting a short negative drift [5]. For example, the 2.75m sFOFO cell
is sliced into about 80 pieces [5].

5. Vertical solenoidal fields and misalignment

The modern concept of designing beam optical systems is to perform each of the common
tasks of bending, focusing, and nonlinear correction by separate elements; but there are
situations in which this simple concept would lead to significant sacrifices. For example,
the beam optical systems for rare and short-lived particles often require complicated setups
including combined function electromagnetic elements to manipulate the beam efficiently, an
example of which has been provided above. Sometimes misalignment by displacement and
tilts of regular kind of single function elements can achieve the necessary combined fields.
The complication brought by the misalignment has to be studied carefully, because sometimes
it may lead to unexpected beam dynamics.

We show an example using a design of the 60◦ arc cell of a compact muon storage
ring [4]. The cell was designed to achieve a very high degree of compactness using half
overlapping coils as shown in Figure 4. The double layered part has a strong dipole field of
7 Tesla, and the single layered part has a dipole field component of around half that strength.
In addition, the latter region exhibits a skew quadrupole field which is used for focusing
purposes, as well as small high order multipole components introduced mostly because of the
limited horizontal width of the coils. The longitudinal magnet layout produces a longitudinal
field component, breaking midplane symmetry, and the on-axis longitudinal field, in other
words the solenoidal filed, is as strong as 2.2 Tesla; Figure 4 shows the strength as a function
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Figure 4. The longitudinal magnet layout (Left) and the on-axis field profile of solenoidal
field component Bz(s) (Right) of a design of the 60◦ arc cell of a compact muon storage ring
[4].
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of position s. By using the technique discussed in the previous section for superimposed
solenoidal fields, the effects of the solenoidal field of the 60◦ arc cell can be included in the
beam dynamics study.

Due to limitations of space, we refrain from providing details about the results of
simulations of the resulting particle dynamics; various such results are given in [4].

Another interesting example of misalignment is a design of a muon beam cooling
ring using short solenoids with large aperture [15] that are tilted horizontally to deflect the
reference orbit of the beam and overall lead to the possibility of operating without dipoles
[16]. Utilizing the COSY commands for misalignment, it is also possible to analyze such
bending beamlines consisting of only solenoidal elements.
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Experience during the SLS commissioning 

M. Muñoz, M. Böge, J. Chrin, A. Streun 

Paul Scherrer Institut - SLS 

Abstract. During the commissioning and first years of SLS operations we have 

made extensive use of an accelerator machine model. The model is based on a C 

port of the original TRACY-2 Pascal code. This model is connected to the 

applications in the control room through a CORBA interface. This approach has 

facilitated easy integration of the accurate machine model with the operation of 

the machine, and allows us to use the well-tested TRACY-2 procedures online. A 

good example of this approach is the orbit correction system, but several other 

utilities have also been developed. 

1. Description of the SLS 

The Swiss Light Source (SLS) is the most recent of a series of 3rd generation light 
sources to be commissioned [1] and that has come in operation. It is located at the Paul 
Scherrer Institut. The Swiss Government approved the SLS project in September 1997. 

The construction of main building started in June 1998 and the commissioning of the 
machine began in January 2000, and was finished successfully in August 2001. At 
present over 70% of operation time is schedule for user experiments.  

 An initial set of four insertion devices have been installed in the storage ring to cover 
users demands in the range of 10 eV to 40 keV photon energy:  

1. The high field wiggler W61 (5-40 keV), for material science. 

2. The in-vacuum undulator U24 (8.14 keV) for protein crystallography. 
3. The electromagnetic twin undulator UE212 (8-800 eV) for surface and interface 

spectrography. 

4. The Sasaki/APPLE II type twin undulator UE56 (90 eV-3 keV) for surface and 
interface microscopy.  

 The light source consists of a 100 MeV linac, a novel type of full energy booster 

synchrotron, and the main storage ring. The storage ring is a 12 cell TBA, with a 
circumference of 288 m, providing a natural emittance of 5 nm at 2.4 GeV. The current 
mode of operations is 250 mA of stored current in top-up mode, and it is planned to 

switch to 400 mA top-up in the 3rd quarter of 2003. 
 To reach such a successful status, a number of innovative design features and 
subsystem were incorporated in the project: digital power supplies, digital BPM systems, 

advanced booster design, flexible injection system (these last features allows for top-up 
injection as the routine mode of operation). 
 The SLS storage ring consists of 12 Triple-Bend Achromats (TBA with 8 /14 /8  

bends) with six short straight sections of 4 meters, three medium sections of 7 m and 
three long ones of 11 m. Figure 1 shows the optical functions for a 1/6th of the ring. 
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Figure 1. Storage ring optics for a 6th of the ring (L/2-TBA- S-TBA- M/2) 

2. Beam dynamics tools 

During the design and commissioning of the SLS we used and developed tools for 

simulation and operation of the light source. We present a short review of the most 
important ones. 

2.1 OPA 

The basic design tool used at the SLS is the OPA program. Is a TurboPascal code, 
written by A. Streun [2] based on a code developed by the DELTA-group at the 
University of Dortmund. Additional procedures and algorithms were taken from 

TRACY-2 and implemented. In particular, J. Bengtsson added procedures for optimize 
the sextupole configuration in order to reduce non-linear effects. 
 OPA is a very user-friendly program, very useful for start a storage ring design from 

scratch. It provides a clean graphical interface, run in almost any DOS machine and does 
not require a lot of memory (640 kB is enough) or CPU (a 80286 processors is enough). 
In spite of the low requirements, OPA provides good tracking calculation of the optical 

functions and other basic tools with either with a matrix model or a 4th order simplectic 
integrator [5] at a very good speed and accuracy.  
 However the program is not perfect and some features are missing: it does not 

include simulation of errors in the magnetic lattice, does not include skew quadropoles or 
vertical bending magnet nor high order multipolar content in the magnets (only 
sextupoles are simulated) and do not include synchrotron motion (only optics for fixed 

dp<>0 available). Excluding these shortcomings (that are not very important for the 
design of a synchrotron light source), the list of features is very complete and the strength 
of the programs lies in the simplicity and ease of use, the accurate simulation of the 

particle motion (good prediction of dynamic apertures, tune shift with amplitudes and 
others). All this makes OPA a very convenient tool to do the initial design of a light 
source. 

2.2 C-TRACY-2 

The main tracking and simulation tool used at the SLS is a C port of the TRACY-2 code. 
The original TRACY-2 code was written by J. Bengtsson [3], and consisted in a Pascal-S 

interpreter and a set of Pascal routines for simulation. Due to the need to migrate from 
VMS to Linux system, the Pascal source was converted to a C library and the Pascal-S 
interpreter was removed. In that way the original Pascal-S input program is replaced by a 

C main that is then linked with the TRACY-2 library [4]. 
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 The conversion was performed utilizing the GNU p2c and f2c tools. The main work 
was spent on the reorganization of routines and data structures. Most of the routines 

available in the Pascal-S version are still there, although some of them have slightly 
changed parameter lists, and some bugs were corrected. The biggest changes was the 
addition of routines for performing orbit correction using SVD (Singular Value 

Decomposition) tools, that are the base of the Fast Orbit Feedback system for the SLS. 
 The conversion from the limited capabilities of the Pascal-S interpreter to a full-
fledged C-library offers some advantages: the more obvious one is speed in the 

calculations, as we have eliminated the overhead due to the compiler. However, the 
increase of flexibility proved to be most useful one during the commissioning of the 
machine. We were able to interface the TRACY-2 library to the SLS control system 

using CORBA as a middleware. 
 TRACY-2 implements the usual matrix mode calculations or the 4th order Ruth’ 
symplectic integrator [5]. It includes optical function calculations with either method, 

particle tracking with synchrotron radiation and RF cavities, offers a very good 
implementation of magnetic errors and in general includes everything that is required to 
simulate the running of the SLS facility (for example modules for girder motion or the 

routines used for orbit correction in the control room). 
 However the code is not perfect, and some work is still required in some areas. In 
particular a better simulation of the insertion devices is required, and tools for evaluation 

of one-turns maps are missing. 

2.3 The CORBA system 

The high level control system employed at the SLS is EPICS [6] with Linux consoles. A 

detailed description of it can be found in [7]. It became clear very early in the planning of 
the SLS commissioning that it would be very useful to have a machine model integrated 
in the SLS control system. As described with more details in reference the solution chose 

to implement the access to model is based in the CORBA (Common Object Request 
Broker Architecture) system architecture [8]. 

 

Figure 2. Conceptual design of the client-server software components. 

 CORBA is a standard that provides a mechanism for defining interfaces between 

distributed components. Its most distinguished assets are platform independence, in so far 
as the platform hosts a CORBA Object Request Broker (ORB) implementation, and 
language independence, as ensured through the use of the Interface Definition Language 
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(IDL). The latter feature is of particular interest to SLS beam dynamics API developers 
as it provides for the option between high-level application languages, in particular Tcl/tk 

and Java. 
 Figure 2 shows the implementation of the client/server software components. Three 
main components are visible: a database server, to access the SLS Oracle database; the 

CDEV server, which allow high-level applications to access the control system; and the 
TRACY servers. Those ones provide access to the machine model to the diverse high-
level applications.  

 Developing TRACY servers is not a difficult task. Once the functionality has been 
implemented using TRACY-2 and tested off-line, writing a C++ wrapper and integrating 
the CORBA functionality is an easy task. Examples of TRACY serves in use are the 

closed orbit correction system, an optics model for the transfer lines and a tune 
measurement system. 

3. Model/Real machine agreement 

We used the lattice files of TRACY-2 and the measured magnet calibration factors to 
evaluate the required currents of the magnets. We also developed some applications that 
allow us to change the tunes of the machine using the same procedures used in TRACY-2 

(the SLS lattice is a complex one, and to change the tunes in a controlled way it is 
required to adjust all the quadrupoles families). 
Using the theoretical model values, the machine presented a stable orbit at the first 

injection, with only some small adjustements in the tunes. 
1. A vertical tune shift of +0.2, due to TRACY-2 using a wrong model for the edge 

focusing in bending magnets. This produced a distributed reduction of the 

focusing strength. 
2. Some residual beta-beat of up to 15%, due to differences between the individual 

members of a magnet family and the model used for the family. 

3. A discrepancy on the energy of the machine (1% higher that it should be). The 
reason for that is still unclear, but it is probably due to a wrong dipole calibration. 

 More important, the non-linear components (sextupole families) were also set to the 

theoretical values. In the SLS case, eight families of sextupoles are employed to provide 
the required dynamic aperture and energy acceptance required. If the model is not good 
trying to set them to the correct values could be a time consuming and difficult task. In 

our case, the predicted values of the sextupoles provided the model predicted 
chromaticity. Applications to change the chromaticity and the sextupoles settings 
following the predictions of the model were also developed and produced the predicted 

effect. 

3.1 Correcting the beta beat 

An example of the good agreement between the machine model and the reality is the 

measurement and correction of the beta-beat. At the SLS, each one of the 174 
quadrupoles is independently powered by a high-resolution power supply. This allows us 
to measure the beta functions in each of them, using the tune shift associated to a current 

change. This was already a test of the integration between diverse high-level 
applications. 
 After the tune change in function of the current was measured [9] and the beta 

functions in each one evaluated (see ref for more details), the ideal machine model was 
fitted to provide the same perturbation (using only errors in the quadrupoles). This 
provided us with a correction scheme for the beta beat. Figure shows the residual beta-

beat after the first correction. 
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Figure 3. Measured average beta functions (squares) at the location of 174 

quadrupoles in comparison to the model of the unperturbed optics (solid lines). 

4. Conclusions 

The success of the SLS commissioning shows the power of the approach used for 
machine simulation and high level application writing: start with a simple but accurate 
design program; refine the design using the same algorithm used later in commissioning 

with a more powerful and complex tool; and incorporate this tool in the high level 
applications used in the control room. The use of CORBA as the glue between the 
different components in the high level application has probed to be a good idea, allowing 

the writers to choose a language appropriate for the user interface (Java, Tcl/tk) and 
keeping the power of the TRACY-2 C library.  

For more information on the commissioning, check our report collection at our web 

server (http://slsbd.psi.ch/) or contact the author at Marc.Munoz@psi.ch. The web site 
provides also access to the software packages described in this paper. 
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Tracking particles in axisymmetric MICHELLE
models

Eric M. Nelson†§ and John J. Petillo‡
† Los Alamos National Laboratory, MS B259, Los Alamos, NM 87545
‡ SAIC, Suite 130, 20 Burlington Mall Road, Burlington, MA 01803

Abstract. A novel particle tracker for 3d unstructured grids has been developed
and employed in the finite element gun code MICHELLE. The particle tracker has
now been extended to handle 2d planar and axisymmetric models. The unstructured
2d grids may contain triangle and/or quadrilateral elements and the element shapes
may be linear, quadratic or cubic. In this paper we describe the particle tracking
algorithm for axisymmetric models.
The 2d algorithm is similar to the 3d algorithm. A particle’s position is computed

in the enclosing element’s local coordinate system, and the particle’s momentum is
computed in the global coordinate basis. For axisymmetric models we also integrate the
angular velocity to obtain the azimuthal angle. We continue to use the cartesian basis
for the momentum; we do not compute the momentum in the cylindrical coordinate
basis. This provides for acceptable behavior near the axis without any exceptional
treatment, but there is the cost of an additional two or three coordinate transformations
in the equations of motion.
We also demonstrate the importance of scaling the azimuthal step size with the

relative spatial step size when one wants to efficiently improve the accuracy of the
particle tracker.

1. Introduction

MICHELLE [1] is a 3d gun and collector simulation code. A gun code attempts to self-
consistently compute the emission and trajectories of charged particles in an electrostatic
field. The charged particles contribute to the electrostatic field, and the electrostatic
field contributes to the forces acting on the charged particles. One cycle of a gun
code consists of a Poisson solve followed by particle tracking. Charge deposition during
particle tracking provides a source term for the next cycle’s Poisson solve. Ideally, a
self-consistent solution is obtained after a modest number of cycles.

Users requested a 2d version of MICHELLE that includes MICHELLE’s numerous
sophisticated models for particle emission. These models include space-charge-limited
and temperature-limited emission algorithms for electron gun cathodes, and secondary
emission algorithms with material-specific databases for collectors. The users also
requested compatible application-specific preprocessing and postprocessing capabilities.
The development of the 2d version of MICHELLE was thus motivated.

The 2d finite element field solver for Poisson’s equation is typical in many respects.
An unstructured grid of triangular and quadrilateral elements is employed. Unstructured
grids are atypical in gun codes. For example, the popular 2d finite element gun codes
DEMEOS [2] and TRAK [3] rely on structured triangular grids. But unstructured grids
do appear frequently in other applications. The elements’ shape and basis functions may
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be linear, quadratic or cubic. The order of the shape functions for individual elements
is independent of the uniform order of the basis functions, which is another relatively
distinct feature of our finite element field solver.

The particles’ equations of motion are simple and well-behaved in 3d and 2d planar
geometries. In 2d axisymmetric geometries the equations of motion are not so simple
and they are not necessarily well-behaved, particularly near the axis. In this paper we
describe MICHELLE’s 2d axisymmetric particle tracker, its evolution, and our initial
experience with the tracker.

2. The axisymmetric particle tracker

MICHELLE employs a novel algorithm for tracking particles on unstructured grids.
The novel algorithm tracks particles element by element through the unstructured grid,
stopping and then restarting at each element boundary crossing. Within each element
the particles are tracked in the element’s local coordinate system using a Runge-Kutta
integrator. After each step a polynomial representation of the trajectory is constructed
and checked for intersections with the element boundary. The novel algorithm intends
to track particles robustly, rapidly and accurately despite the presence of (1) field
discontinuities at element boundaries and (2) quadratic and higher order element shapes.
The novel algorithm is described in more detail in [1]. Our experience so far with 3d
models suggests the novel algorithm is meeting these expectations and performing very
well.

The novel algorithm tracks particles in the element’s local coordinate system. For
2d problems the local coordinates are (u, v). For axisymmetric models the corresponding
global coordinates are (z, r). The local coordinates are easily mapped to global
coordinates. The tracker also integrates the particle’s angular velocity dφ/dt to obtain
the azimuthal position φ.

Note that the transformation from global coordinates (z, r) to local coordinates
(u, v) is not simple for the higher order element shapes and for general linear
quadrilateral elements. It is only simple for linear triangular elements and special
(e.g., orthogonal) quadrilateral elements. At this time we prefer to avoid such
transformations. This decision excludes, for example, the otherwise attractive Boris
algorithm in cylindrical coordinates [4][5]. However, the Boris algorithm does behave
very nicely near the axis, so perhaps we will reconsider our prohibition on global to local
coordinate transformations and adopt some of the Boris algorithm’s features in a future
version of the code.

The novel particle tracker computes the momentum in the global coordinate
basis. For 2d axisymmetric models there are two viable choices: a cylindrical basis
with momentum components (γβz, γβr, γβφ); or a cartesian basis with momentum
components (γβx, γβy, γβz). Both choices are discussed in the following subsections,
but we ultimately chose the cartesian basis because it behaves better when particles are
near the axis.

2.1. Computing momentum in the cylindrical basis

The initial implementation of the 2d axisymmetric particle tracker computed the
momentum in the cylindrical basis. This was motivated by a desire for speed and a desire
to mitigate possible problems with gridlock. Regarding speed, using the cylindrical basis
instead of the cartesian basis avoids two coordinate transformations. For either basis
the electric field and the particle velocity are computed in the cylindrical basis. For
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the cartesian basis, the electric field must be transformed from the cylindrical to the
cartesian basis, and the particle velocity must be transformed from the cartesian to the
cylindrical basis. The magnetic field, if present, contributes a third transformation when
computing the momentum in the cartesian basis. These are not difficult transformations,
but the individual steps of the particle tracker will be faster without them.

Gridlock [6] occurs when a particle is on the boundary between two elements with
opposing transverse (relative to the shared boundary) forces and negligible transverse
momentum. The consequent numerous element boundary crossings degrade the
performance of the novel particle tracker. The particle can get stuck on the boundary.
A simple element swell algorithm has effectively mitigated any gridlock problems that
have arisen so far. More sophisticated algorithms for mitigating gridlock (which have yet
to be implemented) decompose the momentum into parallel and transverse components.
Computing the momentum in the cylindrical basis facilitates this decomposition.

The relativistic equations of motion for the momentum in the cylindrical basis are

d

dt
(γβz) =

q

mc
(Ez + vrBφ − vφBr) (1)

d

dt
(γβr) =

q

mc
(Er + vφBz − vzBφ) + γβφ

dφ

dt
(2)

d

dt
(γβφ) =

q

mc
(vzBr − vrBz)− γβr

dφ

dt
(3)

where the angular velocity is dφ/dt = vφ/r, and the MKSA system of units is employed.
The second term in equations (2) and (3) makes integration of the equations of

motion difficult for some particles. The angular velocity can by very large and vary
rapidly for particles near the axis. An error-estimating adaptive integrator would be
helpful in such cases, but MICHELLE does not currently employ such integrators.

Two types of behavior arise when the integrator poorly samples the variation of
the angular velocity. In mild cases there will be a large error in the particle’s angle, but
otherwise the momentum is not bad. The momentum is not necessarily bad because
the particle strikes the axis (i.e., the global coordinate r passes through zero) without a
significant change in momentum, at which time the transverse momentum is converted
to a purely outward radial momentum. Any prior angular momentum has disappeared.
This by itself might be okay for some axisymmetric models.

In worse cases, the integrator happens to sample the equations of motion when
the particle is very close to the axis. The angular velocity will be very large, and the
second terms in equations (2) and (3) lead to a large and obviously unphysical change
in the momentum. The particle blasts off radially from the axis with a large transverse
momentum. Note that global (as opposed to adaptive) refinement of the time step
may fix an instance of this egregious behavior, but similiar behavior will likely arise for
another particle in another location. The error does not appear to be bounded by the
time step.

Such flagrant violations of physical law led us to abandon this approach in favor
of computing the momentum in the cartesian basis. It is conceivable that the problems
with computing the momentum in the cylindrical basis can be overcome with a modest
amount of work. Aside from employing an error-estimating adaptive integrator, one can
also switch from the cylindrical basis to the cartesian basis when the particle is in an
element adjacent to the axis. Another fix, which would only address the egregious cases,
is to artificially limit the angular velocity.

Perhaps the MICHELLE development effort will return to this matter in the future,
but for now this initial implementation should be treated as yet another example
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of premature optimization distracting a code development effort. Fortunately, the
distraction was brief.

2.2. Computing momentum in the Cartesian basis

The relativistic equations of motion for the momentum in the cartesian basis are

d

dt
(γβx) =

q

mc
(Er cosφ + vyBz − vzBy) (4)

d

dt
(γβy) =

q

mc
(Er sin φ + vzBx − vxBz) (5)

d

dt
(γβz) =

q

mc
(Ez + vxBy − vyBx) (6)

where the transformation of the transverse electric field has been made explicit. The
transverse field components of the magnetic field must also be transformed from the
cylindrical basis to the cartesian basis,

Bx = Br cosφ − Bφ sin φ (7)

By = Br sin φ+ Bφ cosφ. (8)

The worst case behavior when computing the momentum in the cylindrical basis
does not occur in this case. Sampling an anomalously large angular velocity when a
particle passes close to the axis does not lead to a corresponding anomalously large
momentum error. But the behavior is still not necessarily ideal. There will be an
anomalous but bounded momentum and position error due to the azimuthal angle φ
being an effectively arbitrary number.

The position error, in a 3d sense, will be a fraction of the particle’s radius. This
can be made arbitrarily small by reducing the time step, but it is also bounded by the
radial element size. The momentum error is due to the forces from the transverse fields
being in an arbitrary direction. These forces are bounded, so this error can also be
made arbitrarily small by reducing the time step. The fact that the transverse fields are
typically small near the axis also helps.

When particles strike the axis, the momentum becomes directed radially outward,
by definition, and any prior azimuthal component of momentum disappears. This aspect
of the particle tracker’s behavior is the same whether the momentum is computed in
the cylindrical basis or the cartesian basis.

2.3. Time step selection

The integrator employed in MICHELLE is not an error-estimating adaptive integrator,
but the time step is still chosen to accomodate the particle’s local environment. For
each step the time step is the minumum of (1) a specified maximum time step, (2) the
time step computed from a specified spatial step size relative to the element size, (3)
a specified fraction of the cyclotron period and (4) a specified fraction of the rotation
period about the axis. The last criterion is equivalent to an azimuthal step size, and it
is present only in the axisymmetric case. The first three criteria are present in all three
cases: 3d, 2d planar and 2d axisymmetric. The specified fraction for criterion (4) is the
same as the specified fraction for criterion (3).

We typically reduce the relative spatial step size to improve the accuracy of the
particle tracker. But it is also important to reduce the azimuthal step size when a
particle’s momentum is mostly azimuthal. The difficulty in this case is that the relative
spatial step size only weakly bounds the azimuthal step size. The initial dφ/ds is very
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Figure 1. Convergence of the transit time τ with respect to three different step size
parameters for a test case with a purely azimuthal initial momentum and using a 4th-
order Runge-Kutta integrator with cubic interpolation at element boundary crossings.
Each curve is labeled by the step size parameter and the convergence rate. The
convergence rate is degraded when varying the relative spatial step size ∆s/h alone.
The convergence rate is restored when the azimuthal step size ∆φ scales with ∆s/h.

large, perhaps infinite, so the azimuthal step ∆φ is large even though the relative spatial
step ∆s/h is small. The large azimuthal step degrades the accuracy of the momentum
computation, particularly in the cylindrical basis.

Figure 1 shows some results from a simple non-relativistic parallel plate test case.
A particle starts at the cathode plate with a purely azimuthal momentum and is
accelerated axially in a constant electric field until the particle encounters the outer
radial boundary. There are no field errors induced by the uniform 2 x 2 grid employed
in this test case. The momentum was computed in the cylindrical basis.

The expected convergence rate of the transit time error for the 4th order Runge-
Kutta integrator is not observed when varying only the relative spatial step size; the
slope of the curve is only 2.6, not 4.0. Similarly degraded convergence is observed for
the final position and momentum. The degraded convergence rate does not depend on
the initial azimuthal momentum (assuming its not negligible). Selecting a fixed time
step restores the convergence rate, as does making the azimuthal step size proportional
to the relative spatial step size.

3. Conclusion

We have described the implementation and evolution of the particle tracker employed
in axisymmetric MICHELLE models. The novel particle tracking algorithm for
unstructured grids has been modified for axisymmetric models. The momentum is still
computed in the cartesian basis in order to improve the behavior of particles near the
axis. Some tests revealed the importance of setting the angular step size proportional
to the relative spatial step size.

At this time the particle tracker appears to be acceptable for gun and collector
simulations. However, we are still in the early stages of exercising the MICHELLE
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finite element gun code, particularly the 2d version. We expect the code to continue to
evolve as our experience grows.
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Beam dynamics problems of the muon collaboration:  

-factories and +- - colliders 
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Abstract. We present some of the outstanding beam dynamics problems that are 

being explored by the muon collaboration, which is studying potential uses of 

cooled muons in neutrino factories and muon colliders.  These problems include 

the search for more efficient muon capture and cooling methods, improved 

acceleration options, and more affordable neutrino factory scenarios.  Recent 

progress in ring coolers enables longitudinal cooling and may extend cooling 

performance to the level needed for +- - colliders. 

1. Introduction 

The relatively long lifetimes of muons, coupled with their properties as high-mass 

leptons, make them a candidate for collection, acceleration and storage scenarios in high-
energy physics facilities.  The Muon collaboration is studying these possibilities, initially 
for a future +- - collider [1,2], and more recently for a -factory.  The collider concept 

is displayed in fig. 1, and the -factory concept [3,4] is displayed in fig. 2.  
 The -Factory feasibility studies [3,4] have established that a high-intensity -Factory 
could be built within present technological capabilities, but that its expected cost would 

be a bit larger than the currently limited resources of US high-energy physics.  The key 
high-cost systems are the -capture and rf rotation systems, the beam cooling, and the 
acceleration components.  The present R&D efforts are focussed on developing more 

affordable alternatives and improvements to these systems; improved performance with 
reduced cost would make the facility a leading candidate for the next world high-energy 
physics facility.  

 This R&D requires extensive use of computational accelerator physics (CAP).  These 
efforts are focussed on improving the  collection scenarios, and the cooling 
concepts, as well as developing acceleration scenarios.  Promising approaches in each of 

these areas are developing; for example, ring cooler approaches have demonstrated 
“emittance exchange” required for simultaneous longitudinal and transverse cooling.  
These are discussed below.  Initial experiments on possible target systems and on initial 

cooling systems are in progress and also require CAP support.   

2. Muon production and capture problems 

An R&D priority is the development of an optimal  production and capture system.  Fig. 

3 shows the current muon collaboration baseline design.  It requires a high intensity 
proton source (up to 1014 ~20 GeV protons per pulse, operating at ~15Hz).  Intense 
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proton bunches from this source are sent onto a liquid-metal target, producing a large 
number of ’s which are captured within a strong-focussing (~20T) solenoidal field.  The 

captured ’s decay in the following transport. This design has been developed through 
extensive use of CAP studies, most notably using the particle interaction and production 
code MARS of N. Mokhov et al.,[5] but also using magnet design and target material 

response codes.  Variations on this scenario continue to be studied, searching for lower 
cost and/or higher performance.  Variations in the driver p-beam, different targets (solid 
Cu or C or …), varying capture optics (Li lens, magnetic horns, quads, etc.), and 

differing following -transport systems can be considered and studied, using CAP. 

2.1 -bunching and phase-energy rotation options 

Following initial capture, the muon beams must be matched into the following cooling 

and/or acceleration systems.  The initial step is to reduce the energy spread.  In the 
collider studies [1, 2] this is done by phase-energy rotation using low-frequency rf (~30 
MHz), which is matched into a low-frequency initial cooling system.  For the -factory 

scenarios, [3,4] an induction linac is used to decelerate the high-energy “head” and 
accelerate the low-energy “tail” of a muon bunch, obtaining a long bunch (~30-100m) 
with small energy spread (~10MeV).  This is trapped into a train of 200 MHz bunches, 

which is then injected into a 200 MHz cooling system.  (~200 MHz rf systems may be an 
optimum in cost and acceptance for cooling.)  Both of these methods require 
development and construction of large and expensive novel acceleration systems, with 

gradients and total voltages substantially larger than currently available.  
 More recently, a variant capture and phase-energy rotation system using only 
~200MHz rf has been proposed.[6]  In this variant, the muons first drift, lengthening into 

a long bunch with a high-energy “head” and a low-energy “tail”.  Then, the beam is 
transported thtough an “adiabatic buncher”, a section of rf cavities that gradually increase 
in gradient and decrease in frequency (from ~300 to ~200MHz).  The rf wavelength is 

fixed by requiring that reference particles at fixed energies remain separated by an integer 
number of wavelengths.  This forms the beam into a string of bunches of differing 
energies (see fig. 4). Following the buncher, the beam is transported through a high-

gradient fixed-frequency (or slightly varying) rf section that aligns the bunches to 
(nearly) equal central energies, suitable for injection into a fixed-frequency ~200 MHz 
cooling system. 

 This high-frequency bunching and phase-energy rotation uses present technology and 
should be much more affordable than low frequency options.  Much more simulation and 
optimization study is needed to determine whether it traps sufficient useable muons for 

cooling and acceleration.[7]   Complete, realistic simulations for a neutrino factory have 
not yet been performed. 

3. Muon cooling challenges 

The muon bunches must then be compressed in size to fit within the neutrino factory 
acceleration and storage systems. This requires beam cooling, and the cooling and 
acceleration must occur within a fraction of a muon lifetime. (More cooling would be 

required for a high-luminosity +- - Collider.)  The cooling method that can be fast 
enough is “ionization cooling.”[8,9]  In ionization cooling the muons pass through a 
material medium, losing both transverse and longitudinal momentum, followed by 

reacceleration in rf cavities, regaining longitudinal momentum.  The net effect is loss of 
transverse momentum, obtaining transverse cooling.  (Energy loss in wedges at nonzero 
dispersion can add longitudinal cooling.)  Configurations for cooling have been 

developed by the muon collaboration; they require high-gradient rf as well as strong 
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focusing.  A particular configuration that has been developed is a “FOFO” cell which 
relies on high-field solenoids for focusing, and places the cell tunes between resonances 

to obtain focusing over a broad energy range.[10]  

3.1 Simulation tools for muon cooling 

Detailed simulation is required for the verification and optimization of possible cooling 

systems, and these systems present many novel features for simulation codes. The 
optimum  cooling energy is ~200 MeV (   2 3) so the dynamics is neither 
nonrelativistic nor fully relativistic. Also the ’s have large transverse momenta, and 

nonparaxial motion must be considered.  Ionization cooling requires energy loss in 
materials; simulation codes must include the full complexities of particle-material 
interactions (multiple scattering, energy-loss straggling, correlations, etc.).  Strong 

focusing to small beam sizes and high-gradient reacceleration are required; simulations 
must include all nonlinear field effects due to realistic rf cavities, solenoidal fields, quad, 
dipole and fringe fields, etc.  All kinematic effects must be included, including x-y 

coupling and angular momentum effects of solenoidal fields, and chromatic effects from 
large-momentum spreads.     
 New simulation codes have been developed, and other codes have been adapted to 

simulate ionization cooling.  These include: 
a. ICOOL, a new simulation code developed by R. Fernow and collaborators.[11] 
b. Geant4, based on particle in matter and fields simulations for particle physics 

detectors.[12] 
c. COSY, a general purpose beam dynamics code that can use its flexible 

framework to encompass cooling problems.[13] 

Other single user simulations have also been used, as well as analytical models.[14]   
 A critical need is for simulations that can vary parameters within the cooling systems 
to develop optima; COSY, in particular, has significant capabilities for this application.  

3.2 Ring coolers 

An important problem for cooling is the development of systems that can obtain 
longitudinal as well as transverse cooling.  These systems require dispersion with wedge 

absorbers to cause higher energy particles to lose more energy than lower energy 
particles, and effectively combining this with the transverse cooling has been a challenge. 
 Recently, a number of approaches using a “ring cooler” type of design[15-20] have 

been developed and studied in CAP simulations.  Fig. 5 shows a particular ring 
cooler[17] and simulation results from another case[19].  The ring coolers are designed 
for multiturn cooling and can cool both transversely and longitudinally by up to a factor 

of ten in each of the 3 dimensions.  Detailed simulations, including accurate modelling of 
dipoles, fringe fields and wedge absorbers are needed to confirm these designs. 
 These designs are a large step toward the goal of achieving the cooling needed for a 

collider.[20]  The multiturn cooling systems could also be much more affordable than the 
single pass systems used in the -factory feasibility studies. 

4. Acceleration scenarios and variations 

4.1 Recirculating linac acceleration 

The baseline schemes for the -factory and +- - colliders use recirculating linacs 
(RLAs) as the primary engines for muon acceleration.  In a RLA, the beam is transported 

through a linac for multiple turns of acceleration, with a separate return transport for each 
turn.  The simulation program OPTIM was used to develop the most recent -Factory 
scenario.[21]  In the present -Factory scenarios, only ~4 turns of recirculating 



244

acceleration are included and each of the recirculating transports requires relatively large 
apertures to accept the very large -beams.   While less expensive than a single linac, the 

acceleration is somewhat more expensive than desired; cost reduction is desired 

4.2 FFAG acceleration scenarios 

Mori et al. have suggested using fixed-field alternating gradient (FFAG) accelerators for 

a -factory.[22]  In an FFAG the beam is accelerated over the full energy gain within a 
single fixed magnetic field transport, avoiding the multiple return arcs an the RLA.  A 
critical problem is to maintain synchronous acceleration over many turns; low-frequency 

or multiharmonic rf may be needed.  Typical systems use ~10 turns of acceleration. 

4.3 Very rapid cycling synchrotron scenarios 

More recently, an accelerator scenario using a very-rapid-cycling synchrotron (VRCS) to 

accelerate muons from 4 to 20 GeV has been proposed.[23]  In a VRCS the magnetic 
field is ramped as the -energy increases.  The critical constraint here is that acceleration 
must be completed before  decay.  For the reference case, acceleration requires 35 s or 

12 turns of a 900m circumference VRCS ring.  Beam dynamic studies are needed to 
determine if particle stability is maintained (longitudinal and transverse) through the 
acceleration.  Critical problems exist in developing the fast ramping magnets.  The VRCS 

concept should be somewhat easier in higher-energy acceleration; the acceleration time 
can be increased as the muon lifetime increases.  
 All of these acceleration alternatives require substantial computational physics for 

verification, optimization and development.  Improved alternatives may result from these 
studies.  

5. Experimental studies and support 

The Muon collaboration has initiated experimental studies.[24]  At BNL and CERN 
studies of liquid metal (Hg) jet targets have begun, and at BNL liquid jet target 
interactions with a high-intensity proton beam have been studied. At Fermilab, rf studies 

of high-gradient cavities for -cooling have proceeded.  Design, construction and tests of 
liquid hydrogen cooling absorbers are in progress.  Internationally, a collaboration for an 
international cooling experiment (MICE) based at the Rutherford Appleton Laboratories-

ISIS  beam line has been formed, with plans to transport and track beam through typical 
cooling segments (see Fig. 6) and to compare measured with predicted cooling 
performance.[25]   These initiatives need substantial CAP support and development, both 

in component design and complete system optimization. 

6. Discussion and future directions 

We have presented some of the critical R&D challenges of the muon collaboration, 

particularly in muon targetry, capture, cooling, and acceleration.  Many other challenges 
have not been described here; for example, the design of the -storage ring for the -
factory and the collider ring for a +- - collider.  Also, the best future applications for 

stored muons will depend on the currently developing status of particle physics.  Many 
opportunities for computational accelerator physics applications exist within the present  
R&D, and computational physics initiatives can lead to dramatic changes and 

improvements in this program.  Some of that research is presented in this conference in 
papers from M. Berz, D. Elvira, D, Errede, Y. Fukui, C. Johnstone, C. Maidana, K. 
Makino, P. Stoltz, and others [26]. 
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Figure 1.  A schematic view of a +- - collider facility, showing a high-intensity proton source 

which would produce pions.   decay produces ’s which are cooled to collider intensities, and 

accelerated.  Counterrotating + and - bunches are inserted into a storage ring for high-

luminosity collisions. 

 
 
  

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 2.  A schematic view of a -storage ring -factory.  A proton driver produces ’s which 

are cooled and accelerated to 20 GeV and inserted in a storage ring.  -decay ( e +  + e
*) in 

the storage ring straight section provides collimated electron and muon neutrino beams suitable 

for long baseline oscillation experiments.   
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Figure 3.  Possible target and initial capture system.  A high intensity proton beam hits a liquid 

metal target inside a high-field solenoid, capturing ’s which are focussed into a lower field 

solenoidal transport system for  +  decay; the ’s are captured and cooled. 
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Figure 4.  “High-frequency” buncher and phase rotation consisting of a ~100m drift followed by 

a ~ 60m “buncher” in which the beam is transported through a 300-200 MHz rf system which 

forms the beam into a string of bunches, which are then aligned in energy by a ~200 MHz high-

gradient rf system ( - E rotator).  The lower left figure shows simulation results of beam at the 

end of the buncher and the lower right shows beam at the end of the - E rotator. 
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Figure 5.  On the left a 4-sided “ring cooler” is displayed.[from ref. 17].  On the right simulation 

results from a (different) 12-sided ring cooler [from ref. 19], are shown, with the simulations 

showing reduction of transverse emittances by a factor of 5.7 and of longitudinal emittance by a 

factor of  9 after ~10 turns.  

 
 
 

 
 
 
 
Figure 6.  Overview of a cooling cell (engineering design), such as may be used in the MICE 

experiment as a prototype for a -Factory cooling system.  The cell includes rf cavities, magnetic 
focusing coils, and hydrogen absorbers. 
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Simulation of electron cloud multipacting in solenoidal 

magnetic field*

A. Novokhatski
**

 and J. Seeman

Stanford Linear Accelerator Center, Stanford University, CA 94309

Abstract. A simulation algorithm is based on a numerical solution of the Vlasov 

equation for the distribution function of electron cloud density in a cylinderical 

vacuum chamber with solenoidal magnetic field. Algorithm takes into 

consideration space charge effects. This approach considerably improves the 

simulation of multipacting effects thanks to a better approximation of the 

secondary emission mechanism. Simulation studies were carried for the SLAC 

B-factory vacuum chamber for different bunch patterns and solenoidal field. 

Space charge and the magnetic field limit the maximum density of the electron 

cloud.  Magnetic resonant damping of multipacting was found in special cases of 

positron beam parameters and magnetic field amplitude. 

1. Introduction 

The electron cloud at PEP-II in the low-energy positron ring is built up from multipacting 

electrons in the straight section vacuum chamber and secondary emission of electrons 
from the vacuum antechamber in the arcs.  Placing solenoidal magnetic fields around the 
ring successfully reduced multipacting and damped the electron cloud instability [1]. 

PEP-II has an upgrade plan that is leading toward higher luminosity by doubling the 
number of bunches and decreasing the spacing between bunches by a factor of 2 [2]. 
Here we describe the attempt to understand the possible effect from a new bunch pattern 

on electron cloud multipacting using the results of a computer simulation.  

2. The model of electron cloud 

The physical picture of the multipacting process leads us to use the phase distribution 

function for the best description of the electron cloud and for a precise modelling of 
secondary electron emission. It is worth noting that the usual approach of particle 
tracking can not accurately describe the secondary electron yield, as a lot of particles just 

needed for satifyring the boundary condition. The energy distribution of electrons which 
are emitted from a surface bombarded with primary electrons has a narrow peak of order 
5 eV for “true’” secondary electrons, on the other hand, more over to have secondary 

emission yield more than one electron, the primary electrons must have tens or even 
hundreds of electron volts. This means the emitted electrons have to be accelerated by the 
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field of positron bunches up to these energies in order to build up the multipacting 
process. In this way the initial angular distribution of emitted electrons does not play any 

considerable role, as the force vector from a positron bunch determines the vector of 
electron momentum. Without multipacting the number of primary electrons, coming 
from photoemission is not enough to create a considerable back action on the positrons.  

In the straight sections of PEP-II the vacuum chamber is round and made from stainless 
steel. When a positron bunch is moving along the axis of a round tube it's electric field is 
radial and it also gives a radial kick to the cloud electrons. If the surface of the tube wall 

is azimuthally homogeneous (secondary emission yield is the same everywhere), then we 
can imagine that the electron cloud will also be azimuthally homogeneous. This means 
that we need only a two-dimension phase distribution function of radius and radial 

velocity for a complete description of the electron cloud in a straight section. 

3. Vlasov equation and electromagnetic forces 

The phase distribution function describes the density of the electron cloud on the 

phase plane of radius and radial momentum (velocity), as shown in Fig. 1. 

),( Vr

 

Figure 1. Phase distribution function on the phase plane of radius and radial momentum 

This function obeys the Vlasov equation 
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where is the force acting on an electron from a positron bunch field, solenoidal 
magnetic field and electric field of other electrons (space charge force), is the mass of 

an electron. Electric field of a positron bunch of the Gaussian shape is 
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where  is the positron current per one bunch, bunchI  is the positron bunch length, revf  

is the revolution frequency of particles in the positron ring and 0 120  OhmZ . The radial 

force from a solenoid is 
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2 2
0r ( ) ( )const a . The space charge field has radial and longitudinal 

components. In the case of periodic series of positron bunches, when 
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electron cloud current. 
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Using these formulas it is very easy to estimate the acceleration (energy gain) of the 
cloud electrons from a kick of a positron bunch 
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and the average electron cloud density 
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The spacing between positron bunches is equal to RF wavelength RF multiplied by the 

spacing number .  N

For typical PEP-II parameters:  

2 , 136 , 47.5 , 63 , 2bunch rev RFI mA f kHz a mm cm N  

we have the following estimations:  
eVW 2.30           13 32.06 10n m . 

This means that an accelerated electron after returning back to the wall can produce more 

secondary particles (according to the secondary emission yield curve, presented in Fig.2). 
Saturated cloud density is of the order of the of residual gas density in the vacuum 
chamber ( ).  9~ 10 Torrp

 

4. Computer algorithm 

A double-step semi-implicit finite-difference scheme with a diffusion parameter  is to 

model a numerical solution of the Vlasov equation  
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This scheme has a very good dispersion relation 
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Wave vector is linear with frequency Vk  in the region up to half the mesh-size 

frequency. Small value of the diffusion parameter 0.005  being needed to compensate 

oscillations at the mesh-size frequency. 
Boundary conditions are described by secondary electron emission probability 
functions ( , )in outP  

 ( ) ( )  ( ,in in out out in outr a V r a V P )  

The probability function is a combination of secondary emission yield and a spectrum of 
secondary electrons. Experimental data is used for this function specification. 
The code was written in Fortran 90 using graphical library “Array Viewer”.  A typical 
number of mesh points is 500*500. Typical computer time (1GHz PC) for a 1 sec  

mulpacting process is 12 hours. 

5.  Secondary emission functions 

Secondary emission yield for stainless steel, as a function of the energy of the primary 
electron is presented in Fig2 
 

 

Figure 2. Secondary electron emission yield. 

The measurements were done at SLAC by R.E.Kirby [3,4]. The smaller yield curve 
shows the reduction of the secondary emission yield with conditioning. We can suggest 
that the real yield is somewhere between this curves, however in simulations we take 
usually use the worst case. Approximation curves used in simulations are also shown. We 
extrapolate to zero yield for zero energy of the primary electrons.  
The energy spectrum of the secondary electrons includes inelastically backscattered and 
elastically reflected electrons [5]. We use R.E.Kirby results of the spectrum measurement 
for two primary electron energies (Fig.3) to extrapolate spectrums to other energies. 
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Figure 3. Normalized spectrum of secondary electrons for normal incident primary 
electrons of 300eV and 1100eV from clean stainless steel.  

6. Multipacting at small solenoidal fields 

First simulations were carried for small values of a solenoidal field to study the growth 
rates of cloud density due to multipacting. We start with some initial distribution of 

electrons then let positron bunches appear periodically in time and watch how the 
electron cloud density changes in time. Fig.4 shows the dynamics of cloud density with a 
positron train of a bunch spacing by 2 and bunch current of 2mA for different values of 

solenoidal field. Logarithm functions of density are shown on the right side together with 
linear approximations. At the beginning, the density increases exponentially, but 
saturates due to the action of space charge forces. Higher solenoidal fields not only 

decrease the growth rate, but also change the growth function from pure exponential to a 
square root dependance of time. 

 

Figure 4. Dynamics of electron cloud density for different values of solenoidal field. 
Logarithm functions of density are shown on the right side.  
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Electron cloud distribution on the phase plane (image plot) is shown on Fig.5. Particles 
travel from chamber axis to the wall in the upper half part of the plot and from the wall to 

the axis in the lower half part. In the phase plot, radial momentum is measured in 
equivalent of electron volts. The radial distribution is shown in the right part of Fig.5. 
The picture shows the cloud at the moment between two positron bunches. Solenoidal 

magnetic field is 8G. It is possible to see that the cloud comprises five secondary 
bunches. 

 

Figure 5. Electron cloud on the phase plane. Light blue line depicts zero velocity line. 
Arrows show the directions of particle motions. Radial cloud distribution is on the right. 

7. Main resonance 

While studying the behaviour of the electron cloud for different solenoidal fields we 
found a strong resonance. This resonance happens when the time interval between the 
positron bunches is equal to the flight time of the secondary particles back to wall. The 
flight time is mainly determined by the solenoidal field and partially by the cloud size 
and intensity. Naturally the resonance depends strongly upon the secondary emission 
function. The resonance is the boundary between completely different behaviours of the 
electron cloud. Multipacting happens when the flight time is a little bit smaller than the 
positron time interval; when the solenoidal field is a little bit higher than the resonance 
field . And there is no multipacting if 

H

resH H resH H . Fig.6 demonstrates this effect. 

A difference of the solenoidal field of only 1 Gauss completely changes the behaviour of 
the cloud. 

 
Figure 6. Cloud density behaviour in the resonance region.  
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Corresponding phase photos (high plots) of the clouds are shown at Fig.7. Clouds are 
“shot” just before positron bunch arrives. 

 

Figure 7. Electron clouds on the phase plane just before a positron bunch arrives. The 
left picture is for a solenoidal filed H= 37G and the right picture for H=38G. The light 
blue lines depict the zero velocity line. 

Secondary particles, previously produced by high-energy particles are ready to be 
accelerated by the next positron bunch. After acceleration they will come back to the wall 
and produce more new particles. It is possible to see that “right” cloud mainly consists of 

secondary particles. However “left” cloud has additional high-energy peak, which will be 
decelerated by positron bunch and will arrive at the wall with very little energy and hence 
will not produce new secondary particles. Therefore the density will go down and finally 

“left” cloud will waste away. 

8. Other resonances 

We can assume that there can be some other resonances. A resonance can also happen if 

the flight time of the secondary particle is equal to an integer number of time intervals 
between positron bunches.  

 

Figure 8. Electron cloud saturated density and growth/damping rates as a function of 
the solenoidal field for a positron train with a bunch spacing by 2. 
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These resonances happen at smaller values of solenoidal field. In our case we have a 
second resonance at the solenoidal field of 23G. Other resonances are in the region below 

10 G. Fig.8 shows the saturated values of the electron cloud as a function of the 
solenoidal field and growth/damping rates. Negative values mean that the cloud wastes 
away after some time. There is no multipacting when solenoidal field is more than 60 G.  

Clear regions are also in the gap of 26-36 G and 14-22 G. 
 

 

Figure 9. Electron cloud saturated density and growth/damping rates for a positron 
train with bunch spacing by 4. 

For comparison with Fig.9 we present analog curves for the electron clouds with a 
positron train with spacing by 4. The main resonance is moved to 16 G, other resonances 
are in the region below 8 G. No multipacting after 30 G and in the gap 8-15 G. It is 

interesting to note that in the region of 39 G there is a jump in the damping rate. It is 
possible to suggest that it is a half integer resonance: the forced frequency from the field 
of positron bunches is two times smaller than the repetition rate of the secondary electron 

emission. 
 

 

Figure 10. Electron cloud saturated density and growth/damping rates for a positron 
train with bunch spacing by 3. 
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In the intermediate case when the positron bunch train has a spacing of 3 RF buckets the 
resonance value for solenoidal field is 25 G and zones with no multipacting after 40 G 

and between 10-24 G. Half integer resonance is in the region of 53 G (Fig.10). 
 

9. Longitudinal electron cloud field 

In order to build electron cloud, positron bunches have to use some amount of their 
kinetic energy. The field, which is responsible for the energy transformation, is 
longitudinal electric field. When the cloud is already built, this longitudinal field acts as 

an oscillating force on the cloud electrons and gives, at the same time, an additional 
energy variation inside the positron bunches. The head of the positron bunch is 
accelerated and the tail is decelerated. This action of the longitudinal field is similar to 

the action of RF fields in a cavity. As a result the positron bunches will have different 
lengths throughout the train. This effect can be checked in experiment. Fig. 11 shows a 
longitudinal field together with the positron bunch shape. The solenoidal field is 38G, 

bunch spacing is two RF buckets. The energy variation along a positron bunch is more 
than 100 V on 1 m of vacuum chamber. The total length of all straight sections in the 
positron storage ring is around 740 m, so the total effect of the electron cloud can be of 

order of 74 kV, which is equivalent to 185 kV of RF voltage at 476 MHz. It is easy to 
make an analytical estimation for this effect. The additional variation of energy in a 
positron bunch for one meter of vacuum chamber due to the electron cloud is 
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This formula gives the same result, as we got from the computer simulations.  
 

 

Figure 11.  Longitudinal electric field in electron cloud. Solenoidal field is 38 G, bunch 
spacing is two RF buckets. 

10. Conclusions 

Computer simulations show that increasing the number of positron bunches by a factor of 
two and keeping the same current per bunch means that the solenoidal field needs to be 
doubled in order to keep the same electron cloud density. Currently PEP-II solenoids in 

streight sections have neaby 30 gauss [1],  so we need to increase the field up to 60 
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gauss.  Fortunately there are regions that are “free of multipacting” at smaller values of 
solenoidal field where the electron cloud density can not get very high. This prediction of 

low cloud density can be checked in experiment. 
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RF heating in the PEP-II B-factory vertex bellows 

A. Novokhatski, S. Weathersby 

Stanford Linear Accelerator Center, Stanford University, CA 94309 

Abstract. A study of RF modes is carried out for the complicated geometry of 

the shielded vertex bellows near the IP region of the PEP-II B-factory. 

Calculations indicate several monopole, dipole and quadrupole modes can exist 

in the bellows structure near the experimentally observed frequency region of 5 

GHz. The observed modes are correlated to the bellows heating and are excited 

by both electron and positron beams. These modes can heat the bellows by 

coupling through the RF shield fingers.  

1. Introduction 

The PEP-II B-Factory collides 1.7 A of 3 GeV positrons with 1.0 A of 10 GeV electrons, 
in trains of several hundred bunches. The bunch length is 1.3 cm. Within the BaBar 
detector near the IP, where the two beams share a common vacuum chamber, anomalous 
heating is observed at thermocouples situated on a shielded bellows structure at the 
juncture of a beryllium beam pipe with a copper vacuum chamber. The heating is 
determined to be due to higher order modes [1]. A signal from a nearby BPM was used to 
measure the spectrum of the fields excited by the beams. These observations reveal 
several high Q modes correlated with the bellows temperature. Computer calculations in 
2D and 3D with the MAFIA [2] program have found eigenmodes which can exist in the 
bellows structure near the observed frequencies. Further calculations are performed 
modeling the vacuum chamber and bellows together in 3D as coupled cavities from 
which coupling parameters are obtained for the dipole and quadrupole modes. From the 
coupling parameters and the loss factor for the beam chamber an estimation of the power 
dissipated in the bellows can be made. This study complements and extends the 
pioneering work carried out by Stan Ecklund et al. [1] during the last physics run. 

2. The bellows structure 

Figure 1 gives an overview of the bellows area. Positrons are incident from the left, 
electrons from the right. The IP is located roughly 20 cm to the right of the bellows. The 
bellows are shielded from the beam chamber by a series of 16 metal fingers azimuthally 
separated by gaps or slots. The variations in the beam pipe vertical cross section couple 
the beam field and high order transverse modes. It is the transverse modes which are 
expected to couple into the bellows through slots between the fingers. The slots are made 
to vary in length from 10 to 13 mm in response to thermal expansion and contraction of 
surrounding structures. During a recent maintenence period the vertex chamber was 
extracted from the BaBar detector and the slots were found to be fully extended at 13 
mm.  
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Figure 1. Bellows structure and vacuum chamber showing synchrotron masks and 
site of thermocouple with high temperature readings. 

 

Figure 2. FFT of a gated oscilloscope BPM button signal in the gap between trains. 

The circled peaks show amplitude correlation with the thermocouple temperature. 

 

3. Spectrum measurements 

The colliding bunch trains have an intervening gap of about 350 ns required for the ramp-
up of an abort kicker and the clearing of ions for the electron ring. A beam position 
monitor button electrode located 50 cm from the bellows provides a signal to a HP54120 
high frequency oscilloscope and a R&S gated spectrum analyzer. The signal is gated in 
time to coincide with the gap where no beam is present. An FFT of the oscilloscope 
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signals is shown in figure 2. To calculate the equivalent Q-factor the amplitudes are 
measured in small time windows at the beginning and the end of the gap. 

The same spectrum was also observed with the gated spectrum analyzer. Within a forest 

of peaks in the 5 GHz region several modes are identified as having amplitudes 
correlated with the bellows temperature. The amount of thermal power dissipated in the 
bellow vs. time was calculated from the temperature data. In figure 3 this calculation is 

compared with the amplitude of one of the peaks. 

 

 

Figure 3. Estimated thermal power (pink) from thermocouple data and measured 
peak amplitude (blue) of a 5.6 GHz mode vs. time.  

The figure includes data from a beam abort in which one of the beams was lost followed 
by a subsequent loss of the remaining beam. The slow rise after the beam loss reflects 
filling the rings back to nominal currents. The data indicate contributions from both 
beams to the heating and mode power.  

4.  A simple 3D coaxial model of the bellows 

To understand the structure of possible RF modes in the bellow cavity we start with a 
simple model of a coaxial cavity with a rather large inner conductor. The effect of the 
vacuum chamber and slots as well as the bellows convolutions are ignored. Eigenmodes 
of such a structure are easily visualized using MAFIA. The cavity has an inner and outer 
radius of 26.5 cm and 29.6 cm respectively and a length 22.3 cm. The field patterns in the 
bellows cavity identify the modes as monopole, dipole and quadrupole according to the 
azimuthal variation period. In figure 4 the length of the cavity is exaggerated to illustrate 
the field patterns more clearly for the dipole case. 
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Figure 4. Electric and magnetic fields of the dipole eigenmode for the 3D coaxial 
model of the bellows given by MAFIA. The length of the cavity is exaggerated to 
illustrate the field patterns. 

In the monopole case the magnetic field lines are exclusively azimuthal. For the dipole 
case the magnetic field shows two areas of circulation around the electric field nodes and 
assume mainly longitudinal directions near the electric field anti-nodes. We expect the 
wall currents and therefore the heating to exhibit this pattern. The quadrupole mode 
exhibits the same features. 

5. Detailed 2D results 

Two dimensional eigenmode calculations for the bellows cavity with more detailed 
geometry finds dipole and quadrupole frequencies shown in table 1. The monopole 
frequency is computed using a proprietary code NOVO [4]. Dipole and quadrupole 
modes are obtained with MAFIA. The fingers and beam chamber are not modeled in this 
calculation. The magnetic field energy density for the monopole, dipole and quadrupole 

modes integrated over the azimuthal angle  are shown in figures 5-7. There is high 
energy density at the bottom of the bellows convolutions for the dipole and quadrupole 
case. This magnetic energy density corresponds to large longitudinal magnetic flux. 

The azimuthal variation of the magnetic fields have the same characteristics as the simple 
coaxial cavity model discussed above. In figures 8 and 9 the dipole magnetic fields are 

plotted for two different azimuthal planes: =0 and = /2. At =0 the magnetic field is 

azimuthal while at = /2 the magnetic field lines have a longitudinal return path mainly 
along the bottom of the bellows. 

Table 1.  Eigenmode frequencies for the 2D bellows cavity. The monopole mode 
was calculated with the proprietary code NOVO [4]. 

4.74 GHz Monopole 
 5.46 GHz Dipole 
 6.19 GHz Quadrupole 
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Figure 5. Monopole 4.75 GHz magnetic energy density. 

 

Figure 6. Dipole 5.46 GHz magnetic energy density. 
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Figure 7. Quadrupole 6.19 GHz magnetic energy density. The scale is truncated at 
the high end to enhance the density pattern in the hot spots. 

 

Figure 8. Dipole mode magnetic field at =0 is azimuthal. 
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Figure 9. Dipole mode magnetic field at = /2 is mainly longitudinal. 

6. Coupling studies 

So far we have determined the existence of modes in the bellows cavity which are likely 
responsible for the observed heating. To examine a possible excitation mechanism we 
now construct an inner beam cavity with slots in its outer walls linking the outer bellows 
cavity in its simple coaxial configuration. The evolution of a particular mode in each 
cavity is observed as the longitudinal dimension of the beam cavity is varied. The 
bellows cavity dimensions are held fixed in these studies. Furthermore, the slots are kept 
at the center of the longitudinal dimension of the beam cavity, to minimize the effect of 
the cavity walls. This construction is shown in figure 10. 

 

Figure 10. Geometry for the dipole coupling studies showing the beam cavity, 
bellows cavity and slots. Only half of this geometry is used in the quadrupole studies. 
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Within the regime where no coupling is present, the bellows cavity frequency remains 
constant while the beam cavity frequency changes with the change in length. If there is 
no coupling, the change in the beam cavity frequency will have no effect on the fixed 
frequency of the bellows cavity. If there is coupling, one expects a shift in the bellows 
cavity frequency as the beam cavity frequency approaches the bellows cavity frequency. 
The closest approach of the two frequencies yields the degree of coupling. The larger the 

closest approach, the larger the coupling. We give the coupling  as the minimum 
frequency separation over the average frequency. 

6.1  Boundary considerations 

Symmetry is used to keep computational costs low. The longitudinal boundaries are 
considered to be conductive endplates. For the quadrupole mode only 1/8th of the 
structure is necessary in the azimuthal dimension. The azimuthal boundaries are electric 

at =0 and magnetic at = /4. The dipole simulation requires 1/4th of the geometry with 
the same boundary conditions. The electric field for a beam cavity quadrupole mode 
computed with MAFIA is shown in figure 11. 

 

Figure 11. Quadrupole electric field for the beam cavity computed with MAFIA. 

6.2  Quadrupole coupling 

For a given slot size, frequencies of the quadrupole mode for both cavities and their 
difference are plotted as a function of beam cavity length in figure 12. As the chamber 
length is decreased from –4 mm, the upper bellows mode which is constant outside the 
coupling region begins to shift as the lower cavity frequency nears. A non-zero minimum 
difference in frequency of 229 MHz indicates the degree of coupling for the quadrupole 

modes. We give the quadrupole coupling  as the percent of the minimum frequency 
separation to the average mode frequency which is roughly 2% for this case. 
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Monopole mode coupling is not considered since the magnetic field lines are purely 
azimuthal, however, if the beam axis and the cavity axis are not parallel, a longitudinal 
coupling component will be introduced.   

To extrapolate, we investigate coupling for different slot widths. The minimum 
frequency separation as a function of slot size for the quadrupole modes is shown in 
figure 13, where the horizontal axis is the fractional width of the real slot width of  .81 
mm. The data is fitted with an analytic expression derived from electric and magnetic 
polarizabilities of small apertures [3] which is given in terms of slot width w and length l 
and proportional to 

 
1)/4ln(

1

wl
. 

Both the data and fit are fairly linear and flat in the region of interest. Practically 
speaking, reduction of coupling for the quadrupole modes by narrowing the slots is not 
feasible. 

 

 

 

 Figure 12. Quadrupole mode frequency for the beam and bellows cavities and their 
difference as a function of beam cavity length for a slot width of 0.81 mm. The 
minimum separation is 229 MHz. 
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Figure 13. Minimum mode separation vs. fractional slot width. The data is fit to an 
analytic expression derived from the polarizability of small apertures. 

6.3 Dipole coupling 

Figure 14 is a plot of the dipole field in the beam chamber and bellows cavity obtained 
from a MAFIA eigenmode calculation. The results for the dipole case is shown in figure 
15 and indicates a smaller coupling. The minimum frequency separation is 75 MHz 
yielding a 1% coupling.  

 

Figure 14. Dipole electric field for the beam and bellows cavity calculated 
from MAFIA. 
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Figure 15. Dipole mode frequency for the beam and bellows cavities and their difference as a 
function of beam cavity length for a slot width of 0.81 mm.  

7. Power in the bellows 

One can estimate the power dissipated in the bellows cavity, given the loss factor for the 

actual beam pipe structure, the currents, and the coupling constants  from the above 
calculations. First we calculate the loss factor. 
 
The loss factor for the complex beam pipe geometry of figure 1 is calculated with several 
methods. The nature of the problem is three dimensional and so is suited for MAFIA’s 
3D time domain solver. A one coulomb gaussian bunch is propagated through the mesh 
of figure 16. This gives the longitudinal wake shown in figure 18 which when convoluted 

with the gaussian beam of bunch length 1.3 cm yields a loss factor  = .06 V/pC. 
 

 
Figure 16. Mesh for MAFIA wake potential calculation. 
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One can make 2D calculations with the NOVO[4] wake field program by taking the top 
and bottom profiles of the beam pipe separately as axially symmetric structures as 

illustrated in figure 17. The NOVO program directly computes  =0.031 and 0.01 V/pC 
respectively for the top and bottom profiles of the beam chamber.  A comparison of the 
two methods is shown in figure 18.  

 
Figure 17. Templates for axially symmetric 2D NOVO loss factor calculations.  

 

 
Figure 18. Longitudinal wake potentials for a gaussian bunch (green) of length 1.3 cm.  
The dotted line is from the 3D MAFIA time domain solver. Solid red is from the 2D 
NOVO code using axially symmetric top profile. 

 

 



We make the assumption that all the beam generated fields are scattered by the masks, 
taper and axial offsets for the complicated beam pipe geometry of figure 1. We assume 
this irregular geometry will convert the beam fields into transverse modes which can 
couple into the bellows. PEP-II typically runs with currents of I+ = 1.7 A and  I- = 1.0 A 
respectively for the positrons and electrons at a revolution frequency of f=136 kHz with 
N=837 bunches. In this case we can estimate the beam pipe power as 
 

)( 22 II
fN

Pbeam  

 
which is about 2 kW given the MAFIA 3D loss factor and 1 kW for the NOVO 2D loss 
factor.  
 
To estimate the fraction of the beam power coupling into the bellows cavity we further 
assume all power incident in the bellows is dissipated there. We can write for the bellows 
power: 
 

beambellow PP . 

 

With a 1% coupling =.01 (dipole mode)  this corresponds to 20 W and 10 W 
respectively for the MAFIA 3D and NOVO 2D loss factors, 40 W and 20 W respectively 
for the 2% (quadrupole mode) coupling. These results are consistent with other 
independent estmations for similar geometries[5]. If the bunch length is decreased by a 
factor of 2, the loss factor and hence the power will go up by a factor of 4. 

8. Conclusions 

Bellows heating is observed to be correlated with RF mode power in the 5 GHz region. 
Higher order modes near this frequency are shown to exist in the bellows cavity and can 
be induced by the beams via coupling through the shield fingers.  Calculations show the 
quadrupole and dipole modes as being likely candidates, with coupling a strengths of 
about 1 to 2%. Depending on the value obtained for the loss factor for the beam chamber, 
an estimation of 20 to 40 Watts of power is dissipated in the bellows by the quadrupole 
mode and roughly half as much by the dipole mode. During an extended down time 
additional cooling has been installed for the bellows as well as additional thermocouples. 
The thermocouples are located radially around the bellows in hopes of verifying the 
existence of the quadrupole or dipole mode in the thermal profile.  
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Optimization of RFQ structures 

A. D. Ovsiannikov 

Saint-Petersburg State University, Russia 

Abstract. Previously a new approach to optimization of RFQ structures was 

proposed [4-8]. Corresponding code was developed to realize this approach. In 

this paper, a new version of this code is considered. Different RFQ structures, 

obtained as result of optimization, are also considered. 

1. Introduction 

The theory of linear accelerators design was developed long ago. But, in connection with 

wide implementation of accelerator technology in various manufacturing processes, 
modern problems appear to designers. And, by our opinion, it is impossible to solve some 
of them through frames of traditional approaches to accelerating and focusing structures 

parameters calculations. At the present time, problems of constructing of compact, high-
current machine with high acceleration speed and minimal losses are especially 
important. At this high intensity and small emittance beams with prescribed phase and 

energy characteristics are required. 
 One possible path for solving of such a type of problems is the optimization 
approach. In the optimization code BDO RFQ developed by Saint-Petersburg State 

University for accelerating structures with RFQ, wide use of various mathematical 
models of particles dynamics, sequential execution of optimization with more 
complicated models at each consecutive stage, employment of computer modelling 

opportunities and user-friendly interface are provided. 

2. Mathematical models of optimization 

The following mathematical model of longitudinal motion optimization described by a 
system of integro-differential equations is considered: 

),,( uxtf
dt
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Equation (1) describes a dynamics of a synchronous particle with initial condition 
(4). In this paper, we will consider this motion as the program one. Equation (2) is a 
motion equation in deviation from the motion of the synchronous particle, describing 
perturbed motions on initial data (5).  Equation (3) is an equation of change of density 
distribution of particles ))(,()( tytt  along trajectories (2) with given at initial 

moment law )( 00 y  of distribution of density of particles in set . 0M

 This introduced mathematical model of control accounts for interaction of particles in 

the beam. Here vector-function  determines influence of external fields on a particle, 

and vector-function  — interaction of particles.  
1F

2F

 Let us consider the following functionals: 
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Here , G , 1 , 2 , ,  are non-negative, continuously differentiable functions. 1g 2g

 Functional (7) characterizes program motion dynamics or dynamics of the 
synchronous particle, and functional (8) estimates behavior of the beam trajectories. 
 The following functional 

)()()( 21 uIuIuI                                                (11) 

simultaneously assessing dynamics of program motion and particle beam dynamics with 
account their density of distribution and their interactions was introduced. 

A new approach to the solving of optimization problem for charged particles 
dynamics in accelerators was suggested on the basis of this mathematical model. It 
includes: construction of mathematical model of controlled dynamical process; choice of 
control functions or parameters of optimization; construction of quality functionals, 
which allow efficient evaluation of various characteristics of examined controlled 
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motions; analytical representation of the functionals’ variations, which allow to construct 
various methods of optimization for quality functionals; construction of methods and 
algorithms of optimization. 

It should be noted that we used model that allows to separate longitudinal motion 
optimization from transverse motion one.   

3. BDO-RFQ code 

BDO-RFQ code is created in Matlab. BDO-RFQ code is the package of programs for 

modeling and optimization of dynamics of charged particles in RFQ structure. The 
complex of programs is supposed to allow the usage of various models of dynamics of 
charged particles in the process of choice of parameters of the RFQ structure and its 

optimization. Particular attention was paid to visualization of processes of modeling and 
optimization and to the creation of user-friendly interface. 
 

 

Figure 1. BDO-RFQ code start window. 

 The package of programs is developed with the consideration of demand for the 
extension of a range of examined models of dynamics and possibility of the enlargement 
of a number of criteria (quantity of functionals) of the estimation of particles dynamics. 
With this aim the complex of programs is structurally divided into command shell and 
blocks, which describe various models of particles' dynamics. With this goal, various 
models are described as special procedures containing all necessary information about a 
particular model such as: parameters of the model, equations of the motion, algorithms of 
calculation of functionals of quality of the dynamics for given model, the procedure of 
re-calculation control parameters of one model of dynamics into another, the range of 
values (characterizing the dynamics) put on the display, etc. 

 Given this approach to the construction of an integrated system of modeling, 
optimization and visualization of charged particles dynamics in RFQ structure in its 
nature is like object-oriented programming. In this case it is possible to consider models 

as objects which describe dynamics, while uniting command shell realizes standard 
(typical) operations over models, i.e. choice of model, calculation of dynamics, 
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optimization, visualization of characteristics of dynamic process and a transition from 
one model to another.  

The representation of models of control as various separate blocks, the possibility 
of translation of information between them and the unified system of model's control 
allow a realization of step-by-step optimization of such complicated object as the RFQ 

structure. With this, it is natural to use simple models of dynamics on initial steps of 
optimization and on follows steps of it more developed models are necessary for 
verification of results and for further optimization.  

3.1. Longitudinal motion 

Under consideration of longitudinal motion optimization criteria are the following: 
obtaining of maximal capture of particles into acceleration mode; obtaining of required or 
maximal possible output energy; minimization of defocusing factor effect; obtaining of 
monotonicity of particles' grouping. 
 

 
Figure 2. Main working screen of BDO-RFQ code. 

The problem of deuteron beam dynamics optimization with following parameters was 

considered: frequency - 433MHz, initial energy - 60KeV, intervene voltage - 100kV, 
current - 25mA. Results of the optimization are shown at figures 2-4. At output energy 
1MeV, the length of the calculated structure was 1585 mm (356 of cells). Variations of 

synchronous particle phase and intensity of acceleration were considered as control 
functions. 
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Figure 3. Cell length variation in dependence of cell number. 

 

Figure 4. Acceleration effectiveness variation in dependence of cell number. 

Also, the shorter variant (with length 1295 mm) of the RFQ structure was found. 
Characteristics of the synchronous particle and the beam are shown at figures 5 and 6. 
 

 

Figure 5. Variations of defocusing factor, energy and longitudinal coordinate of 

synchronous particle along structure. 

 

Figure 6. Variations of rms beam phase and energy width along structure. 
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3.2. Transverse motion 

Under consideration transverse motion we used different equations describing transverse 
motion and applied corresponding optimization methods for finding optimal parameters 
[1-3,6-9]. In particular, we consider the case when particles were uniformly distributed 
along the beam cross-section. This allows us to use Kapchinsky-Vladimirov self-
consistent distributions and to design according mathematical models of optimization. 
Minimal radius and intervene voltage are used as controls while already found 
longitudinal motion controls are preserved. 
 
Figures 7-9 correspond to the first variant of the defined longitudinal dynamics. 

 

Figure 7. Acceptance at the beginning of optimized matching structure. 

 

Figure 8. Beam matching at the beginning of the accelerating structure. 
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Figure 9. Emittance of beam at the end of accelerator. 

4. Conclusion 

Conducted calculations have shown the effectiveness of step-by-step optimization on 
various stages of the process of optimization. Thus, the minimization of the defocusing 
factor on the stage of the optimization of longitudinal motion allows the focusing of the 

beam with the conservation of chosen dynamics of longitudinal motion. Suggested 
mathematical models can be also applied to other types of accelerators: traveling wave 
accelerator, accelerator with drift tubes and linear undulator. 

 The author thanks Ovsyannikov D A, Durkin A P, Rubtsova I D, Svistunov Yu A, 
Snopok P V, Antropov I V, Kozynchenko V A, Merkuriev S V for taking part in code 
development and discussing of optimization results. 
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A multigrid based 3D space-charge routine in the tracking
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Abstract. Fast calculation of 3D non-linear space-charge fields is essential for the simulation
of high-brightness charged particle beams. We report on our development of a new 3D space-
charge routine in the General Particle Tracer (GPT) code. The model is based on a non-
equidistant multigrid Poisson solver that is used to solve the electrostatic fields in the rest
frame of the bunch. Since the multigrid Poisson solver depends only linearly on the number of
mesh points for the discretized electrostatic problem the space-charge routine scales linearly
with the number of particles in terms of CPU time. This performance allows over a million
particles to be tracked on a normal PC. The choice of the routine parameters for an optimal
performance will be discussed with the model of a spherical bunch.

PACS numbers: 02.60.Cb, 02.70.Bf, 03.50.De

1. Introduction

Numerical prediction of charged particle dynamics in accelerators is essential for the design
and understanding of these machines. Applications such as colliders and SASE–FEL’s
demand very high quality electron bunches, where any anomaly severely degrades the final
performance.

A powerful tool widely used for the study of the behaviour of charged beams is the
tracking code GPT (General Particle Tracer) [2]. It calculates the trajectories of a large
number of sample–particles through the combined external and self–induced fields generated
by the charged particles (the so–called space–charge forces). Depending on charge density
and energy, a direct point–to–point model can not be used to calculate space–charge forces
because of granularity problems and the inherent O(N2) scaling between the number of
sample particles and CPU time [11].

In this paper we introduce a 3D model for the fast calculation of space–charge following
the ideas in [10]. The space–charge fields are computed in the rest frame by a non–equidistant
multigrid scheme. Hence, the numerical effort scales linearly with the number of particles in

‖ supported by a research grant from DESY, Hamburg
¶ correspondence to (gisela.poeplau@etechnik.uni-rostock.de)
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terms of CPU time. The new model is well suited for a variety of applications, including the
calculation of space–charge fields in a high–brightness photo–injector which are presented
in [12].

In this paper we discuss the influence of various parameters on the efficiency of the 3D
space–charge routine using the model of a spherical bunch with uniform or Gaussian particle
distribution. Related numerical results are given in section 3. For further simulation tests
regarding the calculation of important beam parameters such as emittance we refer to [8, 12].

2. The 3D space charge model

The particle tracking is performed by solving the relativistic equations of motion for a set of
macro particles (sample particles) representing the distribution of the particles of a bunch. In
the GPT code a 5th order embedded Runge–Kutta scheme with adaptive step size control is
implemented for the numerical integration of these equations [11]. In each time step of the
numerical integration the space–charge fields have to be taken into account. The space–charge
calculation with the 3D model is performed as follows:

(i) Laboratory frame → rest frame: Transformation of the bunch from the laboratory frame
to a rest frame with an average velocity by Lorentz transformation.

(ii) Rest frame: Determination of a non–equidistant 3D Cartesian grid in correspondence to
the charge density of the bunch (see subsection 2.1).

(iii) Rest frame: Approximation of the charge density at the grid points.

(iv) Rest frame: Calculation of the electrostatic potential at the grid points via Poisson’s
equation applying a multigrid algorithm. The finite difference scheme (7–point stencil)
is used for the discretization of Poisson’s equation (see subsection 2.2).

(v) Rest frame: Derivation of the electric field and trilinear interpolation of the field values
to the particle positions.

(vi) Rest frame → laboratory frame: Transformation of the field to the laboratory frame by
Lorentz transformation.

The efficiency and accuracy of the space–charge calculation mainly depends on the
determination of the 3D mesh and the applied multigrid scheme to solve Poisson’s equation.
Both we describe in the next two subsections.

2.1. The generation of the mesh

The electromagnetic potential is calculated on a 3D Cartesian mesh with an approximation
of the charge density at the grid points in the rest frame. The 3D mesh is generated in a box
around the bunch. To reduce the number of mesh lines needed, and thus to reduce CPU time,
the density of the mesh lines is increased only if the charge–density increases. The actual
positioning of the mesh lines is an iterative process. The mesh lines are distributed such that
they are spaced according to the distribution of the beam charge density.
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Strictly following this rule the resulting mesh spacing can lead to conflicts with the
Poisson solver (see subsection 2.2). That is in such cases the multigrid Poisson solver
converges only slowly or does not converge at all. Thus the parameter fn is introduced to
maintain a maximum difference in spacing between neighboring mesh lines, to avoid the
creation of a non–optimal mesh line distribution for the Poisson solver. If, e. g. fn = 0.25,
then the difference in spacing between neighboring mesh lines can not vary by more than
25%. The effect of fn is shown in Fig. 1. When fn = 0, the spacing between all neighboring
mesh lines is allowed to vary by 0%, creating an equidistant mesh. Such a mesh is most stable
for the multigrid Poisson solver, but it will create many empty mesh boxes. On the other side,
setting fn = 0.2 results in a dense sampling of the electron bunch and sparse sampling of the
surrounding area.

Figure 1. Mesh line positions ((x, y)–plane) for a Gaussian charge density with fn = 0 (top)
and fn = 0.2 (bottom). The vertical axis shows the total charge in each mesh box, where the
height of the top has been normalized in both plots.

2.2. The multigrid Poisson solver

The space–charge forces will be calculated in the rest frame of the bunch by means of
Poisson’s equation given by

−∆ϕ =
�

ε0
in Ω ⊂ R

3.

Here, ϕ denotes the potential, � the charge density and ε0 the dielectric constant. The domain
Ω is a box around the particle bunch. On the boundary we consider three cases: a beam pipe, a
cathode and free space. The beam pipe has ideal conducting walls transversely, what results in
Dirichlet boundary conditions, and open boundary conditions longitudinally. The cathode has
the same assumptions as the beam pipe accept the cathode surface, here Dirichlet boundary
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conditions are assumed. The calculation in free space leads to open boundary conditions
and can be used when the bounding box is located far enough from the boundaries of the
structure. While a bounding cube is necessary with Dirichlet boundary conditions (see [8])
the open boundary conditions allow to put a bounding box relatively close around the bunch.
Thus, a lot of computing time can be saved especially for very short or very long bunches.

Poisson’s equation is discretized by finite differences on the non–equidistant mesh
described in the previous subsection. An approximation of the charge density �

ε0
is computed

on the mesh points from the charge of the macro particles.
The solution of the resulting system of equations requires a fast and robust solver. State-

of-the-art is the application of a multigrid method as Poisson solver. In model cases the
numerical effort scales with the number of mesh points. Here, we give only the general idea
of a geometrical multigrid algorithm. Details can be found in [3, 1]. The multigrid algorithm
operates on a certain number of grids starting with the mesh given by the discretization
of Poisson’s equation. This mesh is referred to as the fine grid or the fine level. Then a
sequence of coarser grids is generated by removing mesh lines. On an equidistant mesh
every second mesh line is removed. Now iteratively, a raw approximation of the solution
of the systems of equations is obtained by the application of a few steps of a relaxation
scheme (e. g. Gauss–Seidel iteration) which is called pre–smoothing. This approximation
is then improved by a correction vector obtained on the coarser grids (the so–called coarse
grid correction) where restriction and interpolation work as grid transfer operators. After
applying interpolation another few steps of relaxation are necessary (post–smoothing). For
the space charge calculations a multigrid V–cycle is realized. This scheme goes strictly down
from the fine to the coarsest grid and then up again to the fine level.

As shown in [6, 7] the coarsening strategy is crucial for the convergence of the multigrid
algorithm on non–equidistant grids. The generation of coarse grids with every second grid line
removed as suggested in [1] is not reasonable with the dicretizations for bunches. It would
lead to coarser grids with increasing aspect ratio of the mesh spacing. Hence the convergence
of a multigrid scheme on such grids would considerably slow down. Here, the removal of
mesh lines follows the rule: Two neighboring steps h1 and h2 remain also in the next coarser
grid as long as either h1 ≥ shmin or h2 ≥ shmin, where hmin denotes the overall minimal
step size of the corresponding fine level. The factor s is chosen as s = 1.6 or s = 1.7 with the
objective to obtain a decreasing aspect ratio of the mesh spacing.

Furthermore, the choice of the multigrid parameters such as the number of pre- and
post–smoothing steps, the application of full or half restriction considerably influence the
performance of the multigrid scheme. If the convergence of the multigrid algorithm turns out
to be not sufficient (e. g. if the coarsening does not come out with decreasing aspect ratio on
all levels), multigrid can be applied as a preconditioner for the conjugate gradient algorithm.
This method leads to a better convergence at least in cases where a plain multigrid scheme
converge too slow [5, 4].
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3. Numerical test cases

The new 3D space–charge routine has been tested with a sphere filled with electrons with
both uniform and Gaussian distribution. The space–charge forces has been computed for only
one time step. For numerical tests with other bunch shapes and tracking examples we refer
to [8, 12]. For an optimal performance of the space–charge routine several questions have to
be considered:

(i) What is an optimal distribution of mesh lines both for the approximation of the particle
distribution of the bunch and for the multigrid performance? (Choice of parameter fn)

(ii) Which number of mesh lines is optimal? (As few as necessary.)

(iii) How does the choice of multigrid parameters influence the performance of the algorithm?

Three possible versions of the multigrid scheme has been investigated. Two of these schemes
have been performed with the following components: the Gauss–Seidel red–black iteration
has been taken as smoothing operator with 2 pre– and 2 post–smoothing steps MG(2,2), full
restriction has been tested versus half restriction. The third algorithm has been the application
of multigrid as preconditioner for the conjugate gradient method (MG-PCG). It requires that
the multigrid scheme is a symmetric and positive operator [4, 5]. Thus the components have
been chosen as follows: two pre–smoothing steps with red–black Gauss–Seidel relaxation,
two post–smoothing steps with black–red Gauss-Seidel relaxation and full restriction. Two
V–cycles have been performed per CG–iteration step (MG–PCG(2,2)(2)).

3.1. Sphere with uniform particle distribution
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Figure 2. Error of the electric field for uniformly distributed particles in a sphere: Comparison
of different meshes depending on parameter fn performed with 50,000 particles (left),
comparison of different numbers of particles on an equidistant mesh with fn = 0.0.

For the investigation of the first two questions we tested the model of uniformly
distributed particles in a sphere with the known analytical electrical field of a uniformly
charged sphere. The error for the electrical field has been measured after interpolation at the



286

10 20 30 40 50 60 70
0

5

10

15

20

number of mesh lines for each coordinate

nu
m

be
r 

of
 m

ul
tig

ri
d 

ite
ra

tio
ns

MG(2,2), half restr.
MG(2,2), full restr.
MG−PCG(2,2)(2)

10 20 30 40 50 60 70
0

5

10

15

20

25

30

number of mesh lines for each coordinate

C
PU

 ti
m

e 
[s

]

MG(2,2), half restr.
MG(2,2), full restr.
MG−PCG(2,2)(2)

Figure 3. Influence of the choice of multigrid parameters to the performance of the space–
charge routine (MG: multigrid, MG–PCG: multigrid preconditioned conjugate gradient): the
number of multigrid iterations until the residual is less than 10−6 in the maximum norm (left),
the related CPU times measured on a 800 MHz Pentium PC (right). The calculations have been
performed on an equidistant grid with fn = 0.0 with a spherical bunch of 50,000 particles,
where the particles have a uniform distribution.

position of the particles. Fig. 2 shows the best convergence for the equidistant grid (fn = 0.0)
what is not surprising for a uniform particle distribution. Since the multigrid scheme has the
best convergence and stability on equidistant meshes, these meshes should be preferred in
the case of uniformly distributed particles. Furthermore, it can be concluded from Fig. 2 that
neither a large number of mesh points nor a large number of particles improve the final result.
Consequently, for a high efficiency of the 3D space–charge routine no more mesh lines or
particles than reasonable should be taken for simulations.

Fig. 3 shows the performance of the above introduced 3 multigrid algorithms. As
expected the multigrid preconditioned conjugate gradient method has the most stable
performance. The multigrid scheme with half restriction as grid transfer operator turns out to
be very sensitive to non–optimal meshes. In this case these are meshes with an even number
of mesh lines for each coordinate direction. Here, the coarsening can not generate good results
concerning the mesh spacing (see subsection 2.2).

3.2. Sphere with Gaussian particle distribution

Tests with the model of a Gaussian particle distribution in a sphere show the advantage of the
application of non–equidistant meshes. Fig. 4 shows that meshes with larger aspect ratios in
mesh spacing, i. e. larger fn result in a better convergence of the error of the electric field. It
can be concluded that meshes with fn > 0.2 would not improve the results for the field error.
Similar as for the uniformly distributed particles an increasing number of particles (greater
than 100,000) in the sphere leads to no smaller field errors.

The multigrid schemes have been performed on a non-equidistant mesh with fn = 0.2

(see Fig. 5). Again the multigrid preconditioned conjugate gradient method turns out to be
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Figure 4. Error of the electric field for Gaussian distributed particles in a sphere: Comparison
of different meshes depending on parameter fn performed with 50,000 particles (left),
comparison of different number of particles on a non–equidistant mesh with fn = 0.2.

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

number of mesh lines for each coordinate

nu
m

be
r 

of
 m

ul
tig

ri
d 

ite
ra

tio
ns

MG(2,2), half restr.
MG(2,2), full restr.
MG−PCG(2,2)(2)

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

number of mesh lines for each coordinate

C
PU

 ti
m

e 
[s

]

MG(2,2), half restr.
MG(2,2), full restr.
MG−PCG(2,2)(2)

Figure 5. Influence of the choice of multigrid parameters to the performance of the space–
charge routine: the number of multigrid iterations until the residual is less than 10−6 in the
maximum norm (left), the related CPU times measured on a 800 MHz Pentium PC (right).
The calculations have been performed with a spherical bunch of 50,000 particles on a non–
equidistant grid with fn = 0.2, where the particles have a Gaussian distribution.

the most stable algorithm. Multigrid performed with half restriction is as in the previous test
case very sensitiv to the distribution of mesh lines.

4. Conclusion

A new 3D space-charge routine implemented in the GPT code has been described in this paper.
The new method allowing 3D simulations with a large number of particles on a common PC
is based on a multigrid Poisson solver for the calculation of the electrostatic potential in the
rest frame.

Various parameters of the routine have been tested for model bunches in order to find out
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a stable and fast performance of the space-charge routine. Various applications like colliders
or SASE-FEL’s require very high quality bunches. Related to such applications we refer
to [12], where the space-charge effects of very short and very long bunches with the new 3D
space-charge routine in GPT are studied.
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Abstract. Some years ago A. Novokhatski, M. Timm and T. Weiland developed the
thin dielectric layer model (TDLM) to predict and characterize the impact of surface
roughness wakefields. Recently two articles referring to the TDLM have appeared
raising new questions. This paper is intended to answer these questions.

In the first article the TDLM is used to interpret a measurement carried out at the
Brookhaven ATF. We show analytically and by simulations with a newly developed
program that the TDLM cannot be applied to the geometry used in this experiment.

The second article investigates analytically a geometry very similar to the geometry
of the TDLM but in a square beam pipe and with only two sides of the beam
pipe corrugated. The amplitude of the wake function found in that article differs
significantly from the predictions of the TDLM. We compare both predictions to
computer simulations made with MAFIA-T3 and investigate which of the models fits
better to the results.

1. Introduction

It is expected that wakefields generated by unavoidable small (typically < 1µm in radial
direction) geometrical imperfections of the inner wall of beam pipes, so called surface
roughness wakefields, will no longer be negligible in the design of future linear colliders
and future X-FELs, whose bunches will be very short. The planned bunch length e.g.
of the TESLA X-FEL is 25µm RMS ([1] p. 288).

The different scales ranging from roughness depths on a sub micrometer level to
beam pipe lengths of several meters up to kilometers exlude numerical analysis the effect
unless gross simplifications are made.

In view of this the so called thin dielectric layer model (TDLM) ([2, 3, 4, 5] etc.) was
developed as one of several competing approaches to make surface roughness wakefields
calculable.

The TDLM is based on the observation that under certain conditions surface
roughness wakefields look similar to wakefields induced by a thin dielectric coating on
the inner surface of an otherwise perfectly conducting beam pipe [2].

The waveguide modes of a dielectrically coated beam pipe with circular cross section
are well understood. The dielectric coating slows down the phase velocity of the modes.
At one particular frequency, depending on the properties of the layer, the phase velocity
of the fundamental TM waveguide mode (We will only consider monopole modes and
longitudinal wakes in this paper.) is equal to the speed of the bunches running through
the beam pipe. This synchronous fundamental TM mode is dominantly driven by the
beam when the dielectric coating is thin, as in that case the frequencies of all other
synchronous modes are much higher.
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Figure 7. Longitudinal wake potential of a Gaussian bunch (σz = 100µm) in a sqare
beam pipe of 2×2mm2 open cross section + 150µm irises on two opposite sides. Shown
are the result of a MAFIA simulation for a 6cm long beam pipe and a plot of equation
(16).

3.5. Conclusion

Most parameters of the simulation were dictated by what is feasible within MAFIA.
From the point of view of the models the parameter setting was arbitrary. The
amplitude predicted by the TDLM does not contradict the simulations. Exact
comparison is difficult in this case, because the theory was derived for round beam
pipes. The linear dependence of the amplitude of the wake potential on δ predicted by
the two side model is not observed in the simulations.
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Abstract. The parallel implementation of the ORBIT code is discussed. This 

implementation includes algorithms for two and three-dimensional (3DSC) space 

charge calculations, transverse and longitudinal impedances, a parallel 

diagnostics module to calculate beam characteristics, and a transverse feedback 

module. The 3DSC parallel algorithm, and its timing and scaling with problem 

size and number of processors are described in detail. 

1. Introduction 

Collective beam dynamics will play a major role in determining beam losses and 

intensity instability thresholds in high intensity rings such as the PSR at Los Alamos, the

Booster at Fermilab, the AGS Booster, the Spallation Neutron Source (SNS), and future 

proton drivers. The details of these processes are complicated, and a good understanding 

of the underlying physics will require careful computer modeling. In order to study the 

dynamics of high intensity rings, a task essential to the SNS project [1], the macro-

particle tracking computer code ORBIT [2,3] has been developed. The simulation of 

collective processes, including space charge and wake forces, requires three-dimensional 

modeling of the beam self and wall interactions. In many cases, the resulting simulations 

may require tracking millions of interacting particles for thousands of turns, which 

constitutes a legitimate high-performance computing problem. In order to meet the need 

for credible simulations of collective processes in high intensity rings, we are developing 

and implementing a parallel version of the ORBIT code. 

The main goals of parallel computer simulations are to shorten the tracking time and 

to provide for the treatment of larger problems. There are two possible situations for 

tracking large numbers of particles with macro-particle tracking codes such as ORBIT. In 

the first case, particles are propagated through the accelerator structure independently 

without taking into account direct or indirect interactions among them, so there is no 

necessity for parallel programming. It is possible to run independent calculations using 

the same program with different macro-particles on different CPUs and to carry out the 

post-processing data analysis independently. In the case of interacting particles, there are 

collective processes, and we must provide communication between the CPUs where 

programs are running. Unfortunately, there is no universal efficient parallel algorithm 

that can provide communication for every type of collective process. The best parallel 

flow logic will be defined by the mathematical approach describing the particular process 
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and the ratio between computational and communication bandwidth. Therefore, our

solutions for parallel algorithms cannot be optimal for every computational system.

Our implementation of parallel algorithms utilizes the Message-Passing Interface

(MPI) library. The timing analysis has been carried out on the SNS Linux workstation 

cluster including eight dual Athlon XP 1600+ CPUs with each having 1024 MB RAM

and the Gigabit Ethernet switch for communication. The communication library MPICH 

version 1.2.4, a portable implementation of MPI, has been installed under the Red Hat 

7.2 Linux operating system.

All work was carried out under contract DE-AC05-00OR22725 for the U.S. 

Department of Energy. The research on the Spallation Neutron Source is managed by 

UT-Battelle, LLC. 

2. ORBIT modules describing collective effects 

At present, there are six ORBIT dynamics modules that describe interactions between 

macro-particles, and one diagnostics module that requires communication between CPUs 

in the case of a parallel run. There are two different transverse impedance modules, based

on the wake field and Fourier decomposition, a longitudinal impedance module, two and 

three-dimensional space charge (2D and 3D SC) modules, and a fast feedback module.

All of these modules can work with an arbitrary distribution of macro-particles between 

CPUs and use different parallel algorithms. The ORBIT’s parallel implementation of the 

two-dimensional space charge module inherits the UAL 1.0 approach [4]. All others

except the 3D SC module have very simple original algorithms based on summation of 

the resulting collective forces across all CPUs. 

A typical example of a SNS ring simulation deals with the ring lattice with about one 

thousand nodes through which macro-particles are propagated in series. Half of these are 

3D SC nodes, because it is more accurate to apply the space charge kick to the

momentum of the macro-particles after each real lattice element. The lattice typically

includes at most a few nodes related to the other collective interaction modules.

Therefore, the efficiency of the parallel implementation of the whole code is defined

basically by the effectiveness of the 3D SC module, and it will be at the focus of our 

attention.

3. Three-dimensional space charge model 

The force in our three-dimensional space charge model is calculated as the derivative of a

potential, both for longitudinal and transverse components. The potential is solved as a

sequence of two-dimensional transverse problems, one for each fixed longitudinal

coordinate. These separate solutions are tied together in the longitudinal direction by a 

conducting wall boundary condition on the inner surface of the beam pipe, thus resulting

in a three-dimensional potential. This method, sometimes called a slice model, depends 

for its legitimacy, especially in the calculation of the longitudinal force, on the 

assumptions that the bunch length is much greater than the transverse beam pipe size and 

that the beam pipe shields out the forces from longitudinally distant particles. According

to this approach we ignore some longitudinal effects, primarily longitudinal variation in 

the space charge fields on the distances less than longitudinal size of the slice. Although

our model is applicable only to long bunches, and not to the spherical bunches that are

the point of interest in many linac calculations, the three-dimensional space charge model

adopted here is adequate to most calculations in rings. 

The three-dimensional model implemented in ORBIT closely follows a method

discussed by Hockney and Eastwood [5]. A three-dimensional rectangular grid, uniform

in each direction, in the two transverse dimensions and in the longitudinal coordinate is 
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used. The actual charge distribution is approximated on the grid by distributing the 

particles over the grid points according to a second order algorithm, called “triangular

shaped cloud (TSC)” in [5]. Then, the potential is calculated independently on each 

transverse grid slice, corresponding to fixed longitudinal coordinate value, as a solution 

of a two-dimensional Poisson’s equation. The charge distribution is taken from the

distribution procedure and, for the two-dimensional equation, is treated as a line charge 

distribution. The two-dimensional Poisson equation for the potential is then solved using

fast Fourier transforms and a Green’s function formulation with periodic boundary 

conditions [6]. The periodic boundary conditions are used only to obtain an interim 

solution, and this solution is then adjusted to obey the desired conducting wall boundary 

conditions. These are imposed on a specified circular, elliptical, or rectangular beam pipe 

through a least squares minimization of the difference on the surface of the beam pipe

between the periodic Poisson equation solution and a superposed homogeneous solution. 

The homogeneous solution is represented as a series constructed from a complete set of 

Laplace equation solutions with variable coefficients, as described in [7]. In addition to

accounting for image forces from the beam pipe, the boundary conditions serve to tie 

together the independently solved potentials from the various transverse slices, resulting

in a self-consistent three-dimensional potential. 

Finally, with the potentials determined over the three-dimensional grid, the forces on

each macro-particle are obtained by differentiating the potential at the location of the 

macro-particle using a second order interpolation scheme. The resulting forces include 

both the transverse and longitudinal components. The interpolating function for the

potential is the same TSC function used to distribute the charge. The detailed description 

of the three-dimensional space charge algorithm can be found in [8]. 

4. Parallel implementation of the 3D SC slice model 

The approach to parallelization of the three-dimensional space charge algorithm is 

obvious. We distribute the two-dimensional space charge problems to different CPUs for

solution. If the number of transverse slices is greater than the number of CPUs, then we 

must group the slices. To implement this scheme it is necessary to distribute the macro-

particles among the CPUs before the solving two-dimensional problems. Then, after

accomplishing the two-dimensional problems, we must provide for the exchange of 

neighboring transverse grids (with potentials) between CPUs to carry out the second 

order interpolation scheme in the longitudinal coordinate necessary for calculating and

applying the space charge force kick to the macro-particles.

The 3D SC module includes four classes: 3D Space Charge class, the Boundary class, 

the Load Manager class, and the Macro-Particle Distributor class. The 3D Space Charge 

class is the main class in the module and uses all other classes. The Boundary class is just

a 2D Poisson’s equation solver and does not have any inter-CPU communication routines 

inside. The Load Manager defines how many transverse 2D slices will be assigned to 

each CPU. Initially, there is an even distribution of 2D slices among CPUs. The Macro-

Particle Distributor distributes macro-particles among CPUs according their longitudinal

positions and information received from the Load Manager class instance. This operation

is the first operation of the 3D SC module. 

4.1. The Macro-Particle Distributor class 

The Macro-Particle Distributor class analyses the longitudinal coordinates of macro-

particles currently residing on the local CPU, determines which macro-particles don’t 

belong to this particular CPU, and sends them to the right CPU. This means that the class 

describing the macro-particle bunch should be a resizable container including 6D 
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coordinates of the macro-particle and an additional index indicating what CPU this

macro-particle belongs to. This container should also have extra space to avoid changing 

the container size frequently. 

The logic flow for the macro-particle distributor class is shown in Table 1. During the

two first steps we define maximum and minimum longitudinal coordinates among all 

macro-particles in all CPUs. To eliminate the necessity of frequent changes in the 

longitudinal grid we add an additional 5% to each limit and save the result. During

subsequent calls of the Macro-Particles Distributor class instance we don’t change the 

longitudinal limits unless necessary. 

After defining the longitudinal grid, we sort macro-particles according to the distance

to the nearest grid point. Particles that no longer belong to the appropriate CPU are stored 

in an intermediate buffer together with additional information about where they belong. 

At the step 4 we define the exchange table Nex(i,j) where “i” is the index of the current 

CPU, “j” is the index of destination CPU, and the value is the number of macro-particles

that should be sent from “i” to “j”.  After step 5 all CPUs know the number of macro-

particles they will receive. The exchange table defines the parameters of the sending and 

receiving procedures used in step 7; therefore we avoid a deadlock. Finally, once all 

macro-particles are located in the correct CPUs, we can start to solve the two-

dimensional space charge problems on all CPUs. The passage through the exchange table 

is organized in a special manner to provide communication between non-overlapping 

pairs of CPUs first. In this case the number of independent communication cycles will 

not exceed six for slow longitudinal motion. This approach guaranties that the time of 

communication during the step 7 will be the same for different numbers of CPUs. 

Table 1. The flow logic of the Macro-Particle Distributor class. The “Communication” column

indicates data exchanging between CPUs

N stage Actions Communication

1 Determine the extrema of longitudinal macro-particle

coordinates

-

2 Find the global longitudinal limits throughout all CPUs +

3 Get information from the Load Manager about number of 

slices assigned to this CPU 

-

4 Analyse macro-particle longitudinal coordinates to 

determine on which CPU they belong. Store the 6D 

macro-particle coordinates to be exchanged in an 

intermediate buffer and mark these macro-particles as

“dead”. Define an exchange table Nex(i,j) (see text for the

explanation)

-

5 Sum the exchange table throughout all CPUs by using 

the MPI_Allreduce MPI function with the MPI_SUM

operation parameter

+

6 Check the free space in the bunch container and resize it 

if necessary

-

7 Distribute the 6D macro-particle coordinates in the

intermediate buffer to the correct CPUs according the 

exchange table.  Store the received coordinates in the 

bunch container in the available places 

+
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4.2. The 3D Space Charge class 

In the parallel version of the three-dimensional space charge algorithm, each CPU 

performs the same calculation of the potential on the transverse grids as in the non-

parallel version. There is no need for communication between CPUs, because the macro-

particles have already been distributed between CPUs by the Macro-Particles Distributor 

class instance and each CPU uses its own information to solve its own segment of the

longitudinal grid. There is only one difference between parallel and non-parallel versions: 

in the parallel version there are two additional transverse slices beyond the ends of the 

CPU’s own segment. Therefore the number of transverse slices for one CPU is 

Nslices/NCPU+2 instead of Nslices/NCPU, where Nslices is the total number of the transverse

slices and NCPU is the number of CPUs. The two additional slices are necessary because

of the second order interpolation scheme. After the solution of the two-dimensional

problem, the potential values from the two transverse grids on the ends of the segment

are sent to the CPU that is the neighbor according to its index. In same fashion, the local 

CPU obtains the potential values from its neighbors and adds these potentials to its own. 

In this case the results of the parallel and non-parallel calculations are the same.

4.3. The Load Manager class 

The Load Manager class solves two tasks. First, it gathers timing information inside and 

outside the 3D SC module. Second, it redistributes the transverse slices between CPUs to 

provide the minimum time of execution of the whole code. It measures the wall clock

time required to process unsynchronised parts of the code for each CPU and increases the 

number of slices for CPUs with smallest execution times. Thus it provides even loading 

of the cluster CPUs dynamically.  Uneven loading can arise because of a non-uniform

distribution of the macro-particles along the longitudinal coordinate or due to the 

presence of another parallel task on one or on several CPUs. The Load Manager tries to 

fix the situation and achieve the maximum parallel efficiency of the code. 

5. Timing of the 3D SC module

Timings of the parallel algorithms were performed to elucidate the contributions of 

different stages to the total time of calculation and the parallel efficiency of their 

implementation. To avoid the effects of other jobs running on the same machine and 

other random factors, we performed the timings on the Linux cluster with no other users

and computed the average time for a number of iterations. We used only eight CPUs of 

our cluster to eliminate competition of CPUs for network card resources on dual CPU 

nodes.

5.1. The Macro-Particle Distributor class timing 

The timing of the bunch distributor module was carried out without including additional

MPI functions in the code of the module.  We measured the time needed to distribute

macro-particles between CPUs according to their longitudinal positions when we have 

Npart previously distributed and Nrand undistributed macro-particles.

Figure 1 shows the required time vs. Npart for 2 CPUs and Nrand = 20000 and 10000. 

As we expected, this time consists of three parts. The first part is the time of 

communication between all CPUs to sum and to spread the exchange table and to define

global longitudinal limits through all of them. This is the execution time of the 

communication during steps 2 and 5 in the Table 1. The second part is proportional to the 

number of previously distributed particles. This is the time require for carrying out steps

1 and 4 in Table 1. The third part is proportional to the number of undistributed macro-

particles that are distributed among CPUs during step 7. The step 6 is normally carried 
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out only once. The total communication time of steps 2 and 5 in Table 1 depends on the 

number of CPUs and may vary from 0.5 ms to 4 ms for our case with NCPU < 9. The 

analysis of graphs for several numbers of CPUs gives us the following three components

approximation for the distribution time

Figure 1. The time required by the Macro-Particles Distributor class to distribute Nrand

between 2 CPUs in addition to Npart already distributed. The points are results of

measurements, and the lines are linear approximations. The squares and circles denote 

Nrand = 20000 and 10000 macro-particles, respectively.

)/()1(/ 21 CPUCPUCPUpartCPUpart

dist

commdist NNNNNNt ��������� ����  (1) 

where the parameters 1� and 2�  are equal to 1.0E-7 and 3.6E-6 sec, respectively. The 

parameter �  in the equation (1) is the fraction of macro-particles that have to be 

distributed. In our simulations �  is between 0 and 1E-4. Equation (1) demonstrates

limited scalability of this parallel algorithm. For instance, if Npart = 300000 the 

distribution time will decrease with increasing number of CPUs up to 8 CPUs. It means 

that the parallel implementation of the Macro-Particle Distributor class has low parallel

efficiency by itself, but we should consider the efficiency of the whole 3D SC module

and ORBIT code. 

5.2. The 3D Space Charge class timing 

For timing the parallel implementation of the 3D Space Charge class, we used a 

procedure analogous to that described in the previous part of this report. The calculation 

times were measured as a function of the number of macro-particles, number of CPUs,

and 3D grid size. Fitting the measurements, we obtained the following formula for the 

time of calculation with the (Nx x Ny) transverse grid size and Nz transverse slices 

)(/)(/ 433 yxcommCPUzyxCPUpartDSC NNNNNNNNt ��������� ���  (2) 
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where the parameters 3�  , 4�  , and comm�  are 7.5E-7, 1.7E-7, and 7.9E-7 sec, 

respectively. The first term in the formula (2) describes the time spent binning the macro-

particles, applying the space charge kick, etc. The second term is the time required to

solve the set of two-dimensional space charge problems, and the last is the time for

communication to exchange potential grids between CPUs and is proportional to the 

amount of exchanged data. 

Equation (2) was obtained for a uniform distribution of macro-particles along the 

longitudinal axis. If the macro-particles are not distributed uniformly in the longitudinal 

direction, we should use the maximum number of macro-particles on one CPU instead of 

Npart/NCPU.

The formula (2) does not predict the maximum useful number of CPUs, but the 

combination with the formula (1) gives the minimum time of calculation at NCPU about 

40 for Npart = 300000 and NCPU more than 200 for one million macro-particles.

5.3. The parallel efficiency 

Using Eqs. (1) and (2) we can define the parallel efficiency of the whole algorithm as 

follows

))(/())1()1((%100 33 DSCdistCPUCPUDSCCPUdist ttNNtNt �������� (3)

For the cases of 64x64x64 grid, 300000 macro-particles, and 2,4, and 8 CPUs we 

obtained 97, 92, and 85 %, respectively. These results are for a uniform distribution of 

the macro-particles along the longitudinal direction. Of course, in the real calculation 

scenario we are far away from this case. The figure 2 demonstrates the timing of a real 

scenario. It is a case with an accelerator lattice including 400 elements, and after each of 

them we perform 3D SC calculations. A 64x64x64 grid was used in the 3D SC module. 

The time is the function of the number of turns. At the beginning of every turn, 500 

Figure 2. The timing for the real calculation scenario. See text for explanations. 
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macro-particles are injected into the lattice, so we have 500000 macro-particles at the end 

of the accumulation period. The final parallel efficiencies are 70% and 50% for

calculation with and without the Load Manager, respectively. As one can see, using of 

the Load Manager improves the performance significantly, but we cannot perform 

detailed investigation of timing and parallel efficiency because of the dynamic nature of 

the Load Manager’s actions. 

In addition to the SNS Linux cluster, the ORBIT code was installed onto ORNL’s

IBM RS6000 "Eagle" supercomputer. The tests demonstrated parallel efficiencies 91%

and 78% for 8 and 16 CPUs for the same scenario as above. Higher efficiencies for 

“Eagle” are defined by a better ratio between the network bandwidth and CPU 

performance.

6. Conclusions 

Parallel algorithms of the ORBIT Code’s modules describing collective effects and 

diagnostics have been developed and implemented. The 3D SC module, most critical for

performance of the whole code, attains about 90% parallel efficiency for uniform

longitudinal distributions of macro-particles and 70-80% for real case scenarios.
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Vlasov simulation of beams

Eric Sonnendrücker† and Francis Filbet‡
IRMA,Université Louis Pasteur, 7 rue René Descartes, 67084 Strasbourg cedex, France

Abstract. In this paper we give an overview of numerical methods for beam simulation
based on the direct resolution of the Vlasov equation on a grid of phase space and focus
on recent developments of these methods, in particular their implementation on unstructured
meshes and the first step towards a self adaptive method being able to adaptively refine the
discretization mesh based on wavelet techniques.

1. Introduction

Numerical simulation has become a major tool for modeling and theoretical understanding
of beam propagation as well as for accelerator design. Most simulations today are being
performed using the Particle-In-Cell (PIC) approach. This method combines Lagrangian
particle motion with grid based computation of the mean self fields, a deposition and
interpolation step making the link between the two parts. The PIC method enables to perform
cost effective simulations and becomes especially efficient compared to grid based Vlasov
methods when dimensionality increases. The drawback of PIC methods is their inherent
numerical noise which decreases only slowly when the number of particles is increased.
Moreover, in the PIC method, the phase space is populated with particles according to the
value of the distribution function, i.e. more particles are put in regions of phase space where
the distribution function is larger. This means that low density regions of phase space are very
sparsely populated with particles, which makes the resolution very poor in these areas. This
aspect of PIC methods makes them inefficient for simulations where what happens in those
regions is of major importance, like beam halo formation. Note that populating phase space
uniformly with particles of different weights does not help and makes things even worse for
highly non linear problems, as particles of different weights mix, making light weight particles
useless.

For such problems it seems attractive to use grid based methods solving the Vlasov
equation. They have the advantage of being completely devoid of numerical noise and of
having the same resolution everywhere in phase space independently of the value of the
distribution functions. Unfortunately, they are more expensive than PIC methods especially
when dimension increases. But even so, computers are now powerful enough that these
methods can be used for many relevant problems, and hence provide an essential complement
to PIC solvers in one’s beam simulation toolbox, as in addition to their other features, they
provide an alternative to PIC methods which is useful for benchmarking.

The aim of this paper is to give an overview of current Vlasov solvers and pinpoint their
strong points and limitations, as well as problems for which they should help. We shall also
give some hints on ongoing and future research which will most likely broaden their range of
applicability.
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Space charge studies and comparison with simulations using
the FNAL Booster

Panagiotis Spentzouris† § James Amundson† James Lackey†
Linda Spentzouris‡ and Raymond Tomlin†
† Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
‡ Illinois Institute of Technology, Physics Division, 3101 South Dearborn St., Chicago, IL
60616, USA

Abstract. We present measurements of transverse and longitudinal beam phase space
evolution during the first thirty turns of the FNAL Booster. We discuss the experimental
techinque, which allowed us to obtain turn-by-turn measurements of the beam profile. We
then compare our results with the prediction of the Synergia 3D space charge simulation code.

1. Introduction

The Fermilab Booster is a rapid-cycling, 15 Hz, alternating gradient synchrotron with a radius
of 75.47 meters. The lattice consists of 96 combined function magnets in 24 periods, with
nominal horizontal and vertical tunes of 6.7 and 6.8 respectively. The Booster accelerates
protons from a kinetic energy of 400 MeV to 8 GeV, at a harmonic number h=84, using 17
rf cavities with frequency which slews between 37.7 MHz (at injection) and 52.8 MHz (at
extraction). The revolution time at injection is 2.2 µ s. A comprehensive technical description
of the Booster as built can be found in reference [3]. The injection system utilizes the H−

charge-exchange injection technique [2]. The typical linac peak-current is 45 mA; usually up
to ten turns of H− beam are injected in the booster. The injected beam is a stream of bunches
equally spaced at the linac rf frequency of 201.2 MHz. During injection, a pulsed orbit bump
magnet system (ORBUMP) is used to superimpose the trajectories of the circulating (protons)
and injected (H−) beams.

There are many factors affecting the behavior of the Booster beam, including the energy
and emittance of the incoming beam, nonlinear field errors and space charge effects, which
is believed to be responsible for a significant fraction of the observed losses in the Booster
[4], during the first 2 ms of the cycle (injection, capture, and bunching phase). In general,
space charge effects are recognized as one of the most important problems which limit the
total number of particles in a low energy proton synchrotron. Since the performance of the
Booster is what makes or breaks the current (MiniBooNE experiment) and future (MINOS
experiment) FNAL neutrino programs, and its stable operation is required for the current
FNAL collider program, it is essential to study and quantify these effects. In order to achieve
this goal, we have developed a full three dimensional (3D), Particle In Cell (PIC) model of
the booster, based on the package Synergia [1]. The Synergia package has been developed
under the DOE SciDAC initiative for accelerator modeling Advanced Computing for 21st

Century Accelerator Science and Technology. Synergia incorporates existing packages for
modeling 3D space charge and computing transfer maps using Lie algebraic techniques. It
utilizes a split operator technique for particle propagation, includes a parser of the Methodical
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Progress in the study of mesh refinement for
particle-in-cell plasma simulations and its application to
heavy ion fusion

J.-L. Vay �
�
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

A. Friedman, D. P. Grote ��
Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract. The numerical simulation of the driving beams in a heavy ion fusion power plant
is a challenging task, and, despite rapid progress in computer power, one must consider the
use of the most advanced numerical techniques. One of the difficulties of these simulations
resides in the disparity of scales in time and in space which must be resolved. When these
disparities are in distinctive zones of the simulation region, a method which has proven to be
effective in other areas (e.g. fluid dynamics simulations) is the Adaptive-Mesh-Refinement
(AMR) technique. We follow in this article the progress accomplished in the last few months
in the merging of the AMR technique with Particle-In-Cell (PIC) method. This includes a
detailed modeling of the Lampel-Tiefenback solution for the one-dimensional diode using
novel techniques to suppress undesirable numerical oscillations and an AMR patch to follow
the head of the particle distribution. We also report new results concerning the modeling of
ion sources using the axisymmetric WARPRZ-AMR prototype showing the utility of an AMR
patch resolving the emitter vicinity and the beam edge.

1. Introduction

The numerical simulations of the beam ions transport in a Heavy Ion Fusion [1] accelerator
and reaction chamber currrently model different stages of the process separately. A
completely self-consistent simulation, which is ultimately needed, requires an end-to-end
simulation from the ion source to the fusion target. This represents a real challenge even
extrapolating near-future computer power from current state and past progress and we must
consider the use of the most advanced numerical techniques. One of the difficulties of these
simulations resides in the disparity of scales in time and in space which must be resolved.
When these disparities are in distinctive zones of the simulation region, a method which has
proven to be effective in other areas (e.g. fluid dynamics simulations) is the Adaptive-Mesh-
Refinement (AMR) technique. We have begun at LBNL the exploration of introducing this
technique into the method that we use the most (i.e. Particle-In-Cell or PIC) and started a
collaboration with NERSC researchers to develop an AMR library of subroutines targeted at
providing AMR capabilities for existing plasma PIC simulation codes[5]. In [5], we have
exposed the main issues associated with the coupling of the AMR and PIC techniques, for
both electrostatic and magnetostatic simulations. In this article, we present additional results
obtained with a one-dimensional and a two-dimensional axisymmetric prototypes of Particles-
In-Cell+Adaptive-Mesh-Refinement code.
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2. Time-dependent modeling of transient effects in diode with fast rise-time

The control of the beam head by using appropriate shapes and rise-time of the applied voltage
controling the beam extraction and acceleration in the source is of great importance if one
needs to avoid ion loss to the wall and its adverse effects. Fig.1 displays snapshots of the beam
head in the matching section of the High-Current Experiment (HCX[2]) conducted at LBNL
for two different rise-time (using the same waveform obtained from experimental data). Using
a rise-time of 800ns, the simulation predicts a significant mismatch of the head resulting with
loss of a small fraction of particles at the wall. According to the simulations, shortening the
rise-time to 400ns provides a better match of the beam head with outer particle trajectories
away from any structure.

Short pulse (200ns flat top) with very short rise-time (¡50ns) are envisioned for the next
possible HIF experiment, the Integrated Beam Experiment (IBX[2]). The modeling in this
range of parameter is quite challenging and the simulation tools must first be proven to be
efficient on similar problems for which the solution is known.

For a one-dimensional diode, Lampel and Tiefenback [4] demonstrated that an analytical
solution for a waveform of the applied voltage producing a Heaviside step for the current
profile existed and is given by

V � t � � 1
3

t
ttransit

�
4 � � t

ttransit � 3 �
Vmax (1)

where Vmax is the voltage that is applied at steady state and ttransit is the transit time of a
particle from the emitter to the collector. The latter quantity is given by

ttransit � 3 � d � 	 m
2qVmax

(2)

where q and m represent the charge and mass of particles and d is the distance between
the emitter and the collector.

In WARP[3], the standard algorithm for injecting particles uses a virtual surface located
at distance di from the emitting surface. After a field solve, the potential drop Vi computed
between the emitter and the virtual surface is used to evaluate a current I � �V 3 
 2

i � d2i
assuming a Child-Langmuir emission between the two surfaces (� � 4

9�0 � 2q � m). The
obtained current is used to launch N new macroparticles using the formula N � I� t � qm where
qm is the charge of a macroparticle and � t is the time step.

Using this algorithm on a uniform grid of 160 cells, a diode length of 0.4 meters, a time
step of 1ns and a steady-state current of 30A with the Lampel-Tiefenback waveform as given
in (1), we have obtained the current history given in Fig.2,a). We observe that we get large
amplitude low-frequency oscillations slowly damping in time. The history of the number of
particles injected at each time step that is given in Fig.3 also features high amplitude low-
frequency oscillations which may be the cause of the oscillations observed on the current
history.

2.1. Application of the Lampel-Tiefenback method at the discrete level

The only parameter controling the number of particles injected at each time step is the voltage
drop Vi computed between the emitter and the virtual surface. Getting a Heaviside current
profile implies to emit a fix number of particles per time step from time zero, implying to
start with a non-zero applied voltage, in contradiction with the Lampel-Tiefenback profile. In
order to circumvent this contradiction which was due to the application of a solution obtained
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using infinitesimal calculus to discretized simulations, we decided to apply the method that
Lampel and Tiefenback used to derive their solution at the discretized level directly. Knowing
the current I and the distance di, the quantityVi is uniquely determined byVi � � Id2i � � � 2 � 3and
must be a constant to ensure a constant number of particles emitted per time step. Using the
linearity of the Poisson equation, we can separate the overall solution into one component
V0 resulting from the emitter-collector system with applied voltage but no charge between
the electrodes and another componentVg resulting from the system with charge but grounded
electrodes. We name V0i and Vgi the potentials corresponding to these two components at the
virtual surface location. At any given step, we want Vi � V0i � Vgi � Constant. The charge
density profile is known from the particle distribution at all time steps. Thus Vgi is always
defined and we can compute V0i � Vi � Vgi. Remarking that V0 is a scaling of the solution at
maximum voltage without charge, we get that the voltage that is to be applied between the
electrodes at a given time step is given by Vapplied � Vmax � V0i � Vimax � Vmax � Vi � Vgi 	 � Vimax
where Vimax is the voltage on the virtual surface at maximum voltage with no charge. The
history of the voltage thus obtained is displayed in Fig.4,a) and compared to the infinitesimal
Lampel-Tiefenback solution. As expected, the voltage does not start at zero but at almost a
quarter of the maximum voltage. It is quite remarkable to notice that for times greater from the
transit time of particles from the emitter to the virtual surface, the computed voltage history
catch-up with the infinitesimal profile and become indistinguishable from it. As can be seen
on Fig.2,b), starting at a non-zero value for the voltage in order to get a constant number
of particles emitted at each time step provides a current history profile which is closer to a
Heaviside step, except for a peak at the front.

2.2. Subgridding of the emitter to virtual surface region

As informative and useful the application of the Lampel-Tiefenback technique at the discrete
level to obtain an ideal current profile is, it is of little help for modeling the beam response
to profiles that differ from the ideal profile, as may be imposed by experimental constraints.
However, if we can get to lower the initial voltage value as obtained by this technique to a
negligible value, then applying this technique or applying the infinitesimal voltage solution
will be equivalent.

If we set the maximum voltage to start the simulation with to be one per-cent of Vmax,
then we get from the previous relations and a little algebra that we would have to augment the
resolution by a factor of 10000, meaning a grid of 1.6 million meshes for a 1-D simulation.
It is clear that the use of an irregular mesh imposes itself at this point. For easy extension to
2-D and 3-D (which description is differed to another article), we have opted for a subgrid
patch which extends from the emitter to the virtual surface. In order to be able to get to a very
fine resolution close to the emitter, we set the mesh spacing so as to obtain a uniform charge
density in the patch at steady-state (assuming Child-Langmuir flow). At each time step, the
potential is first obtained on the main regular grid and the boundary values of the patch are
interpolated from the main grid solution. The field is then solved inside the patch (note that
charge density deposition is performed inside both the main grid and the patch). Using 200
cells in the patch allows for an initial applied voltage to be less than one per-cent of Vmax and
we can check on Fig.4,b) that the voltage history profile obtained from the simulation is now
undistinguishable from the infinitesimal Lampel-Tiefenback solution from the start. This has
been obtained without deterioring the current profile, as can been checked in Fig.2,c), which
is almost identical to the one of Fig.2,b). The peak, however, that we may have assumed to be
caused by the voltage starting at a non-zero value is still present. Our assumption was at this
point that the peak is due to an underresolved front of the particle distribution.
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2.3. Application of an Adaptive-Mesh-Refinement patch following the particle distribution
front

In order to check this assumption, we have added an Adaptative-Mesh-Refinement patch
following the front of the particle distribution. The patch had a resolution sixteen times higher
than the main grid and its position was reset at each time step according to the front position,
computed by locating the maximum absolute value of the current profile space derivative. The
result is displayed in Fig.2,d) and shows that the peak has now disappeared, giving a result
remarkably close to the infinitesimal solution. Another calculation was made at four times
the resolution used so far (mesh size x4, nb particles x4, time step/4) and snapshots of the
results are displayed in Fig.5. It shows that all the computed quantities are very close to the
infinitesimal solution.

3. Progress on the simulation of ion source using WARP axisymmetric AMR prototype

We have also pursued the simulation of the configuration of the source using the axisymmetric
PIC-AMR model prototype implemented in WARP, as described in [5]. We have showed in
[5] that setting a mesh refinement patch around the emitter region was helpful in getting result
almost as accurate as a run at higher resolution, at a fourth of the computational cost. The
edge of the beam, however, did not seem to be as well modeled as the core and we have done
the same simulation using this time an Adaptive-Mesh-Refinement patch which covers the
vicinity of the emitter but also follows the beam edge (see Fig.6, top). Fig.6,bottom) displays
a comparison of the emittance profiles obtained once the beam has reached steady-state for
three different resolutions without using AMR (ngf: factor of number of grid meshes for
each dimension, npf: factor number of particles) and one case using AMR. The phase-space
projection in the space R-R’ and the charge density profiles taken at the exit of the source
are also given in Fig.7. Using four times less particles, the run using AMR uses a fourth of
the memory and a fourth of the run time necessary to achieve essentially the same result as
obtained from a run on a unique regular grid at the highest resolution used in this test.

4. Conclusion

We have extended the work presented in [5] by performing a 1-D time-dependent and a
2-D axisymmetric converged to steady-state tests using both the AMR method coupled to
the Particle-In-Cell technique. For time-dependent simulation, the use of the AMR patch as
proved to be, together with the use of an irregular gridded patch, indispensable for reaching
an accurate modeling of the beam front. For steady-state simulations, AMR is essential for
modeling the beam edge with accuracy while maintaining a good level of statistic in the core
of the beam. The obtained results demonstrate that the Adaptive-Mesh-Refinement technique
can be successfully used with the Particle-In-Cell technique and open the way to simulations
that would otherwise be out of reach on current and near-future hardwares.
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Figure 1. Snapshot of the beam head for simulations of the HCX experiment for two different
rise-time of the applied voltage. On the left, the rise-time was of 800 ns (wavefrom and
rise-time were given from actual experimental data) and the simulation predicts an explosion
of the beam head, leading to loss of particles at the wall and raising concerns for potential
breakdowns and electron effects. The same simulation using a shorter rise-time (400ns)
predicts better control of the beam head.

Figure 2. The current history is plotted versus time for four simulations using different
numerical techniques. The black curve represents the history profile obtained from the
simulation (averaged over ten time steps to damp high-frequency statistical noise). The red
curve is the analytic solution. Details of algorithms are given in the text.
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Figure 4. Voltage history used in results displayed in Fig.2,b) and Fig.2,c) respectively (black
curves). The red curves is the infinitesimal Lampel-Tiefenback solution.

Figure 3. History of the number of particles injected per time step for the first 660 time steps
corresponding to the case of Fig.2,a.
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Figure 5. Snapshots of a) current profile, b) z-Vz phase-space, c) charge density, d) applied
voltage versus z (black curves). The red curves represent the infinitesimal steady-state
solutions except on a) where the steady-state current solution is not displayed and the two
red marks show the limits of the AMR patch as located at the time step of measurement (the
snapshots are from a calculation at four times the resolution of results displayed on previous
figures).
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Figure 6. Top: prototype of AMR meshing used to follow the beam edge. The fine gridded
area is remapped at each time step to cover the emitter region and the edge of the beam.
Bottom: comparison of emittance results for three different resolutions without AMR and for
one run using AMR.
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Figure 7. Left: phase-space projection and charge density at grid exit for run on one grid
at highest resolution. Right: same data for run at coarser resolution using AMR patch to
compensate. The run using AMR takes about a fourth of the run at highest resolution both in
computer memory and run time, for an almost equivalent result.
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Abstract. We present a new implicit scheme for calculation of transversal wake

potential of short bunches in very long smooth structures. The scheme is able to 

model curved boundaries and does not suffer from dispersion in longitudinal

direction. It is based on splitting the discrete curl operator in transversal and

longitudinal parts. Unlike previous conformal approaches the scheme has a second

order convergence without the need to reduce the maximal stable time step of 

conventional staircase method. This feature allows usage of a moving mesh easily.

Several numerical examples are presented and algorithm is compared to other

approaches.

1. Introduction 

The beam dynamics of high-current linear accelerators is dominated by the effect of

wake potentials of the highly conducting metallic structures surrounding the beam 

trajectory. In most cases the finite difference methods can be applied successfully for

calculation of wake fields in accelerators [1], [2]. However the existing computer codes 

experience severe problems in short range wake field calculation for ultra short bunches 

[3]. Two main sources of the problems are the grid dispersion and the staircase 

geometry approximation.

To develop the scheme without dispersion in longitudinal direction we split the curl 

operator in the transversal and the longitudinal parts and use an implicit scheme based 

on the transversal part. The new scheme is conditionally stable and allows using the 

“magic” time step, equal to the space step in the longitudinal direction divided by the

speed of light. 

To overcome the staircase problem a conformal scheme described in the [4] is used. 

Unlike other conformal approaches this scheme is second order convergent without the 

need to reduce the maximal stable time step of the conventional staircase method. This 

feature allows to use a moving mesh and the “magic” time step without a need for

interpolation.

In the second section we state the problem. In the third part the new implicit scheme

is introduced. In the fourth part realization of the scheme in staircase approximation for 

rotationally symmetric case is described and then in the next section a conformal second 

order convergent scheme is developed. In the sixth part a new algorithm for indirect 

integration of wake potential is introduced. Finally we show several numerical examples

and compare the scheme with other approaches. 

2. Wave equation for vector potential 

We consider a perfectly conducting structure  and assume that the bunch is moving in S
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domain  with the velocity of light  and is characterized by a charge distribution� c � .

The bunch introduces an electric current ��j c  and thus we have to solve for 

t

�
�� � �

�
H D j ,

t

�
�� � �

�
E B ,    (1) 

�� 	 �D , 0�	 �B

,1
��H B ��D E , x�� ,

,0� �n E x S�
The full field  can be decomposed into the field of the bunch in free space 

 and a scattered field 

,D H
0 0,D H

0s � �D D D , 0s � �H H H .     (2)

The scattered field can be presented by vector potential :A

s � ��D A , s

t

�
�
�

H A .     (3)

Substitution of the presentation (3) in the system (1) gives the problem for the vector

potential A
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3. Implicit scheme

The new scheme will be introduced in context of Finite Integration Technique [5]. 

Starting from Maxwell’s equation in integral form and introducing decomposition of the 

computation domain into a collection of cells, we obtain a set of discrete equations on a 

grid doublet:

, , ,
d d

dt dt
.� � � � �Ce b Ch d j Sb 0 Sd q�

t

(5)

They are completed by the discrete form of the material relations ,

. To establish a time-stepping algorithm we can approximate the time

derivatives in (5) by central difference expressions with 

1� ��e M d

1
��h M b

0nt t n� � � :

1

1 1 2n n nt 
�
� �� � �h h M Ce , 1

1 2 1 2
1 2( )n n T n T n nt � �

� �� � � � �M C h C he e j , (6) 

1 1(1 2 )n n n n� �� �� � � �h h h h� ,

where we have split the operator  into the transversal operator  and the 

longitudinal operator  and 

T�C C 1
TC

2
TC �  is a numerical parameter to be defined. If we note the 

longitudinal coordinate by z  and the transversal coordinates by ,r � , the operators have 

the form
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  From the system (6) we receive a numerical scheme for the vector potential :A
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n
sd�

��

� �a h , 0 0

nt

n d�
��

� �a h ,

where the vectors ,0h sh  correspond to the fields ,0
H

s
H  in the representation (2).

This scheme approximates the problem (4). The vector  approximates the boundary 

conditions.

n
F

It is easy to show [4] that all eigensolutions of the spatial discretization correspond 

to non-dissipative and non-growing oscillations with a real-valued circular frequency 

j j� ��  and the time-dependency � �( ) Re ji t
t e

��h .

The next step in the stability analysis is the stability of the time-stepping scheme. A 

sufficient spectral stability condition in free space is

, 0.25 .c t z �� � � �       (8)

With the time step  allowed by condition (8) the scheme has no dispersion 

in the longitudinal direction and a moving mesh can be employed easily. The results in 

this case are fully equivalent to a stationary mesh, as no interpolation is necessary. 

c t z� � �

To reduce dispersion in the transversal direction we should use minimal value of � .

4. Realization of the scheme for rotationally symmetric geometry with staircase

approximation of the boundary 

In this section we describe the realization of the above scheme for the case of a

rotationally symmetric geometry with diagonal material matrices 1��M , 1� �M .

For a bunch moving offset  from and at speed of light  parallel to the axis of a 

rotationally symmetric structure, the source current

a c

j  can be presented as 

00

( / ) ( ) cos

1 mm

c z c t r a m

a

� � �
� �

�

�

� �
�

�j z

where ( )s�  is the longitudinal charge distribution and  is the azimuthal mode

number.

m

The numerical scheme (7) for mode  has the form m


 � 
 �1 1 1 1

1 2 1 1 22 ,
r z z

n n n T n n T n T n
r r r z z r r z r z rt m

� �
�� � � �� � � �

� �  �� � �  �  �  �M a a a P M P a M a P M P a M P a F1

n
rm � �  (9) 


 � 
 �1 1 1 1

1 2 1 12 ,
r z r z

n n n T n T n n n

z z r r z z r rt m
�

1

nm� � � � � �� � � �� � � �
� �  �� � �  �    �M a a a P M P a P M P a P M a P M a F

� �


 � 
 �1 1 1 1

1 2 1 1 22 ,
z r r

n n n T n T n T n
1

n

z z z z r z r r r z zt m m
� �

�� � � �� � � �
� �  �� � �  � �   �M a a a M P a P M P a P M P M a F

� �

where
1 1(1 2 )n n n n

p p p p�� � ��  � a a a a , ,, p r z�� .
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When a bunch moves along the axis, only the �A  component of vector potential is

different from zero and our scheme with 0.5� �  is reduced to the staircase scheme of 

the paper [6]. 

 The material matrices 1��M , 1� �M  in staircase approximation of geometry are 

diagonal and it is possible to use the divergence relation

� �1 1 1

1 1 0 1 0( ) ( )
r z

r r r z z zm
�

0
� �� � �� � �

� � �� 	 	 	a M P M a a P M a a � a (10)

to eliminate the �a  component from the equations for the ,ra za  component:

� �
� �

1 1

1 1 1 1 1 1 1 1

1 2 1 1

1 2 1

2

€( ) (

r

z r z z z

n n n T n
r r r z z r

T n T
r r r r z z r z

t

m

�

� � �

� �

� � � � � � � �

� �

� � � � � � � �

� � 	 �

� �

� 
 � 	 � 	

	 	 	 �

M a a a P M P a

M P M P M M a M P M P M P M P a F) ,T n n
r�

 (11) 

� �

� �
1 1 1 1 1 1 1

1 1

1 2 1 1 1 1

2

2 (

€ .

z r z r r

r

n n n T n T T n

z z z z z z z r r z r

T n n

r r z z

t

m

� �

�

� � � � � � �

� �

� � � � � � �

� �

� � 	 � � �� 
 � 	 � 	 �

	 	 �

M a a a M P M P M a M P M P M P M P a

P M P M a F

1 )
��
� 	

The system (10) does not contain static solutions and its dimension is reduced by 

 in its rank. It can be solved easily. At the first step we calculate the vector1/3 1n
z
	a  and 

have to solve the linear system with the matrix 1 1

2 2 2
-1 1

z z r

T
r re

t m t
�� � �� �� � �	 
 	 
I M P M P M M .

This matrix is a block diagonal one with zN  blocks. Each block is a three-band matrix

of size  and can be resolved by  operation. Now we can use the componentrN ( rO N )

1n
z
	a  in the equation for the component 1n

r
	a  and have to solve the linear system with

the matrix 1 1 1 1 1

2 1 2 2

r z r r z

T

r rt m
�

1t
� � � � �

� � � � � � �
�	 
 	 
I M M P M P M M M

�
� . This matrix is again a block 

diagonal one with zN  blocks. Each block is also a three-band matrix of size  and can 

be resolved by  operation. 

rN

( rO N )

)

The above consideration shows that resolving implicitly of the system (11) demands

only  operations and the algorithm requires the same order of operations as 

the explicit FI-TD/FDTD method used in such codes as TBCI, MAFIA [5].

( r zO N N

5. Conformal scheme

With the standard staircase approximation of curved boundaries we obtain only a first 

order convergent scheme in the 2
hL  grid norm. To develop a second order convergent 

scheme we use the approach of the paper [4].

We allow the cells of the grid to be only partially filled by a PEC material with an 

arbitrarily shaped interface. Since the area of the cells near the boundary is reduced, the 

time step in the conformal scheme has to be reduced, too.  To overcome this problem 

and to receive a stable algorithm without reducing the time step we modify only the 

original material matrix 1��M  which is a composition of diagonal matrices:

,1�� �M RM
1
pijk���M , 1

pijkr
��R , pijk pijk pijks S� �� , pijk pijk pijkr S L� , where 

denotes a reduced cell area [4]. A new material matrix

s

1��M  is composed by the

relation , where 1

T
�� �M V DV 0� �D RU  is a diagonal matrix, responsible for the 

order of the approximation, and V  is a matrix of weights. In [4] we described building 
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of the matrix 1��M  for explicit algorithm. Since the scheme is implicit in transversal

direction we use weights only in longitudinal direction and only for facets in  and rz z�
planes.

To simplify the notation, we consider only one -plane and omit the index  for 

the

rz j

� -direction. At first we will build an auxiliary matrix :0V

0
, 1ik ikv� � �   ( );

0
, 1 1max(0, )ik i k ik ri kv a� � �� �� �� �   ( );

0
, 1 max(0, )ik i k ik rikv a� � �� �� � �   ( );

Here,  is a constant parameter witha 0.5 1a� � . In all numerical examples shown in

the next section the parameter a is equal to 0.99.  It follows from the relations above

that only cells near the boundary will give a contribution to non-diagonal elements of 

the matrix .0
V

From the matrix  we will build a matrix :0
V V

1 1 1 1 2 2 1 1

2 2

0 0
, , ,ik i k ik i k i k i k

i k

v v v� � � � � �� �     (12)

where the summa is taken over all elements of corresponding column.

The diagonal matrix  has elementsU

1 1 1 1

1 1

1

,ik ik zi k i k

i k

u v� � ��
�
	


� ��
�
 �
� �

,      (13)

where the summa is taken over all elements of the corresponding row. 

A geometric interpretation of the above procedure is considered in [4]. 

Relations (12), (13) allows us to show that in the boundary cells we have at least 

first order local approximation error in the material relations. We consider again the 

situation when only the weight , 1ik i kv� � �  for one adjacent cell is unequal to zero,

,       (14)1

*

�� �M V RUV

� � , 1 , 1 2

, 1 , 1

( )
€ €

ik ik ik i k ik i k
ikik

ik ik ik i k ik i k

b v b v
b h

v v

� � � � � �
��

� � � � � �� �
� �

� �

�
� �

�
RUV O h� ,

� � .1

2( )ik
ik

b h O h�� �
� � �M

The last relation follows from the relation (12), which means that the summa of all 

elements of any row of the matrix  is equal to one. Thus, we have at least a first order 

local approximation error in the material relations near the boundary, and globally a 

second order convergent scheme in  grid norm if it is stable.

*
V

hL2

For spatial stability, it follows directly from (14) that the material matrix 1��M  is 

symmetric  and  matrix  is positively semidefinite.1 1

2 Tc
� �� ��A M CM C

In our conformal scheme the material matrix 1
r�
�M  is non-diagonal one. It makes the 

usage of divergence relation (10) too expensive. For this reason we will describe next a

different approach based directly on the system (9). 

At the first step we calculate the vector 1n

z

�
a  and have to solve linear system with the 

matrix 1

2 2 2
-1 1 1

z j z

T
r re

t m t
r� � �� �� � � �I M P M P M M� � � . The same as in staircase

approximation this matrix in the conformal scheme is a block diagonal one with zN
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blocks. Each block is a three-band matrix of size  and can be resolved by 

operation.

rN ( )rO N

Now we can use the component 1n
z
�a  in the equations for components ,1n

r
�a

1n
�
�

a

which are coupled. We have to solve a system with the matrix

 , (15)
1 1 1

1 1 1

2 2

2

-1

r z r z

-1

z z

T
r

T
r r

t m m

m t
� �

� � � �

� � � �

� �

� �

� � �

� � �

�� � 	

�

� � 	

� 

I M M M M P

M P M I M P M Pr

which is a block diagonal one with zN  blocks.
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11b

22a

22b
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22b�� 22c�

11b

22a�

Figure 1. Reduction of the matrix

Now as the first step we consider an algorithm for the case of diagonal material

matrices (as it has place in staircase approximation of geometry) and then we show how 

to use this algorithm for the conformal scheme with non-diagonal material matrix 1

r�
�M .

In the case of diagonal matrix 1

r�
�M  each block of matrix (15) is of size  and has a 

seven-band structure as shown in Fig.1. 

2 rN

It can be reduced to a three diagonal type by operation.  This means its 

resolving takes only  operations and the algorithm demands the same order of 

operations as the explicit FDTD method. 

( rO N )

)( r zO N N

For the common case of non-diagonal matrix 1

r�
�M  we use an iterative algorithm

based on the splitting of the transversal operator T . If we note by 1

0

��M  the diagonal 

part of the material matrix 1��M , the iterative scheme reads

i� �0 1 1 1 1,� �( ) ( )n i n n i� ��� � �I T a F T a 1,2,...� (16)

� �1 1(1 2 ) 2 ,n n n n n� � � �� � � � � � � �F T a a a a La Fn n

,1 1

0 2 0
1
Tt � �� �� 	T M CM C � �1 1 1

1 2 0
1
Tt � � �� � �� 	 �M CM C

.n n�

)

T M ,

where the operator  is of very low rang.  As the start value of the unknown vector we 

use a solution of the system

1
T

 (17) � � � �0 1 0 0 1 1 1( ) (1 2 ) 2 ( )n n n n n� � �� � �� � � � � � � � �I T a T a a a a T L a F

The expression (17) the same as (7) is an approximation of the problem (4) of order

 but unstable one for c t2 2(O z t	 � 	 z	 � 	 . After solution of equation (17) it was 

enough to do only one iteration (16) to receive a stable algorithm for our numerical

examples. For both equations (16), (17) we have to invert the matrix 0��I T  and
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consequently the described above algorithm for seven-band matrix can be applied. 

In all examples shown in the next section we used the scheme (16), (17) with 

moving mesh.

6. Indirect method for calculating of wake potential 

To calculate the wake potential  we used a modification of the indirect method

described in [8]. 

mW

0r
L

0C
1C

0r

2C

3C

4C

5C

z
0z z� z � �

Figure 2.  Contours for the indirect integration.

The main feature of our method is that (the same as in direct method) we integrate 

only s
ze  component of electromagnetic field along a straight line 

0r
L  at radius  and 

use other field components only at the end of the structure. Note, that in original method

[8] along the straight line 

0r

0r
L  we have to integrate a linear combination of s

ze  and s
zb

components.

As it was shown in [8], for each mode m  the differential forms

[ ] [m s s s s m s s
S r r z zr e cb e cb dr r e cb d� �� � � � � � � ] z ,

[ ] [m s s s s m s s
D r r z zr e cb e cb dr r e cb d� �� � �� � � � � � ] z ,

are closed. Hence, we can write 

00r

m s s

z z
L C

QW e dz e dz e dz
�

��
� � �� � � s

z ,

� 	
0 0 15

S0 0

1

2

s m m

z D S mC C C
e dz r r

a


� � �� ��� � � � �
� �� � � ,

0 0

m m
a a

r r



�
� � � �� � �  �
� � � �

where  is a radius of outgoing tube and other parameters are shown in Fig.2. For 

,
5

15 1 ii
C C

�
� ,

a

perfectly conducting geometry from the above relations it is easy to obtain 

0 1 5
0 0

1s m m

z D S S Sm mC C
e dz r r


 

2 Ca a

� �
� �� �

� �� �� ��� � � � � � � �� � �

� 	 � 	 � 	 � 	� 	0

0
0 0

0

1 1
[ ] [

2 2

r am m ms s s

r r r
r

r a e cb e cb dr r r r r r a e cb dr� � �
 
�� � � � � � � � � �� � ]
m

� 	 � 	 � 	� 	
0

0 0

1
[ ] .

2

a m m m s

r
r
r r r r r a e cb dr�
�� � � ��

As we see the infinite contour  can be replaced by finite contours . The 

Panowsky-Wenzel theorem[9]. 

0C 1 5,C C

transversal wake potential mW�  can be found from longitudinal one by applying the 
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7. Numerical examples

The conformal scheme (16)

xamples for monopole wa

is included in a newly developed computer code. Numerical

kee 0m �  were presented in [10]. In this section we will 

show results for the dipole wake 1m � .

101 102
10-4

10-2

100

4 / h�

rr

z

101 102

10-2

4 / h�

100� � staircase

r

z

r

z

conformal
staircase

conformal

( )O h

2( )O h

3( )O h

( )O h

2( )O h

3( )O h

Figure 3. Realtive error of dipole loss factor
1L  for a pillbox and a sphere vs.

number of mesh steps per RMS bunch length (Gaussian charge distribution) 

Fig.3 shows the relative error of the loss factor
1 1 1/calcL L L� � � for a Gaussian

bunch with 0.25� � cm passing through a pillbox (Fig.3 left) and a spherical resonator 

adius cm. Th

cm. Of

(Fig.3 right). The pillbox has the length 1.8  cm and r e sphere has the

diameter 1.8 fset of the bunch from the axis is equal to 2

0.9

�  for both geometries.

The analytical loss factor 1L  is equal to 0.7589 V pC  for the pillbox.  For the sphere 

we use an extrapolated loss factor equal to 0.3752 V pC . The error for stationary mesh

is demonstrated by lines, the results for esh are shown by triangles and 

circles.

a moving m

�
a

b

c

L

Figure 4. Geometry of the collimator. 

our numerical examples we use

2b c mm� � . In Fig. 5(left) the transversal dipole loss factor  for the

Fig. 4 shows the geometry of the collimator. In

35a m� m , 1L�

collimator with 10L cm�  is shown for different mesh resolutions / h� , where 

1mm� � fo ian bunch and h  is the mesh step. The error co ared to

reference value is n the figure too. The blue line shows results for the new

schem nd the black one for ABCI 9.2.1 de [7]. In Fig. 5(right) the transversal dipole

loss factor 1

r the

shown o

e a

Gauss mp

co

L�  for the collimator with 20L cm�  is shown. 
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Figure 5. Transversal dipole loss factor 
1L� for the collimators with 

10L cm� (left) and 20L cm�  (right) 
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Figure 6. Transversal dipole wake function for the collimators with

20L cm� (left) and 50L cm�  (right) 

ho he a sversa ake pot s�  for collimators with 1Fig. 6 s ws t tr n l dipole w ential W ( )

20L c� m  and 50L cm� . The black curves show results for ABCI code and the blue 

ones show results for the new scheme.
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Figure 7. Dipole wakes for TESLA cryomodule.

new code remains on the From the above examples we see that the error for the

me level (for example, it is about 3% for / 5h� � ) independently from the length of sa

collimator. The reference code ABCI demands much more dense mesh for the same

accuracy, which strongly depends on the co length. In the last example even

with 40 points on 

llimator

�  the error is in excess of 100% for ABCI code. 



352

0 200 400 600 800 1000
-500

-400

-300

-200

-100

0

100

200

300

400

500

/z cm

/r cm

30 : 1
10 : 1

100 : 1

1 : 1

Figure 8. Geometry of TESLA cryomodule.

tials of Gaussian bunch withFinally, we show in Fig.7 the dipole wake poten

1 mm� �  for TESLA cryomodule [11] containing eight cavities and nine bellows as 

T. “On the Numerical Solution of Maxwell's Equations and Applications in

Accelerator Physics” 1984 Particle Accelerators 15: 245-291.

83.

r. Modelling, to appear.

lifornia, USA.

[8] Potentials”

cy Fields” 1956 Rev. Sci. Instrum 

[10]

002, Paris, France. 

shown in Fig. 8.
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