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ABSTRACT. We provide a rigorous lower bound for the topological entropy of planar
diffeomorphisms in terms of the geometry of finite pieces of stable and unstable mani-
folds of hyperbolic periodic points. Our results suggest the possibility of writing com-
puter programs which would automate the estimation of reasonable approximations for the
topological entropy of mappings and differential equations. Applying them to the stan-
dard Henon map H(x,y) = (1 + y−ax2,bx) with a = 1.4, b = 0.3 gives the lower bound
htop(H) ≥ 0.46469.
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1. Introduction

The topological entropy h( f ) of a discrete dynamical system f is an important in-
variant which gives a quantitative measure of orbit complexity. There are several natural
definitions of this invariant, but, except in special cases (e.g., symbolic systems) it is dif-
ficult to compute or estimate. In one-dimensional dynamics a number of techniques have
been introduced to develop algorithms for the estimation of h( f ) (see [6], [1], [30]).
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2 S. NEWHOUSE, M. BERZ, J. GROTE, AND K. MAKINO

In the case of two dimensional diffeomorphisms several ad-hoc methods have been
developed [15], [7], [12], [36] to identify various subsets which factor onto symbolic sys-
tems, and hence, give lower bounds on the topological entropy. A numerical scheme based
on length growth was given in [29].

In Pieter Collins work [10], [11] certain sets called trellises which consist of pieces of
stable and unstable manifolds are used to describe forcing orbits, periodic orbits, and lower
bounds for the entropy in various isotopy classes of diffeomorphisms which fix certain sets
of orbits.

In this paper, we apply methods for the rigorous computation of stable and unstable
manifolds to the problem of estimating the topological entropy of invariant sets given by
certain trellises. We will use these methods to estimate the entropy of the standard Henon
map: H(x,y) = (1+y−ax2,bx) for a = 1.4,b = 0.3. We obtain the lower bound htop(H)≥
0.46469. To our knowledge, this estimate is the largest lower bound currently available for
the entropy of this map. Even so, it will be clear that this estimate can be improved, and we
do not touch the issue of how closely one can expect to approximate the true entropy. In
addition, we mention that we only consider lower bounds. The question of finding upper
bounds which get close to the real entropy is virtually wide open. There are general upper
bounds due to Yomdin [34], but in most cases they are much greater than the true entropy.

2. Definition and properties of Topological Entropy

Let (X ,d) be a compact metric space, and let f : X → X be a continuous self-map.
Given a positive integer n, and a real number ε > 0, a subset E of X is called an (n,ε)-
separated set in X if, for x �= y ∈ X , there is a j ∈ [0,n) such that d( f jx, f jy) > ε. The
maximal cardinality of any (n,ε)−separated set is denoted r(n,ε), and the quantity

h( f ) = htop( f ) = lim
ε→0

limsup
n→∞

1
n

log r(n,ε)

is called the topological entropy of f . Thus number is a measure of orbit complexity
of the system ( f ,X). It enjoys many nice properties (see e.g. [32]). For instance,

(1) If f and g are topologically conjugate, then h( f ) = h(g),
(2) If f = gn for some positive integer n, then, h( f ) = nh(g), and, if M ( f ) denotes

the set of f−invariant probability measures of f , then
(3)

h( f ) = sup
µ∈M ( f )

hµ( f )

where hµ( f ) denotes the measure-theoretic entropy of f with respect to the
measure µ.

In the case of smooth systems, the topological entropy is related to certain other geo-
metric quantities.

Let f : M → M be a Cr diffeomorphism of a compact two dimensional Cr Riemannian
manifold for r ≥ 1. Given a Cr curve γ in M, let | γ | denote the arclength of γ. Let
log+(x) = max(log(x),0) denote the positive part of the natural logarithm function. The
length growth of γ is the quantity

(1) G(γ) = G(γ, f ) = limsup
n→∞

1
n

log+ | f n ◦ γ |.
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ON THE ESTIMATION OF TOPOLOGICAL ENTROPY ON SURFACES 3

For 1 ≤ r < ∞, let Dr(M) denote the space of Cr diffeomorphisms of M with the
uniform Cr topology. In the case r = ∞, the topology in D∞(M) is defined to be the
weakest topology making all of the inclusions D∞(M) → Dr(M), 1 ≤ r < ∞, continuous.

THEOREM 2.1. [28],[33] Let M be a compact C∞ two dimensional manifold. and
f ∈ D∞(M). Then,

(2) htop( f ) = max
curves γ

G(γ, f ).

Further, the map f → htop( f ) is continuous as a map from the space of D∞(M) to R.

REMARK 2.2. (1) We remark that, in higher dimensional manifolds the map
f → htop(M) from D∞(M) → R is not always continuous, although it is up-
persemicontinuous.

(2) For simplicity, Theorem 2.1 is stated for compact manifolds, and, hence, does
not apply directly in the non-compact case. In our applications, which deal with
M = R2, the Euclidean plane, all entropies will be on invariant compact subsets.
So, we can and will use curves whose orbits stay in compact subsets to estimate
entropy. For more precise statements on this topic, see [27].

There is a useful class of dynamical systems in which topological entropy is natural
and computable. This is the class of subshifts of finite type or topological Markov chains.
For ease of notation, frequently one uses the acronym SFT for subshifts of finite type, both
singular and plural.

We will only need the case of automorphisms.
Let us recall the definition.
Let J = {1,2, . . . ,N} be a finite set of integers, and let ΣN denote the set of doubly

infinite sequences a = (. . . ,a−1a0a1 . . .) of elements in J with the metric

d(a,b) = ∑
i∈Z

| ai −bi |
2| i | .

The pair (ΣN ,d) is then a compact zero dimensional metric space. Let σ : ΣN → ΣN

be the left shift automorphism defined by

σ(a)i = ai+1

for all i ∈ Z. This is a homeomorphism of ΣN .
Given an N ×N matrix whose entries are 0’s and 1’s, we define

ΣA = {a ∈ ΣN : Aaiai+1 = 1 ∀i}
This is a closed subset of ΣN which is invariant under σ. The pair (σ,ΣA) is called a

subshift of finite type or topological Markov chain.
The topological entropy of the pair (σ,ΣA) is well-known to be the growth rate of the

number of admissible n−blocks and is also equal to the logarithm of the spectral radius of
A.

Given a smooth diffeomorphism ( f ,M), a subsystem of ( f ,M) is a pair ( f ,Λ) where Λ
is a compact subset of M such that f (Λ) = Λ. A subshift of ( f ,M) is a subsystem ( f ,Λ) of
( f ,M) with the property that ( f ,Λ) is topologically conjugate to a subshift of finite type.
We frequently abuse the notation by saying that a subset Λ of M is a subshift when the pair
( f ,Λ) is known. We also often say that Λ is a subshift of f .
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4 S. NEWHOUSE, M. BERZ, J. GROTE, AND K. MAKINO

A given smooth system may or may not have subshifts. The following remarkable
theorem due to A. Katok shows that, in dimension two, a smooth system has subshifts if
and only if it has positive topological entropy.

THEOREM 2.3. (Katok [16], [20]) Let r ≥ 2. A Cr diffeomorphism of a compact
surface has positive topological entropy if and only if it possesses subshifts. In fact, if
htop( f ) > 0 and ε > 0 is arbitrary, then there is a subshift Λ of f such that

htop( f ,Λ) > htop( f )− ε

Thus, in the case of surface diffeomorphisms f , it order to estimate the topological
entropy, one only has to find subshifts with large entropy. The difficulty here is that these
are often hard to find. In fact, one of our main purposes in this paper is to give methods to
find subshifts whose entropies are close to that of f .

3. Trellises and Entropy

Let r ≥ 2, and consider a Cr diffeomorphism f on the smooth connected two-dimensional
manifold M.

Let P = {p1, p2, . . . , pk} be a sequence of hyperbolic periodic points of f with asso-
ciated stable and unstable manifolds W u(pi),W s(pi). We recall that these are injectively
immersed curves which are defined by

W s(pi) = {y ∈ M : dist( f ny, f n pi) → 0 as n → ∞},

W u(pi) = {y ∈ M : dist( f ny, f n pi) → 0 as n →−∞}.
An interval in W u(p)(W s(p)) (or an arc) is a connected subset of W u(p)(W s(p))

which contains at least two points. An open interval will be written as (p,q) where p and q
lie in the same connected subset of some W s(p) or W u(p). The boundary of (p,q) consists
of the two element set {p,q}. We will denote the closure of a set E by Cl(E), and the
boundary of E by ∂E which is defined to be Cl(E)\ interior(E). In the case of subsets of
a stable and unstable manifold, we use the topology induced by the intervals.

A trellis T = (U,S) associated to the sequence P is a pair with the following proper-
ties.

(1) U = {U1, . . . ,Uk} is a collection of compact intervals in
S

i W
u(pi) whose union

is backward invariant; i.e. f−1(
S

iUi) ⊂
S

i Ui, and
(2) S = {S1, . . . ,Sk} is a collection of compact intervals in

S

iW
s(pi) whose union is

forward invariant; i.e., f (
S

i Si) ⊂
S

i Si.

Given a trellis T = (U,S), we let U =
S

i Ui, S =
S

i Si denote the union of the elements
of the collections U,S , respectively. Abusing the language somewhat, we sometimes iden-
tify the collections U,S with their unions, and speak of the trellis T = (U,S) where U,S
are subsets of M. Thus, the third condition of the definition of trellis (U,S) says that S is
forward invariant and U is backward invariant.

Also, we use the standard notation for images f i(A) of collections of sets as f i({A}) =
{ f i(A)}. In this way, we see that if T is a trellis, then so is each iterate f i(T ) with i ∈ Z.

We will only consider trellises for which S
T

U �= /0. Thus, the elements in S
T

U are
either periodic orbits or homoclinic points.

Throughout this paper, for simplicity, we assume that all trellises considered consist
of pieces of stable and unstable manifolds of a single hyperbolic fixed point p0. General-
izations to the case of arbitrary collections of periodic points are straightforward and will
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ON THE ESTIMATION OF TOPOLOGICAL ENTROPY ON SURFACES 5

be left to the reader. We also assume that the stable and unstable curves of the trellis have
at most finitely many intersections. These intersections consist of transverse intersections
and, perhaps, some homoclinic tangencies.

We let HP = HP(T ) denote the union of {p0} and the set of homoclinic points in
U
T

S. We assume that there is at least one homoclinic point.
Next, we define a homoclinic disk R associated to T . This is a connected component

of the complement M \ (S
S

U) whose closure is homeomorphic to a compact topological
2-disk. Note that homoclinic disks are open subsets of M whose boundaries are piecewise
smooth Jordan curves.

The boundary of Cl(R) consists of stable and unstable arcs and the points in HP
T

Cl(R).
We define the stable boundary of R to be the closure of the union of the stable arcs

in ∂R, and the unstable boundary of R to be the closure of the union of the unstable arcs
in ∂R. We denote these by ∂sR, and ∂uR, respectively. Each point pi in ∂R

T

HP will be
called a vertex of R.

If all the vertices of ∂R are transverse, then the stable and unstable boundary arcs
alternate as one moves along ∂R.

Of special importance to us will be homoclinic disks with exactly 4 transverse ver-
tices. These will be called rectangles. Given such a rectangle, we order its vertices as
(p1, p2, p3, p4) with (pi, pi+1) ⊂ S or (pi, pi+1) ⊂ U for 1 ≤ i < 4, and we write R =
R(p1, p2, p3, p4). On any surface M except the two-sphere S2 this representation of rectan-
gles is unique up to cyclic permutation of the vertices (since the complement of a disk is
not a disk and our rectangles are assumed to be topological disks). In S2, each such 4-tuple
in HP gives rise to two disjoint (open) rectangles.

The stable boundary of a rectangle R consists of two maximal stable arcs which we
call the stable boundary components of R. Similarly, the unstable boundary R consists of
two maximal unstable arcs which we call the unstable boundary components of R.

Since f is a diffeomorphism and the stable and unstable manifolds are f−invariant,
the following proposition is easily proved.

PROPOSITION 3.1. If R is a rectangle associated to the trellis T , then, for any integer
n, f n(R) is a rectangle associated to the trellis f n(T ).

Note that we can parametrize a rectangle R by choosing a homeomorphism h from the
unit square I2 = [0,1]× [0,1] onto Cl(R) such that h([0,1]×{0,1}) = ∂uR and h({0,1}×
[0,1]) = ∂sR. Fixing such a parametrization when it is desirable, we will refer to the
unstable boundary components as the top and bottom boundary curves of R and the stable
boundary components as the left and right boundary curves of R.

Now, let R be a rectangle.
A full-height arc in R is an embedding γ : [0,1] →Cl(R) such that γ(0) and γ(1) are in

different unstable boundary curves of R and γ(t) ∈ R for each 0 < t < 1. Similarly, a full-
width arc in R is an embedding γ : [0,1] → Cl(R) such that γ(0) and γ(1) are in different
stable boundary curves of R and γ(t) ∈ R for each 0 < t < 1. As usual, we will often
suppress the parametrizations of curves and identify the curve with its image.

An s−disk in R is a homoclinic disk R1 such that

(1) R1 ⊂ R,
(2) ∂uR1 ⊂ ∂uR, and
(3) ∂sR1 has a non-empty intersection with both unstable boundary components of

R.

Similarly, a u−disk in R is a homoclinic disk R1 such that
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6 S. NEWHOUSE, M. BERZ, J. GROTE, AND K. MAKINO

(1) R1 ⊂ R,
(2) ∂sR1 ⊂ ∂sR, and
(3) ∂uR1 has a non-empty intersection with both stable boundary components of R.

Following the notation of Pieter Collins [10], let us call a bounded connected compo-
nent of the complement of S

S

T a bigon if it is a topological disk whose boundary contains
exactly two (transverse) homoclinic points.

Now, let R1 be an s−disk in R. Since R1 is an open planar disk whose closure is a
closed topological disk and only its stable boundary arcs can intersect R, it follows that
there are exactly two stable boundary arcs of R1 which are full-height arcs in R. Let us call
these the left and right edges of R1, and denote them by γs

l ,γ
s
r. Further, each stable boundary

curve of R1 different from γs
l and γs

r has both of its endpoints in the same unstable boundary
curve of R. Thus, we may think of R1 as a full-height subrectangle of R in which certain
open bigons may have been removed. The stable boundaries of these removed disks (if
they exist) are smooth open arcs whose boundaries lie in the unstable boundary of R. A
similar statement holds for u−disks.

See Figure 1 for examples.
Next, we define a relation → on a collection of disjoint rectangles analogous to the

relation used in the construction of Markov Partitions in hyperbolic dynamics.
Let R = {R1,R2, . . . ,Rs} be a disjoint collection of rectangles associated to the trellis

T = (S,U).
The relation → on R is defined by saying that Ri → Rj if Ri

T

f−1Rj contains an
s−disk D such that f (D) is a u−disk in f (Ri)

T

Rj.

LEMMA 3.2. Let Ri and Rj be two rectangles as above with the property that Ri → Rj,
and let γ be any full-width open arc in Ri. Then, there is an open subarc η of γ such that
f (η) is a full-width open arc in Rj.

Remark. Lemma 3.2, which is fundamental for our work here, is in spirit related to
results in Burns and Weiss [7], specifically, in regard to the techniques and applications
of Lemmas 2.5 and 2.6 in [7]. However, the rectangles considered in [7] are compact and
disjoint, and, hence, Burns and Weiss only need the sets Ar(α) on page 103 of [7] to be
non-empty. In our work, at present, it seems that we need the corresponding sets to have
non-empty interiors which originate in full height disks and map by an appropriate power
of f to full-width disks.

Proof. Let Ri1 be the s−disk in Ri which maps to a u−disk in Rj. The stable arcs
in ∂Ri1 break into two collections: those which are mapped by f into ∂le f tR j and those
which are mapped by f into ∂rightR j. Let us call these collections Sle f t and Sright , and
their unions Sle f t ,Sright , respectively. As we mentioned above, there are unique full-height
stable boundary curves of Ri1: γs

l ∈ Sle f t , γs
r ∈ Sright .

The full-width curve γ meets both Sle f t and Sright . Letting φ : [0,1]→ γ be a parametriza-
tion of γ with φ(0) ∈ ∂le f tRi and φ(1) ∈ ∂rightRi, we set

t0 = sup
t∈[0,1]

φ(t) ∈ Sle f t .

Since φ(1) ∈ ∂rightRi, there must exist real numbers t ′ such that t0 < t ′ < 1 and φ(t ′) ∈
Sright .

Letting

t1 = inf
t∈[t0,1]

φ(t) ∈ Sright ,
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ON THE ESTIMATION OF TOPOLOGICAL ENTROPY ON SURFACES 7

we obviously have t0 < t1. So, if we set ζ to be the restriction of φ to the open interval
(t0,t1), then the image of ζ is the desired open subarc η of γ. QED.

Now, the collection of rectangles R = {R1,R2, . . . ,Rs} and the relation → determine
an s× s incidence matrix as usual setting

Ai j = 1 iff Ri → Rj.

This in turn determines a subshift of finite type (σ,ΣA) by

ΣA = {a = (. . .a−1a0a1 . . .) : Aaiai+1 = 1 ∀i ∈ Z},
and σ(a)(i) = a(i+1) for all i.
Our main result here is the following.

THEOREM 3.3. Suppose f is a C∞ diffeomorphism of the C∞ two dimensional mani-
fold M such that one can find a trellis T = (S,U) with associated collection R of rectangles
with the relation → defined above and the associated subshift of finite type (σ,ΣA). Then,

(3) htop( f ) ≥ logsp(A)

where sp(A) is the spectral radius of A

Remark. We expect that this theorem holds under weaker smoothness assumptions,
even for C1 diffeomorphisms f . However, because our rectangles are not necessarily dis-
joint, a proof in this more general situation seems more technical and we have not at-
tempted to seriously pursue that.

Proof.
It is well-known that

(4) logsp(A) = limsup
n→∞

1
n

logcard(Bn)

where Bn is the set of distinct n−blocks in ΣA.
Here an n−block Bj0, j1,..., jn−1 in ΣA is a finite sequence [ j0, j1, . . . , jn−1] with the prop-

erty that there is an element a = (. . .a−1a0a1 . . .)∈ ΣA such that ak = jk for each 0 ≤ k < n.
We will make use of formula 2. Thus, it suffices to find a curve γ and a constant C > 0

such that, for all n > 0,

(5) | f n−1(γ) | ≥C · card Bn.

Consider the collection of rectangles

R = {R1,R2, . . . ,Rs}
as above.
Since the rectangles Ri are disjoint, they form a partition of the the union

S

i Ri.
Let

R n =
n−1
_

i=0

f−iR

as usual.
The n−blocks are in one-to-one correspondence with the elements of the partition R n.

Thus, it suffices to estimate the number of elements in the partition R n.
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8 S. NEWHOUSE, M. BERZ, J. GROTE, AND K. MAKINO

Since there are only s rectangles in our collection, it suffices to consider all elements

Di0i1...in−1 = Ri0

\

f−1Ri1

\

. . .
\

f−n+1Rin−1

with Ri0 a fixed element in R .
Fix the element D = Di0i1...in−1 , and let γi0 be a full-width open arc in Ri0 .
By Lemma 3.2 there is a subarc γi0,i1 of γi0 such that f (γi0i1) is a full-width arc in Ri1 .
Similarly, there is a subarc ηi0i1 of f (γi0i1

) such that f (ηi0i1) is a full-width arc in Ri2 .
The pull-back γi0i1i2

= f−1ηi0i1 is then a subarc of γi0

T

Ri0
T

f−1Ri1
T

f−2Ri2 which
maps by f 2 to a full-width arc in Ri2 .

Continuing by induction, we obtain a subarc γi0i1...in−1
of γi0

T

D such that

(1) for each 0 ≤ j < n, the image f j(γi0i1...in−1
) is contained in Ri j , and

(2) the image f n−1(γi0i1...in−1
) is a full-width arc in Rin−1 .

Moreover, since the rectangles R′
is are disjoint (recall that they are open), we have that

distinct elements Di0i1...in−1 give rise to disjoint arcs γi0i1...in−1
.

Letting C denote the minimum lengths of full-width arcs among the rectangles Ri, we
get 5 as required. QED.

REMARK 3.4. The construction above has a familiar graph theory interpretation. Let
Γ be the graph whose vertices are the indices {1, . . . ,s} of the rectangles Ri with a directed
edge ei j from i to j if and only if Ri → Rj. The matrix A is, by definition, the incidence
matrix of the graph Γ. In this case, for each pair (i, j) there is at most one edge from i to j.

REMARK 3.5. (The edge construction) It is common to consider graphs with many
edges joining a pair of vertices. For instance, suppose that Γ1 is a graph with the vertices
{1, . . . ,s} and ki j ≥ 0 edges from i to j. In that case we consider the matrix B = (Bi j)
defined by Bi j = ki j. If we consider the new graph ΓB whose vertices are the edges of
Γ1 and whose edges are the pairs (ei1 j1 ,ei2 j2) such that j1 = i2, then we get a new inci-
dence matrix A1 and, as is well-known, the spectral radius of A1 is the same as that of
B. This construction, which we will call the edge construction, corresponds in the case of
trellises to the situation in which Ri

T

f−1(Rj) may consist of several disjoint s−disks in
Ri, and f (Ri)

T

Rj may, correspondingly, consist of several different u−disks in Rj . The
corresponding matrix B which is non-negative integer valued, may be used to give a lower
bound for the topological entropy of an invariant subset of f just as well. In our application
of trellises to the the Henon maps below, we will make use of this construction.

4. Computing stable and unstable manifolds

The is a substantial literature dealing with algorithms for the computation of stable
and unstable manifolds of a hyperbolic fixed point. For instance, we refer to the pa-
pers Francescini-Russo [13], Hubbard [19], Zou-Kostelich-Yorke [35], D. Hobson [18],
Krauskopf and Osinga [21], and Cabré, Fontich, and de la LLave [9]. Most of these al-
gorithms yield good results for fairly short pieces of the manifolds near the fixed point,
but they deteriorate fairly quickly as one gets longer and longer pieces. Accordingly one
important aspect of our work has been to develop adaptive verified methods for the compu-
tation of stable and unstable manifolds. This is done using Taylor Models and the computer
program COSY INFINITY [3] which can be used to give rigorous error estimates of long
parts of stable and unstable manifolds. In fact, current work on the implementation of
arbitrary precision arithmetic in COSY INFINITY holds the promise of allowing one to
compute extremely long pieces of invariant manifolds.
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ON THE ESTIMATION OF TOPOLOGICAL ENTROPY ON SURFACES 9

While the rigorous justification below of our estimate of topological entropy for the
Henon map currently depends on the use of COSY INFINITY, it is possible to motivate
the constructions using other, less accurate (in the large) computational methods. For this
purpose, we will make use of the following theorem which combines ideas in [19] and [9].

THEOREM 4.1. Let f be a Cr diffeomorphism from RN →RN, r ≥ 1, with a hyperbolic
fixed point at p and associated splitting TpM = Es ⊕Eu with dim Eu = 1. Let λ be the
eigenvalue of D f (p) with | λ | > 1, and let v be an associated eigenvector. For each n ≥ 1
define the function γn(t) = f n(p+λ−ntv). Then, the sequence of functions γn(t) converges
uniformly on compact sets to a Cr function γ : Eu → RN such that γ(0) = 0, γ′(0) = v, and

(6) f ◦ γ(t) = γ(λt)

for all real t.
The image γ(Eu) coincides with the unstable manifold of p.

Remark. The results in [9] are much more general than Theorem 4.1. Also, Hubbard
considers only analytic functions. He also considers multidimensional unstable manifolds,
has many nice examples, and emphasizes the global nature of the parametrizing function
γ.

5. Computation of the stable and unstable manifolds in Hénon Maps

We wish to apply our trellis theorem above to obtain a lower bound for the topological
entropy of certain Henon maps.

Consider the Hénon family of maps

(7) H(x,y) = (1+ y−a∗ x2,b∗ x)

Letting r =
√

b2 −2b+4a+1, and allowing x,y to possibly be complex, it can be
verified that the map H has two fixed points q0, p0 with

(8) q0 = (− r−b+1
2a

,−b
r−b+1

2a
)

and

(9) p0 = (
r +b−1

2a
,b

r +b−1
2a

)

We now fix the parameters a = 1.4, b = 0.3 which are, in fact, the original parameters
considered by Hénon in [17].

In this case the fixed points q0, p0 are both real hyperbolic saddle points.
We will focus on the right fixed point p0 ∼ (0.6313544770895,0.18940634312685)

and consider a trellis associated to it.
This trellis will be constructed in two steps.
First, we construct a disjoint collection of 13 open rectangles R = {R1,R1, . . . ,R13}

bounded by pieces of the stable and unstable manifolds of p0, and we consider the first
return map to the union

S

j R j . Thus, we set D =
S

j R j , and, for x ∈ D, we define r(x)
to be the smallest positive integer such that Hr(x)(x) ∈ D. It turns out that the function
r(x) ≥ 2, and is constant on each Ri. We let ri = r(x) for x ∈ Ri. It also will turn out
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10 S. NEWHOUSE, M. BERZ, J. GROTE, AND K. MAKINO

that, for each pair i, j, either Ri
T

H−ri(Rj) is empty or it consists of one or more full-
height subrectangles, each of which maps by Hri to a full-width subrectangle in Rj. This
gives us a 13× 13 matrix A whose entries are non-negative integers, and a 13 dimen-
sional vector r = (2,2,2,2,5,5,6,5,2,2,6,7,6) of first return times. From this, in a more
or less standard way, we build a tower, adding the new rectangles Ri,1 = H(Ri),Ri,2 =
H2(Ri), . . . ,Ri,ri−1 = Hri−1(Ri) for each i. Taking the boundaries of the original rectangles
and the new ones gives us a trellis with associated matrix B such that the logarithm of the
spectral radius of B is (up to a standard numerical eigenvalue calculation) approximately
0.4646992601904559. Taking into account round-off errors in the eigenvalue computation,
we can conservatively use 0.46469 as a lower bound for this spectral radius.

The matrix B has non-negative integer entries. The edge construction we described
in Remark 3.5 at the end of section 3 gives a larger 0-1 matrix which can be used as in
Theorem 3.3 to give give the following theorem.

THEOREM 5.1. The topological entropy htop(H) of the Henon map

H(x,y) = (1+ y−1.4 x2, 0.3 x)

satisfies the estimate

(10) htop(H) ≥ 0.46469

The proof of the theorem is computer assisted and based on the ability to rigorously
enclose sufficiently long pieces of the stable and unstable manifolds in a tight enough
manner. The details of the methods to obtain these enclosures and why they are rigorously
satisfied under standardized requirements on computer arithmetic will be given elsewhere,
but the key ideas will be discussed in section 6 below.

In the remaining part of the present section, we give a geometric desciption of the
rectangles Ri and their mapping properties.

Let us first remark that it is not easy to find the rectangles we are about to describe.
They were obtained by numerical experimentation. To enable the interested reader to re-
peat the numerical constructions, we describe them in some detail (without proof) in sec-
tion 7.

Consider the right fixed point p0 ≈ (.6313544770895048, .1894063431268514). There
is a transverse homoclinic point q1 ≈ (0.3388525493895907,−0.2551126297830196) which
lies below p0. We consider the arcs S1 ⊂ W s(p0) and U1 ⊂ W u(p0) forming a bigon D0

whose vertices are p0 and q1. We call D0 the primary region for H.
It turns out the every bounded orbit of H which is disjoint from W s(p0)

S

W u(p0)
returns to D0 infinitely often in forward and backward time.

There is another piece of W u(p0), near U1, which we call U2 and which together with
a subarc of S1 encloses a bigon strictly inside of D0. The curve U2 is contained in the
second forward image H2(U1). These are depicted in Figure 2. There are 12 other curves
also depicted. They are pieces of W s(p0). These curves determine rectangles, Ri, in D0.

For space reasons, in the figure, we have left out the R′s and simply denoted the rect-
angles by their numbers. We use the number i to denote the corresponding rectangle Ri.
Thus, 1 corresponds to the left most rectangle, 2 is adjacent to it on the right, etc.

The rectangles 1,2,3,4,5,6,8,9,10 are of full-height in D0: they are bounded above
and below by pieces of the unstable curve U1. The rectangles 7,11,12,13 are not of full-
height. Rectangle 7 is bounded above by a piece of U2 and below by a piece of U1. The
opposite is true of rectangles 11,12,13. They are bounded above by pieces of U1 and below
by pieces of U2.
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FIGURE 1. A rectangle with an s−disk (boundary is blue) and u−disk
(boundary is red)

Letting ri be the first return time of the rectangle Ri to D0 as above, the mapping
properties of the various rectangles were determined using the program COSY INFINITY
[3]. We numerically computed (with rigorous error estimates) the image Hri(Ri) of each
rectangle Ri. This image will cut across certain of the rectangles Rj, in some cases more
than once.

Figures 3, 4, and 5 show the rectangles Ri and their return time images (i.e.; Hri(Ri)).
The captions describes the rectangles Ri and those which Hri(Ri) meets in full-width com-
ponents. Note that the boundaries of the images H5(R8),H6(R11) and H6(R13) are nearly
tangent to the curves S4,S6 and S6, respectively. To see that these images map fully across
the necessary curves, we show magnified pictures of the images near the tangencies in the
upper right and bottom of Figure 5. The images H6(R11),H6(R13) are nearly the same, so
we only show the blow-ups of H5(R8) and H6(R11).
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FIGURE 2. The rectangles 1,2, . . . bounded by pieces of unstable and
stable arcs in the standard Henon map

From the figures 3,4, and 5, it is clear that the return vector has the form

(11) r = (2,2,2,2,5,5,6,5,2,2,6,7,6)

defined above.
The 13×13 matrix A is defined by the conditions Ai j = k iff Hri(Ri)

T

Rj consists of
k full-width subrectangles.

We list this matrix in the following array. The ”dots” correspond to ”zeroes”.
Matrix A:

(12) A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 · · · · 1 1 ·
· · · · · · · 1 · · · · 1
· · · · · · · · 1 · · · ·
· · · · · · · · · 1 · · ·
1 1 2 · · · · · · · · · ·
1 1 · · · · · · · · · · ·
2 · · · · · · · · · · · ·
2 2 2 · · · · · · · · · ·
· · · · · · · · 1 1 · · ·
1 1 1 1 1 1 1 1 · · · · ·
2 2 2 2 2 · · · · · · · ·
2 2 2 · · · · · · · · · ·
2 2 2 2 2 · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix B is constructed as follows. Consider the graph associated to A. It has the
vertices 1,2, . . . ,13 and Ai j directed edges ei j,1,ei j,2, . . . ,ei j,Ai j from row i to row j.

For each i, we add ri − 1 new vertices, vi,1, . . . ,vi,ri−1 with edges i → vi,1 → vi,2 →
vi,ri−1. Then, we separate the outgoing edges from i and re-attach them to the last added
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FIGURE 3. Upper left: R1, 2nd image, 1 → 1,2,3,4,5,6,11,12
Upper right: R2, 2nd image, 2 → 13,8
Middle left: R3, 2nd image, 3 → 9
Middle right: R4, 2nd image, 4 → 10
Lower left: R5, 5th image, 5 → 1,2, 3 (twice)
Lower right: R6, 5th image, 6 → 1,2

vertex vi,ri−1. The matrix B is the new matrix of size ∑ri ×∑ri associated to this new
graph. We leave the well-known details to the reader.

Computing the logarithm of the spectral radius of B, we get the lower estimate (10)
above.

255



14 S. NEWHOUSE, M. BERZ, J. GROTE, AND K. MAKINO

FIGURE 4. Upper left: R7, 6th image, 7 → 1 (twice)
Upper right: R8, 5th image, 8 → 1,2,3 (all twice)
Middle left: R9, 2nd image, 9 → 9,10
Middle right: R10, 2nd image, 10 → 1,2,3,4,5,6,7,8
Lower left: R11, 6th image, 11 → 1,2,3,4,5 (all twice)
Lower right, R12, 7th image, 12 → 1,2,3 (all twice)

Remark. It is interesting to compare this number with other attempts to estimate the
entropy of the standard Henon map H. In [29] purely numerical routines based on length
growth and the Takens embedding theorem are presented. In the case of the Henon map
with a = 1.4,b = 0.3 the rough estimate for the entropy is 0.464. Zglicynski [36] used
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FIGURE 5. Upper left: R13, 6th image, 13 → 1,2,3,4,5 (all twice)
Upper right: Blow-up of 5th image of R8 near the tangency with S4

Bottom: Blow-up of 6th image of R13 near the tangency with S6

Conley index theory and interval arithmetic to show the existence of a horseshoe for the
seventh iterate of the Hénon map, obtaining a lower entropy bound of log2

7 . Subsequently,
Galias and Zglicynski [15] used interval arithmetic to construct a SFT whose entropy is
0.33, obtaining that number as a lower bound for the entropy. More recently, Galias [14]
obtained the lower bound 0.43.

6. Rigorous Topological Arguments in the Plane with Taylor Models

6.1. Basic Properties of Taylor Models. In the following, we develop the necessary
arguments of rigorous computing to determine rigorous and tight enclosures of the stable
and unstable manifolds of the Hénon map that will be used in the construction of the
topological rectangles that are central to the construction of a symbolic dynamics. We
begin with a brief review of some elements of Taylor model methods that are needed for the
appearing topological arguments in the plane. More details about the underlying methods
can be found in [24, 22] and references therein.

DEFINITION 6.1. (Taylor Model) Let D ⊂ R
2 be an interval box, (x0,y0) ∈ D, let

P : D → R be a polynomial of order n in two variables, and let I ⊂ R be an interval. We
call the pair (P, I) a Taylor model of order n. Let f : D → R be a function. We say the
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FIGURE 6. left to right, top to bottom: the pre-images H−i(S1) for 0 ≤ i ≤ 5 near the
domain D0.

Taylor model (P, I) is a Taylor model representation of f on D if

f (x,y) ∈ P(x− x0,y− y0)+ I for all (x,y) ∈ D.

Thus the polynomial P is used to ”model” the behavior of the function f over the
domain D. Furthermore, and importantly for our further arguments, the range of f over D
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FIGURE 7. left to right, top to bottom: the pre-images H−i(S1) for 6 ≤ i ≤ 11 near
the domain D0.

is enclosed in the set theoretical sum of the set describing the range of P over D and the
set I. Apparently, the elementary theory of Taylor’s formula with remainder entails that
such approximations can be quite accurate in practice, i.e. a very narrow I can be chosen.
Indeed, using the notation |A| = supx,y∈A(|x− y|) for compact sets A, we have
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FIGURE 8. The curves S1,U1,U2

REMARK 6.2. If f is at least (n+1) times continuously differentiable, then as the size
|D| of D decreases, so does the size |I| of I, and it is possible to choose P so that we have

|I| = O(|D|n+1) as |D| → 0.

In fact, in practice one frequently chooses P to represent the Taylor expansion of a
sufficiently smooth f around the expansion point (x0,y0) ∈ D.

For practical calculations, the question now is how do we arrive at a suitable P for a
given f of interest. If f is given by elementary arithmetic operations, as is the case of the
Hénon map to be studied, it is possible to build up Taylor models for more complicated
objects from those of simpler ingredients by use of purely arithmetic operations. To this
end we introduce various definitions. First, for real intervals I1 and I2 and the real number
c, we define “interval arithmetic” I1 + I2 and I1 · I2 as well as c · I1 in the conventional set
theoretical sense. We are then ready for the following

DEFINITION 6.3. (Elementary Taylor Model Arithmetic) Let (P1, I1) and (P2, I2) be
Taylor models over the domain D with expansion point (x0,y0). We define addition, scalar
multiplication, and multiplication of Taylor models as follows:

(P1, I1)+(P2, I2) = (P1 +P2, I1 + I2)

c · (P, I) = (c ·P,c · I) for any c ∈ R, and

(P1, I1) · (P2, I2) = (P1·2, I1·2)

where P1·2 is the part of the polynomial P1 ·P2 up to order n, Pe is the part of the polynomial
P1 ·P2 of order (n+1) to 2n, and

I1·2 = I1 · I2 +B(Pe)+B(P1) · I2 +B(P2) · I1

B(P) denotes a bound for the polynomial P.
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Several remarks are in order. First, we note that while there may be many choices for
obtaining a ”bound” B of a given P̃, for our purposes we merely require that the bound
is at least as sharp as what is obtained by evaluating the expression P̃(x− x0,y− y0) in
interval arithmetic over the domain interval D. Furthermore, we extend the definitions to
vector-valued functions in a similar way, where the corresponding Taylor model arithmetic
operations happens componentwise. Finally, the question arises what these definitions
on Taylor models have to do with the functions they describe. This is addressed by the
following

PROPOSITION 6.4. Let f1,2 : D ⊂ R
2 → R be functions. If (P1, I1) and (P2, I2) are

Taylor model representations of f1 and f2, respectively, then (P1, I1)+ (P2, I2) is a Taylor
model representation of f1 + f2, (P1, I1) · (P2, I2) is a Taylor model representation of f1 · f2,
and for any scalar c, the Taylor model c · (P1, I1) is a Taylor model representation of c · f1

The details of the proofs rest on elementary set theoretical operations; they can be
found for example in [24, 23, 22]. These references also contain information on more
advanced operations, including common intrinsic functions and implicit functions. It is
also possible to obtain rigorous enclosures of flows of ODEs [4, 26, 25, 5].

Thus, the proposition provides a simple mechanism to determine Taylor models for
complicated functions from those comprising parts of these functions. Furthermore, the
operations are particularly suitable for automated execution on a computer, since they in-
volve only finitely many steps of elementary operations of coefficients. Based on this
operation, we use the following notation:

DEFINITION 6.5. Let F be a function comprised of finitely many operations supported
in Taylor model arithmetic. Let (P, I) be a Taylor model. Then we define

F ((P, I))

to denote the Taylor model obtained by executing the individual arithmetic steps of F in
Taylor model arithmetic.

Apparently, if (P, I) is a Taylor model of a function f , then the Taylor model F ((P, I))
so obtained is a Taylor model for the function F ◦ f .

To conclude, we note that since computers are not able to represent real numbers
accurately because of finite mantissa length, in order to maintain mathematical rigor, it is
important to account for these errors:

REMARK 6.6. (Rigorous Computer Arithmetic) By careful consideration of the math-
ematical requirements of rounding properties of floating point computer arithmetic, it is
possible to obtain rigorous Taylor model enclosures for sums, products and scalar prod-
ucts of functions by accounting for all round-off errors in the remainder interval I.

We will not further dwell on this question here, although it is of course of prime
importance for the claims of rigor we are making in the following statements, but rather
refer to [24, 31] for complete details.

To conclude our introduction of the rigorous aspects of Taylor models, we note that
it is clear that for complicated functions or large domains D, one single Taylor model will
not be able to describe its behavior with sufficient accuracy because of the lack of or at
least inefficient convergence properties of the Taylor expansion. So for this purpose it is
important to split the actual domain D into a suitable finite collection of n subdomains Di

such that D lies in the union of these Di, and apply the methods on these subdomains.
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6.2. Rigorous Enclosures of Stable and Unstable Manifolds. In the following we
discuss the rigorous representation of stable and unstable manifolds of the Hénon map H
by Taylor models, which will be the next stepping stone to a construction of topological
rectangles and the rigorous assessment of their mapping properties. Without loss of gen-
erality we restrict our discussion to the enclosure of the unstable manifold, as that of the
stable manifold can be obtained by applying the same arguments to the inverse map.

We will begin by the generation of an initial enclosure of a part of the unstable man-
ifold of the Hénon map H near the right fixed point by a two dimensional Taylor model.
For the following, let D = [−1,1]2, and by means of a translation, we assume that the
right fixed point of H is at the origin. Since the unstable eigenvalue of DH(0,0) is neg-
ative, we replace H by H2 in the next Theorem. This insures that both components of
W u((0,0))\{(0,0} are invariant.

THEOREM 6.7. (Initial Manifold Enclosure by Taylor Models) Let P = (P1,P2) be a
two-dimensional bijective polynomial on [−1,1]2 that satisfies P(0,0) = (0,0). Let (P̃, Ĩ)
be the Taylor model obtained by evaluating the map H2 in Taylor model arithmetic as in
definition (6.3), beginning with (P, I) where I is chosen as the trivial interval box [0,0]×
[0,0]. Thus, following the convention of definition (6.5), we have

(P̃, Ĩ) = H2 ((P, I)) .

Let

R = P([−1,+1]× [−1,+1]), R̃ = P̃([−1,+1]× [−1,+1])+ Ĩ and

Bu = P([−1,+1]×{+1}), Bl = P([−1,+1]×{−1})

denote the ranges of P and P̃ + Ĩ as well as the “upper” and “lower” edges of the range
P([−1,+1]× [−1,+1]) of the polynomial P over [−1,+1]2, respectively. Assume

Bu ∩ R̃ = /0 and Bl ∩ R̃ = /0.

Then the local unstable manifold through (0,0) does not leave the range R of P through Bu

and Bl .

Thus the theorem provides a mechanism to generate an enclosure of the manifold,
which can leave the range of P only through the “left” and “right” ends P({−1}×[−1,+1])
and P({+1}× [−1,+1]), respectively.

Proof. Let W u
loc denote the connected component of W u((0,0)) in R.

Assume the first crossing p of W u
loc with the boundary of R is on the upper or lower

boundaries Bu or Bl .
More precisely, let [a0,b0] be a closed real interval with a0 < 0 < b0, and let η :

[a0,b0] → R2 be a parametrization of an arc in W u
loc such that η(0) = (0,0), η(s) is in the

interior of R for s ∈ (a0,b0), and either p = η(a0) or p = η(b0).
Because p is the first crossing, the entire arc η0 of the manifold connecting the fixed

point (0,0) and the point p lies in R. Consider the pre-image p̃ = H−2(p). Since this lies
in the interior of η0, we have p̃ ∈ R. Thus we have p = H2(p̃) ∈ H2(R), which in turn by
the properties of Taylor model arithmetic is contained in R̃. However, since R̃ is disjoint
from Bu and Bl by requirement, we have a contradiction.

In practice, the usefulness of the theorem rests with the availability of a suitable choice
of P. In particular, it is desirable that the range R of P be sufficiently large, and the dis-
tance between the boundaries Bu and Bl be sufficiently small. Good choices for P can be
obtained by first determining a good polynomial approximation of the unstable manifold.
For example, using normal form methods (see for example [8, 2]), it is possible to obtain
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a polynomial map γ : [−1,1] → R2 whose image approximates the local unstable manifold
to very high orders. Using Taylor model methods, this process can even be fully automated
[2]. Once this polynomial curve γ on [−1,1] is available, one can “broaden it” by picking
a vector v perpendicular to γ′(0) and choosing

P(s, t) = γ(s)+ t · v
The length of v determines the width of the enclosure and the distance between Bu and
Bl . Using this method, using conventional floating point arithmetic and γ of order 20, it is
possible to obtain initial enclosures where |R| ≈ 0.1 but |v| ≈ 10−15.

Given an initial enclosure, one can iteratively generate longer enclosures for the man-
ifold as follows:

ALGORITHM 6.8. (Generation of Extended Manifold Enclosures)
(1) Determine an initial Taylor model enclosure of the manifold as described
(2) Send this enclosure through the Hénon map using Taylor model arithmetic; the

resulting enclosure will again be an enclosure of the manifold
(3) If the resulting manifold exceeds a certain pre-specified length or the remain-

der bounds become too large, then split the domains of the Taylor models into
suitable smaller pieces

(4) Iterate the procedure until enough length of manifold is generated and the de-
sired remainder bounds are obtained

6.3. Rectangles and Their Mapping Properties. In the following we will use parts
of the unstable and stable manifolds to form curvilinear rectangles. Using images of rig-
orous enclosures of stable and unstable manifold obtained with Taylor model arithmetic,
and the well-known invariance of stable and unstable manifold under forward or backward
iteration, we will prove crossing properties of these rectangles under suitable iterations of
the Hénon map H. Recall the definitions of the unstable arcs U1 and U2 defined following
the statement of Theorem 5.1.

DEFINITION 6.9. (Stable Rectangle Boundaries) Let S1 be the interval in the stable
manifold connecting the fixed point p0 to the homoclinic point q1 and consider the 11th
pre-image S = H−11S1. We define additional subarcs S2 through S13 of S as shown in figure
2. The arcs S1, . . . ,S11 in Figure 2 actually extend slightly above and below the domain D0.
We crop them so that they terminate in U1. We crop the subarcs S12 and S13 so that their
endpoints lie in U1 or U2.

To avoid ambiguity and help in identification, we list the number of the iterate of H−1

at which each of S1 through S13 first appear. With one exception, this number is much
smaller than 11, leading to easy identification of the corresponding pieces.

S1 : 0 S2 : 8 S3 : 6 S4 : 8
S5 : 4 S6 : 11 S7 : 5 S8 : 5
S9 : 4 S10 : 6 S11 : 2 S12 : 6 S13 : 6

The verification of the inverse iterates at which the various S′is first appear can be seen
in Figures 6 and 7. The figures contain the boundary points of the rectanges Ri, the arcs
U1,U2 and the indicated pre-images of S1.

DEFINITION 6.10. (Curvilinear Rectangles) We define the rectangles R1 through R13,
each of which is formed by stable arcs and two unstable arcs as shown in figure 2. The
unstable arcs are in U1 or U2 (which is in the second image of U1), while the stable arcs in
the eleventh pre-image of S1.
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For keep further discussion transparent, we observe the following.

PROPOSITION 6.11. Let nl and nr denote the pre-iterate of S1 under which the left
and right boundaries of a rectangle under consideration first appear. Summarizing from
the definitions of the stable rectangle boundaries S1 through S13 and the rectangles R1

through R13, we have the following result.

Rectangle nl nr

R1 0 8
R2 8 6
R3 6 8
R4 8 4
R5 4 11
R6 11 5
R7 5 5

Rectangle nl nr

R8 5 4
R9 4 6
R10 6 3
R11 5 6
R12 6 6
R13 6 5

THEOREM 6.12. The rectangles R1 through R13 satisfy the following mapping prop-
erties:

H2(R1) crosses R1,R2,R3,R4,R5,R6,R11 and R12.
H2(R2) crosses R13 and R8.
H2(R3) crosses R9.
H2(R4) crosses R10.
H5(R5) crosses R1, R2, R3; the crossing of R3 is a double crossing.
H5(R6) crosses R1 and R2.
H6(R7) crosses R1; the crossing is a double crossing.
H5(R8) crosses R1, R2 and R3. All crossings are double crossings.
H2(R9) crosses R9 and R10.
H2(R10) crosses R1, R2, R3, R4, R5, R6, R7 and R8.
H6(R11) crosses R1, R2, R3, R4 and R5. All crossings are double crossings.
H7(R12) crosses R1, R2 and R3. All crossings are double crossings.
H6(R13) crosses R1, R2, R3, R4 and R5. All crossings are double crossings.

The proofs for each of the cases are very similar. They consist of visually inspecting
the pictures showing the mapping properties, which because of the use of rigorous Taylor
model arguments have an accuracy well below printer resolution. To decide whether edges
lie on top of each other, which can obviously not be decided from a printed image, we
employ the knowledge of the pre-iterate of S1 where the edges of the rectangles under
consideration first appear. Since the branches of these pre-images are well separated in
the printed image, the mapping properties of stable edges can be uniquely and rigorously
decided. Specifically, we argue as follows.

Proof.
R1 : Because the upper boundary of R1 lies on the unstable manifold, so does its second

image. From the picture we see that this does not extend outside U1, and in fact, the union
of the upper edges of R1, ...,R6,R11,R12 is the upper edge of H2(R1). The lower edge of
H2(R1) lies within the fundamental domain and hence does not cross the lower edges of
R1, ...,R6. It also does not cross the lower edges of R11 and R12, but rather coincides with
them, since these lower edges by definition are in the second image of U1. So we see from
the picture that it is clear that H2(R1) crosses R2, ...,R6 and R11. To see that H2(R1) also
crosses R1, observe that according to proposition 6.11, the left edge of R1 lies in S1, and
so does its second image; hence the left edge of H2(R1) is a subset of the left edge of R1.
To see that H2(R1) also crosses R12, we first observe that by proposition 6.11, the right

264



ON THE ESTIMATION OF TOPOLOGICAL ENTROPY ON SURFACES 23

stable edge of R1 first appears in the eighth pre-iterate of S1. Thus the right edge of H2(R1)
first appears in the sixth pre-iterate of S1. According to figure 7, the only part of the sixth
pre-image of the stable arc that is near the right edge of H2(R1) to the resolution of the
picture is S13, which contains the right edge of R12. Thus the right edge of H2(R1) and R12

agree, and we have shown that H2(R1) crosses R12.
R2 : For the upper and lower unstable boundary of H2(R2) we argue as in the case

of R1. Furthermore, since the left edge of R2 first appears in the eighth pre-image of S1,
H2(R2) first appears in its sixth pre-image. As seen in figure 7, the only part of this sixth
pre-image that lies near the left edge of H2(R2) to printer resolution is indeed the line S13,
which is used to form the left edge of R13. Thus the left edge of R13 and the left edge of
H2(R2) coincide, and we have shown that H2(R2) crosses R13. In a conceptually identical
way, we see that the right edge of H2(R2) is a subset of the right edge of R10, so that
H2(R2) is shown to cross R10.

R3 : The argument is similar to above; note that according to proposition 6.11, the left
and right stable edges of R3 lie in the sixth and eighth pre-image of the fundamental stable
arc, respectively, so that H2(R3) must lie in the fourth and sixth such pre-image. Since the
picture of the pre-images is accurate to printer resolution, the only possibility is for the left
and right edges of H2(R3) to be subsets of the left and right pre-images of R9, which by
definition are taken from the fourth and sixth pre-image of the stable fundamental arc.

R4 : The argument is conceptually identical to that of R3.
R5 : From the picture it is clear that the H5(R5) crosses R2. Considering that the left

edge of R5 appear in the fourth pre-image of the S1, its fifth image lies in S1, which forms
the left boundary of R1. Thus H5(R5) crosses R1. Since the right edge of R5 lies in the
eleventh pre-image of the S1, so the right edge of H5(R5) lies in the sixth pre-image of the
S1. The only part of that sixth pre-image that coincides with the right edge of H5(R5) to
printer resolution is S3, so the right edge must lie in S3, and thus in the left boundary of
R3. Finally we observe that both upper and lower edge of H5(R5) extend to the right of the
right edge of R3, which is seen by magnification in figure 5. Again the magnified picture is
accurate to printer resolution since the accuracy of the Taylor model enclosures lie below
it. Thus H5(R5) crosses R3 twice.

R6 : The argument is conceptually identical to that of R3 and R4.
R7 : According to proposition 6.11, both edges of R7 lie in the fifth pre-image of S1.

Thus their sixth images, and hence both the left and right edges of H6(R7), lie in the left
edge of R1. Furthermore, a close visual inspection of both the upper and lower boundaries
of H6(R7) shows that they extend to the right of the right boundary of R1 (in fact they
nearly fold back upon themselves). Thus H6(R7) crosses R1 twice.

R8 : Similar to R5, we observe that both edges of H5(R8) lie on S1. Furthermore, a
magnified inspection shows that both upper and lower edges of H5(R8) extend beyond the
right edge of R3. Thus we conclude that H5(R8) crosses each of R1, R2 and R3 twice.

R9 : The argument is conceptually identical to that of R2.
R10 : As in R1.
R11 : As in R8, except no magnification is necessary.
R12 : As in R7.
R13 : As in R11and R8.

7. An alternate numerical description of the rectangles Ri and their properties

In this section, we describe the numerical calculations which we used to produce the
rectangles in Figure 2. These calculations were done with numerical techniques suggested
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by Theorem 4.1, and they provide alternative numerical constructions to those described
in the preceding section. As we mentioned above, the rectangles and mapping properties
in Figures 3, 4, and 5 were done with the program COSY INFINITY. The latter program,
together with the Taylor Model methods discussed in the preceding section provide the
methods used to prove the theorems below. Nevertheless, the use of the two different
methods provide independent means of verifying the locations of the indicated rectangles
and their mapping properties.

Let λ1 ∼−1.92, λ2 ∼ λs = .15 be the two eigenvalues of DH(p0). It is easy to check
that there are eigenvectors v1,v2 associated to λ1,λ2, respectively, of the form

v1 =
(

1
−λ2

)
, v2 =

(
1

−λ1

)
.

Let W u(p0), W s(p0) denote, respectively, the unstable and stable manifolds of p0.
From Theorem 6, we can parametrize those manifolds as in Theorem 6 with the curves
γu(t),γs(t) so that γu(0) = p0 = γs(0), d

dt γu(0) = v1,
d
dt γs(0) = v2.

Given a positive integer n, we also have the approximating curves

γu
n(t) = Hn(p0 +λ−n

1 tv1),
and

γs
n(t) = H−n(p0 +λn

s tv2),
which, according to Theorem 6, converge to γu(t), γs(t), respectively, as n → ∞.
For real numbers r < s, let

ws(r,s) = {γs(t) : t ∈ (r,s)}, wu(r,s) = {γu(t) : t ∈ (r,s)},

wsn(r,s) = {γs
n(t) : t ∈ (r,s)}, wun(r,s) = {γu

n(t) : t ∈ (r,s)}.
denote the images of the restrictions of the functions γs, γu,γu

n,γs
n to the interval (r,s),

respectively.
In Figure 8 we used γu

10 and γs
10 as approximations to the curves γu and γs. Thus, when

we say that wu(0,5.5) is described in a figure, we actually represent it by wu10(0,5.5).
Of course, one could get better approximations to the stable and unstable manifolds by
choosing higher integers n and computing wsn(r,x),wun(r,s). As n gets larger, floating
point issues start to affect the computations. We have had good results, using standard
double precision, for ws14(r,s) and wu40(r,s) For n higher, it may be necessary to use
higher precision arithmetic.

The intervals Ui,Si to be defined below are actually slightly larger than those with
the same names which were defined in section 6. The latter intervals were cut off at the
homoclinic intersections.

Consider the real intervals (0,5.5),(12.2,20) and (−.5,0) and associated image inter-
vals

U1
def= wu(0,5.5), U2

def= wu(12.2,20), S1
def= ws(−0.5,0)

as in Figure 8. The curve S1 goes monotonically up toward the fixed point p0. The
curve U1 = wu(0,5.5) starts toward the right of p0, moving downward, passing through the
homoclinic point q1. Increasing the parameter t ∈ (0,20) in the curve wu(0,20), we meet
the curve curve U2 = wu(12.2,20) which winds back and forth crossing S1 in two more
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homoclinic points q2 and q3. Let t1 < t2 < t3 ∈ (0,20) and s1 < s2 < s3 ∈ (−.5,0) be the
parameters such that qi = γu(ti) = γs(si) for i = 1,2,3.

The set η0
def= {p0}

S

wu(0,t1)
S{q1}

S

ws(s1,0) is a Jordan curve. Let D0 denote the
bounded region of the complement of η0. We call D0 the primary region for H. Every
bounded orbit of H visits Closure(D0).

Let us define some additional specific intervals I j,S j with 2 ≤ j ≤ 13 in W s(p0), and
put them, together with S1,U1 in the table below.

Let V+ = {y > 0} and V− = {y < 0} denote the upper and lower half-planes in R2.
The intervals S j, 1 ≤ j ≤ 11 will each have homoclinic intersections with U1, at least

one in V + and at least one in V−. 1 The intervals S12,S13 will be completely contained in
V+.

We begin by defining I j and S j for 2 ≤ j ≤ 11, j �= 6 as in the next table.

(13)

I2 = ws(−.2384265,−.2384254) S2 = H−8I2

I3 = ws(−.350785,−.350773) S3 = H−6I3

I4 = ws(−.3509603,−.3509598) S4 = H−8I4

I5 = ws(−0.3537,−0.35309) S5 = H−4I5

I7 = ws(−.21915,−.21899) S7 = H−5I7

I8 = ws(−.21928,−.21915) S8 = H−5I8

I9 = ws(−.351,−.3507) S9 = H−4I9

I10 = ws(−.350962,−.350954) S10 = H−6I10

I11 = ws(−.354,−.3505) S11 = H−2I11

I12 = ws(−.238434,−.2384285) S12 = H−6I12

I13 = ws(−.238427,−.238423) S13 = H−6I13

For I6 and S6, we first consider the points

p6a = (0.341125816447222,−0.252568347231336),
and

p6b = (.3411258214153245,−.2525683416553848).
Then, we set I6 to be the line segment

η6(t) = {(1− t)p6a + t p6b : t ∈ [0,1]},
and set S6 = H−11I6.
The intervals Si and U1,U2 are shown in Figure 2.
These intervals determine rectangles Ri, 1 ≤ i ≤ 13 which are defined as follows.

(1) The rectangles Ri for 1 ≤ i ≤ 6 and 8 ≤ i ≤ 10 are bounded on the left by Si, on
the right by Si+1 and above and below by pieces of U1,

(2) the rectangle R11 is bounded above by a part of U1, below by a part of U2,
bounded on the left by a part of S7, and on the right by a part of S11,

(3) the rectangle R12 is bounded above by a part of U1, below by a part of U2,
bounded on the left by a part of S11, and on the right by a part of S12,

(4) the rectangle R13 is bounded above by a part of U1, below by a part of U2,
bounded on the left by a part of S12, and on the right by a part of S8,

1 It seems from the computer images that, in fact, Si will meet U1 in exactly two points, but we have not yet
proved that.
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(5) the rectangle R7 is bounded above by a part of U2, below by a part of U1, bounded
on the left by a part of S7, and on the right by a part of S8, and

Now, we state two theorems giving the properties of the boundary curves of the rect-
angles we have defined which are necessary for the entropy estimate (10). The proof of
Theorem 7.1 relies on the methods sketched in section 6. The details will be given else-
where. Theorem 7.2 is essentially a restatement of Theorem 6.12.

Recall that, given a point x ∈ R2 and a compact subset E ⊂ R2, we define the distance
from x to E by the formula

dist(x,E) = min(d(x,y) : y ∈ E).

For ε > 0, the ε−neighborhood of E , denoted Bε(E),
is the set

Bε(E) = {x ∈ R2 : dist(x,E) < ε}
If E is compact and connected, then an ε−enclosure of E is a compact connected

neighborhood of E which is contained in Bε(E).
We will use the notation Nε(E) to denote various, possibly different ε−enclosures of

sets E.
Recall that D0 is the region whose boundary is the closure of the union S1

S

U1.
Let D1 be the bigon inside D0 bounded by pieces of U2 and S1.
Set ε0 = 0.001, and define the subsets

V+
0 = V+ \B2ε0(D0),

V−
0 = V− \B2ε0(D0),

V+
1 = V+

\

B2ε0(R
2 \D0),

and

V−
1 = V−\B2ε0(R

2 \D0).

Since U2 ⊂ Bε0
2

U1 we have that both V +
1 and V−

1 lie in D1.

THEOREM 7.1. With the above definitions, there exist ε0−enclosures Nε0(Si) for 1 ≤
i ≤ 13 with the following properties.

(1) For 1 ≤ i ≤ 13, the ε0−enclosures {Nε0(Si)} form a disjoint collection of sets.
(2) The enclosure Nε0(S1) meets both of the sets V +

0 and V−
0 , and, for 2 ≤ i ≤ 11,

each of the enclosures Nε0(Si) has a non-empty intersection with each of the
four sets V +

0 ,V +
1 ,V−

0 ,V−
1 . In adddition, there is an increasing sequence of real

numbers x1 < x2 < .. . ,x11 such that for each i, the point pi defined by pi = (xi,0)
lies in the curve Si.

(3) For i = 12, 13, Nε0(Si) ⊂ V+, and both enclosures Nε0(Si) have non-empty
intersections with each of the sets V +

0 and V+
1 .

THEOREM 7.2. Let

r = (r1,r2, . . . ,r14) = (2,2,2,2,5,5,6,5,2,2,6,7,6)
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be the vector of return times defined in (11). There is a 13× 13 matrix A having the
form in (12) such that Ai, j = k if and only if HriRi

T

Rj contains k disjoint u−disks in Rj

and Ri
T

H−ri(Rj) contains k disjoint s−disks.
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[8] X. Cabré, E. Fontich, and R. de la Llave. The parametrization method for invariant manifolds i: manifolds
associated to non-resonant subspaces. Indiana Univ. Math J., 52:283–328, 2003.
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