
Fields Institute Communications
Volume 00, 0000

Rigorous High Precision Interval Arithmetic
in COSY INFINITY

Alexander Wittig
Department of Physics and Astronomy

Michigan State University

East Lansing, MI 48824

Martin Berz

Abstract. In this paper we present our implementation of a complete
multiple machine precision interval package in FORTRAN 77. The oper-
ations are designed to perform optimally with up to about 100 significant
digits. The implementation only requires IEEE 754 compliant floating
point operations, and thus is highly portable to virtually any modern
computer platform.

Intervals are stored as unevaluated floating point sums. Elemen-
tary operations such as addition and multiplication are based on exact
floating point operations, while higher level operations such as division
and square root are implemented based on those elementary operations.
While there are several other non-rigorous high precision libraries based
on these concepts, to the best of our knowledge this implementation is
the first fully rigorous interval package.

Besides basic operations on high precision intervals, the library also
provides a wide range of verified intrinsic functions such as sin, arctan,
and ln. The library is integrated into the COSY INFINITY rigorous
computation environment, providing fast and rigorous interval opera-
tions from within the COSY environment.

1 Introduction

Interval arithmetic has been a cornerstone of rigorous numerics for over 40
years[8]. Yet most readily available interval packages today are based on the float-
ing point numbers provided by the underlying hardware. On current hardware
platforms, intervals are thus limited to a relative width of about 10−15[1]. For
certain computations, more significant digits are needed for interval methods to
succeed[13].

1991 Mathematics Subject Classification. Primary 65G30; Secondary 65G20, 65G50.
The first author was supported in part by DOE Grant #XXXXXX..

c©0000 American Mathematical Society

1

2 Alexander Wittig and Martin Berz

There already are some alternatives available, such as MPFI[9]. However, their
use does not seem to be widespread in the interval community. Furthermore, the
focus of MPFI is on very long numbers, with several thousand significant digits.
Also most packages are written in C, and require several external libraries to be
built and linked to FORTRAN code. This makes it harder to write portable and
easily compilable code.

To overcome these obstacles, we have developed a high precision interval arith-
metic that focuses on rigorous operations on numbers with about 100 significant
digits. Our implementation is written entirely in FORTRAN 77, and is thus eas-
ily portable to all platforms supporting the IEEE754 standard on floating point
operations.

Many other high precision libraries, rigorous or not, rely on large integer op-
erations to emulate floating point numbers with large mantissa[5, 9]. We follow a
different approach in our implementation. We store high precision numbers as an
unevaluated sum of floating point numbers. Elementary operations on these expan-
sions are reduced to operations on two floating point numbers. Those operations
can then be performed fully rigorously within the floating point number framework
using well known algorithms[4, 6]. While there are several other non-rigorous high
precision packages available using these techniques (e.g. [10]), to the best of our
knowledge none of them provide rigorous interval arithmetic.

Based on the elementary operations addition, subtraction and multiplication,
we build the more complicated operations such as division and square root. Lastly,
intrinsic functions such as sin, exp and arctan are computed based on their Taylor
expansions.

2 Theory of High Precision Operations

We will begin by introducing the underlying elementary operations on floating
point numbers, which we will use to build our high precision implementation on.

2.1 Floating Point Numbers. To represent calculations on the real numbers
on a computer, most modern processors use floating point numbers. We start with
a precise definition of floating point numbers.

Definition 2.1 The set of all floating point numbers R is given by

R = {mz · 2ez | 2t−1 6 |mz| < 2t; M < ez < M},

where t,M and M are positive integer constants.

The constants t,M and M define the floating point number system. M and M
limit the exponent range and thus the largest and smallest representable numbers.
To make the following proofs easier to understand, we will assume that the exponent
range is unlimited, i.e. M = −∞ and M = ∞. This is, of course, not true for
computer systems, where overflows and underflows of the exponent may happen.
In our practical implementation we have to deal with those cases separately. The
parameter t is the mantissa length in binary digits and thus defines the relative
precision of the floating point system (see below).

In the following we will use floating point systems with different mantissa
lengths which we will denote by Rt. Over- and underflows notwithstanding, we
clearly have that Rt ⊂ Rt′ if t 6 t′. The lower bound requirement on the mantissa

Rigorous High Precision Interval Arithmetic in COSY INFINITY 3

is called the normalization. With this additional requirement, the values repre-
sented by floating point numbers become unique. Mantissae with absolute value
less than 2t−1 can be multiplied by a power of two so that they lie within the
allowed range for the mantissa, while the exponent is adjusted accordingly.

Given any real number r ∈ R within the range of the floating point representa-
tion, we will denote by r̃ ∈ R the closest floating point number in the given system
of floating point numbers. Then it follows readily from Definition 2.1 that

|r − r̃|
|r|

< εm = 2−t.

The value εm is called the machine precision and is given by the length of the
mantissa t.

Every floating point implementation has to provide at least the basic operations
addition, subtraction, and multiplication. Clearly the mathematical result of any
of those operations on two arbitrary floating point numbers a, b ∈ R does not
necessarily have to be in R. Thus, the floating point operations corresponding to
+,−,× are not the same as their mathematical counterparts on the real numbers.
Let ⊕,	,⊗ denote the floating point operations for +,−,×.

Definition 2.2 Let � denote one of the floating point operations ⊕,	,⊗ and
• the same operation on the real numbers.
The operation � is said to be round-to-nearest if ∀a, b ∈ R

|(a� b)− (a • b)| = min
x∈R

(x− (a • b)).

Note that if a floating point operation is round-to-nearest, the result is the
floating point number closest to the mathematically correct result. In case of a
toss-up, i.e. if the mathematically correct result lies exactly between two floating
point numbers, we accept either one. Another immediate consequence is that if the
result of an operation is representable exactly by a floating point number, then we
obtain the correct result without roundoff errors.

From the above definition, a bound for rounding errors and a useful condition
for the mantissa of the result of a round-to-nearest operation � easily follow. Let
z = mz · 2ez = a� b. Then

|z − (a • b)| < εm · z. (2.1)

This is clear since if the error was more than εm · z then either the floating point
number (mz + 1) · 2ez or (mz − 1) · 2ez would be closer to the correct result. Fur-
thermore for the mantissa mz, the following equation holds.

mz =
[
ma · 2ea •mb · 2eb

2ez

]
, (2.2)

where [x] denotes rounding to the nearest integer.
In most modern computers the constants t,M,M are defined to follow the

IEEE 754 standard[1]. The double precision numbers defined in that standard
specify that t = 53, M = 1023, M = −1024. Thus, for double precision numbers
εm = 2−53 ≈ 10−16. Therefore in double precision we can represent about 16
valid decimal digits. The standard also defines that the elementary floating point
operations ⊕,	,⊗ can be set to be round-to-nearest. Consistent with the notation
introduced above, we will denote the set of double precision floating point numbers
by R53.

4 Alexander Wittig and Martin Berz

2.2 Exact operations. In the following subsections we will state some well-
known facts about obtaining exact results for the basic floating point operations.
While this may sound surprising at first, it is indeed possible to obtain the roundoff
errors of the basic floating point operations exactly from within the floating point
arithmetic. The theorems and proofs given here are originally due to Dekker[4],
who showed that the theorems also hold with slightly lesser requirements on the
underlying floating point operations than prescribed by the IEEE 754 standard.
But since our implementation will build on IEEE 754 double precision floating
point numbers, we will restrict ourselves to those. To give the reader an idea of
how the proofs of those theorems work, we will prove some of the theorems while
referring to [4] for others.

2.2.1 Two-Sum. The first theorem will provide us with a way to calculate the
exact roundoff error occurring when adding two floating point numbers.

Theorem 2.3 Let two double precision floating point numbers a and b such
that |a| > |b| be given. Let z = a⊕ b, w = z 	 a and zz = b	 w. Then, neglecting
possible over- or underflows during the calculation, we have that z + zz = a + b
exactly.

Proof Let a = ma · 2ea and b = mb · 2eb . Since |a| > |b| and floating point
numbers are normalized, we have that ea > eb. It is sufficient to show that w ∈ R53

and b − w ∈ R53, then the result follows readily from optimality of the floating
point operations.

Let z = a⊕ b = mz · 2ez . From Equation 2.2 we get that

mz =
[
ma · 2ea−ez +mb · 2eb−ez

]
.

Since |a + b| < 2|a| we have that ez 6 ea + 1. Now we consider the two cases
ez = ea + 1 and ez 6 ea.

• Assume ez = ea + 1. Then mz =
[
ma · 2−1 −my · 2eb−ea−1

]
and letting

w = mw · 2ea we find that

|mw| = |mz · 2ez−ea −ma|
= |mz · 2ez−ea −ma −mb · 2eb−ea +mb · 2eb−ea |
6 |2mz −ma −mb · 2eb−ea |+ |mb · 2eb−ea |
< 2|mz −ma · 2−1 −mb · 2eb−ea−1|+ 253

< 2
1
2

+ 253.

Since mw is an integer, we therefore have that mw 6 253 and thus w ∈ R53,
i.e. w is a double precision floating point number.

• If ez 6 ea the exact same proof carries through, the only difference being
that we define w = mw · 2ez .

To prove that zz ∈ R53, we first note that we can write w = i · 2eb for some
integer i since ea > eb. Secondly, we have that |b − w| = |b − z + a| 6 |b| by
optimality. To see this simply let z = x, and then apply Definition 2.2. We thus
have

|zz| = |b− w| = |mb − i| · 2eb 6 |b| = |mb| · 2eb < 253 · 2eb ,

and therefore (mb − i) · 2eb = zz ∈ R53.

Rigorous High Precision Interval Arithmetic in COSY INFINITY 5

Note that by Definition 2.1 floating point numbers are symmetric, i.e. if a ∈ R
then −a ∈ R. Thus the above theorem automatically provides exact subtraction as
well.

It is worth mentioning that there are other algorithms to calculate the same
two values without the condition that a > b, but requiring some additional floating
point operations. The following algorithm is due to Knuth [6]. The advantage of
this method is that due to pipelining on modern processors it is often faster to
perform the three additional floating point operations instead of having to evaluate
a conditional statement on the absolute values of a and b.

Theorem 2.4 Let two double precision floating point numbers a and b be given.
Let z = a⊕ b, bv = z	a, av = z	 bv and zz = (a	av)⊕ (b	 bv). Then, neglecting
possible over- or underflows during the calculation, we have that z + zz = a + b
exactly.

Proof For a proof see, for example, [6].

2.2.2 Splitting. Before we can move on to the exact multiplication, we introduce
the concept of the splitting of a double precision number.

Definition 2.5 Let a ∈ R53 be given. We call ah, at ∈ R26 the head and the
tail of the splitting of a if

ah =
[
ma · 2−26

]
· 2ex+26,

at = a− ah.

This definition may look surprising at first. After all a has 53 mantissa bits,
but both ah and at only have 26 bits each yielding a total of 52 bits. The solution
to this riddle is the fact that the difference |[x] − x| 6 1/2, but depending on x it
can have either positive or negative sign. So the missing bit is the sign bit of the
tail of the splitting.

Consider for example the number 7 in R3. Its binary representation is given
by 111 · 20, yet it can be split into two numbers in R1 by 111 · 20 = 1 · 23 − 1 · 20.

The following theorem, also presented by Dekker, allows us to calculate such a
splitting of a double precision number.

Theorem 2.6 Let a ∈ R53 be given and let p = x⊗ (227 + 1). Then the head
of the splitting of a is given by ah = p⊕ (x	 p).

Proof Since the proof of this theorem is somewhat technical and does not
contribute much to the understanding of these operations, we refer the reader to
the papers of Dekker[4] or Shewchuk[10].

2.2.3 Multiplication. With the notion of a splitting, we can formulate the fol-
lowing theorem for exact multiplication of two double precision numbers:

Theorem 2.7 Given two double precision floating point numbers a and b let
a = ah + at, b = bh + bt be a splitting as defined above. Also let p = (ah ⊗ bh),
q = (at ⊗ bh) ⊕ (ah ⊗ bt) and r = (at ⊗ bt). Then, neglecting possible over- or
underflows during the calculation, z = p ⊕ q and zz = (p 	 z) ⊕ q ⊕ r satisfy
z + zz = a · b exactly.

Proof First note that for any two numbers x, y ∈ R26 their product x · y ∈
R52 ⊂ R53. This is clear since for x = mx · 2ex and y = my · 2ey we have that
x · y = mx ·my · 2ex+ey and |mx ·my| < 252 since |mx| < 226 and |my| < 226.

6 Alexander Wittig and Martin Berz

We also have that

a · b = (ah + at) · (bh + bt) = ah · bh + ah · bt + at · bh + at · bt.
Since ah, at, bh, bt ∈ R26, each single term in this sum is in R52. Furthermore, the
two cross terms ah · bt and at · bh have the same exponent and therefore their sum
is in R53. Thus p, q, and r, as defined in the statement of the theorem, are exact,
and we obtain that a · b = p+ q + r.

Now we perform an exact addition of p and q as described above, yielding the
leading term z = p ⊕ q and a remainder term z1 = (p 	 z) ⊕ q. We thus have
a · b = z + z1 + r. Close examination of the proof of the exact addition shows
that r and z1 have the same exponent and both are in R52, so their sum can be
calculated exactly in R53. This leaves us with the final equation a·b = z+(z1⊕r) =
z + ((p	 z)⊕ q ⊕ r) = z + zz, which completes the proof.

3 High precision numbers

Based on the exact multiplication and addition presented in the previous sec-
tion, it is now possible to implement high precision numbers. A high precision
number is stored as an unevaluated sum of double precision floating point numbers.
The value represented by that high precision number is given by the mathematically
exact sum of all terms:

Definition 3.1 A high precision number a is given by a finite sequence of
double precision floating point numbers ai. We call each ai a limb of the number.
The value of a is given by

a =
n∑

i=1

ai.

The sequence ai is also called a floating point expansion of a.

Note that in this definition we do not specify any requirements as to the relative
size of the ai. In general we would like the ai to be ordered by magnitude in such a
way that |ai| ≈ εm|ai−1|. If that condition is true for all limbs, we call the number
normalized.

Depending on the desired accuracy, the maximum length of the expansion is
fixed before calculations commence. Although the machine precision is almost
10−16, we conservatively estimate that each additional limb adds 15 more significant
decimal digits to the expansion. Thus for a desired accuracy of n digits, the number
of limbs necessary is given by dn/15e.

In order to turn the high precision numbers rigorous, we add an error bound
to the expansion, similar to the remainder bound of Taylor Models[7].

Definition 3.2 A high precision interval a is given by a high precision number
consisting of n limbs ai and a double precision error term aerr. The value of the
interval is then given by

a =

[
n∑

i=1

ai − aerr,

n∑
i=1

ai + aerr

]
.

For shorter notation we also denote the above interval by a =
∑n

i=1 ai ± aerr.
This way of storing intervals as only one high precision midpoint and a sim-

ple double precision error term has obvious advantages over intervals stored as two
high precision endpoints. Only one high precision number is needed, so the memory

Rigorous High Precision Interval Arithmetic in COSY INFINITY 7

footprint of the high precision intervals is smaller. Furthermore, the computation
time is less since operations only need to operate on one high precision number,
whereas the error term can be calculated quickly in double precision arithmetic.
Finally, this representation fits in nicely with the general concept of our high preci-
sion numbers. As we will see in the next section, verification is almost automatic in
our algorithms. Thus our high precision intervals are almost as fast as non-verified
high precision numbers would be.

Note that there are several other implementations of non-verified high precision
numbers based on the concept of floating point expansions (e.g. [10]). To the
best of our knowledge, however, our implementation is the only rigorous interval
implementation based on this concept.

3.1 Addition. The most elementary operation to be implemented for two
high precision intervals is addition. Given two high precision intervalsA =

∑n
i=1 ai±

aerr and B =
∑n

i=1 bi ± berr, the exact sum is given by

A+B =
n∑

i=1

ai +
n∑

i=1

bi ± (aerr + berr)

While this is a valid expansion with 2n limbs, it is not a valid n limb expansion.
Thus the addition operation can be reduced to the problem of accumulating a
sequence of m1 floating point numbers into a sequence of m2 < m1 floating point
numbers.

The algorithm to perform that operation is called the accumulator. It takes a
sequence of n double precision numbers ai and returns another sequence of double
precision numbers bi of predefined maximum length. If there are roundoff errors,
or the result does not fit into the requested length, the remaining terms are accu-
mulated in an outward rounded error term. This error term represents an upper
bound on the error of the result.

The implementation of this accumulator algorithm is not complicated. Let
a1, . . . , an denote the double precision numbers in the input array. Using the exact
addition presented in the previous section, we begin by adding a1 and a2 exactly
resulting in a result sum1 and an error term b1. Then we continue to exactly add
sum1 and a2 into sum1 and an error term b2. This process is repeated until we have
added all an. The resulting term sum1 then is the first limb of the result. Note
that after this procedure we are left with b1, . . . , bn−1 error terms. To calculate the
next limb, we just repeat the same procedure on b1, . . . , bn−1, and so forth. Once
the maximum number of limbs is reached, the absolute values of all remaining error
terms are added up and rounded outwards to give a rigorous bound on the error.
This algorithm is graphically represented in Figure 1.

Note that this implementation of the addition does not pose any restrictions
on the input sequence. In particular, it is not required to be in any specific order or
even normalized, like many other algorithms for floating point expansions require.
To minimize the roundoff errors, speed up execution time, and obtain optimally
sharp results, it is best if the input is sorted by decreasing order of magnitude. But
even with completely random input, the result will be fully rigorous nonetheless.

The output sequence also is not guaranteed to be ordered, yet typically it will
even be normalized. The extend of the denormalization of the result depends on
the amount of cancellation happening during the additions.

8 Alexander Wittig and Martin Berz

!
"

!
#

!
$

!
%

!
&

!
'

(
#

(
"

(
$

(
%

(
&

)
#

)
"

)
$

)
%

*
#

*
"

*
$

+
#

+
"

,
"

-./
"

-./
&

-./
%

-./
$

-./
#

-./
'

0

0

0

0

0

0

-./
"

+11

-./
$

-./
#

Figure 1 The accumulator algorithm. In this example, six double precision
numbers a1 . . . a6 are to be added. The arrows indicate the error term of the

exact addition of the two numbers above them. If only three limbs are desired
for the result, the summation terminates after three iterations and the left over

terms are accumulated into an outward rounded error term.

3.2 Multiplication. The second most important operation is multiplication.
Given two high precision intervals A =

∑n
i=1 ai ± aerr and B =

∑n
i=1 bi ± berr, the

exact product is given by

A ∗B =

(
n∑

i=1

ai

)
∗

(
n∑

i=1

bi

)
±

(
aerr ∗

∣∣∣∣∣
n∑

i=1

bi

∣∣∣∣∣+ berr ∗

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣+ aerr ∗ berr

)

⊂
n∑

i,j=1

ai ∗ bj ±

(
aerr ∗

(
n∑

i=1

|bi|+ berr

)
+ berr ∗

(
n∑

i=1

|ai|+ aerr

))
Thus, multiplication essentially reduces to multiplying each limb of the first

argument with each limb of the second argument using Dekker’s algorithm, and
summing up the resulting floating point numbers. The error term given above can
easily be bounded from above using outward rounding floating point arithmetic,
since all terms summed up are positive.

While the accumulator could be used to achieve this goal, it is possible to utilize
the additional information about the structure of the high precision intervals to
speed up the multiplication without losing the correctness of the result. Assuming
the input numbers are normalized, it is possible to estimate which is the first limb
of the result affected by adding the product ai ∗ bj to the result. Under these
assumptions, the product ai ∗ bj is of order of magnitude εi+j−2(a1 ∗ b1). Assuming
the result C is also normalized, the first limb affected by adding ai ∗ bj is ci+j−1.

When performing the addition, all limbs before ci+j−1 remain unchanged, and
thus the addition can be started at this limb. The exact multiplication of ai and
bi yields two floating point numbers e1,1 and e1,2. To add these to the result, two
exact additions are performed. First e1,1 and ci+j−1 are added exactly into ci+j−1

and e2,1. Then ci+j−1 and e1,2 are added exactly into ci+j−1 and e2,2. The two
newly created error terms e2,1 and e2,2 are of order ε ∗ e1,1 and thus adding them
to the result C will only affect limbs starting at ci+j .

The same process is repeated k − 1 times, until the last limb of the result has
been reached. At this point, ek,1 and ek,2 contain the exact errors that are left over
in the addition. Since there are no more limbs in the result to hold these numbers,

Rigorous High Precision Interval Arithmetic in COSY INFINITY 9

!
"#$

!
"#"

%
"

!
$#$

!
$#"

%
$

!
&#$

!
&#"

%
&

%
'

%
(

%)
"

%)
$

%)
&

%)
'

%)
(

*

*

*

*

*

!
'#$

!
'#"

!++*

Figure 2 The partial addition in the multiplication algorithm. In this exam-

ple, e1,1 and e2,1 are added to the result c1 . . . c5 starting at the third limb c3.
The arrows indicate the error term of the exact addition of the two numbers

above them. e4,1 and e4,2 are added to the error term of the result.

their absolute values are simply added to the remainder bound. This process yields
a fully rigorous addition of the product ai ∗ bj to the result C (see Figure 2).

Note that for products that are determined not to affect any limbs in the result,
no exact multiplication has to be performed, instead an outward rounded floating
point multiplication is sufficient to determine the value to be added to the error
bound directly.

3.3 Division. Based on the the multiplication and addition described above,
it is now possible to implement division and a square root. For the division, a
constructive approach is used, that produces a better result by adding correction
terms limb by limb.

The algorithm is basically the same as the simple “black board” division (also
called long division), that is taught in middle school. It makes use of the division
for floating point numbers to estimate the next limb in the result. Then rigorous
multiplication and subtraction are used to calculate how far off the new result is
from the correct result.

Given A and B, C = A/B is to be computed. First, A and B are approximated
by floating point numbers a and b. Those approximate numbers are then divided
using floating point arithmetic to yield c = a/b. The result c is then used as a first
approximation of the high precision result, serving as its first limb c1.

In the next step, the high precision interval operations are used to rigorously
calculate the difference D1 = A−B ∗ c1, i.e. the error left to correct. Letting d1 be
a floating point approximation of D1, the same process yields an approximation of
the next limb c2 = d1/b. In general, letting Dk = Dk−1 − B ∗ ck, one inductively
obtains as many limbs ck as required. This process also readily yields a rigorous
error bound in Dk.

3.4 Square Root. To compute the square root X of a high precision number
A, we use the interval Newton method[8] to obtain an interval enclosure of the
solution of X2 −A = 0.

The iteration step for this equation is given by

Xn+1 = M(Xn)− M(Xn)2 −A
2Xn

10 Alexander Wittig and Martin Berz

where M(Xn) stands for the midpoint of the interval Xn.
Provided that the initial interval enclosure X0 contains the correct square root

interval, each subsequent Xn contains the correct result[8]. Furthermore, the se-
quence of intervals converges quickly. It is not necessary to intersect each Xn and
Xn+1, as this operation is expensive in terms of computational cost. The criterion
for terminating the iteration is the size of the error bound of Xn. Once the size of
the error bound grows, i.e. the intervals do not contract any more, the best possible
enclosure of the result has been reached.

The initial starting value X0 is chosen by double precision interval arithmetic.
First, an interval enclosure I of the high precision interval A is calculated. If it
exists, the interval square root of I is converted into a high precision number, which
serves as the initial interval X0. If the interval I contains negative numbers, an
error flag in the result X is set instead.

Note that in our representation of high precision intervals, it is particularly
easy to obtain an the midpoint of an interval. All that has to be done is to set the
error bound to 0 temporarily. This way, all further calculations are still performed
in rigorous interval arithmetic, thus assuring that the resulting interval Xn+1 really
contains the correct result.

3.5 Intrinsic Functions. All other intrinsic functions are implemented based
on their Taylor expansions and using identities relating the different intrinsic func-
tions to each other. Typically, the argument is reduced before being passed to the
Taylor series, to speed up convergence. These argument reductions are also based
on mathematical identities, very much depending on the intrinsic function[2].

The verification of the result is very much dependent on the specific intrinsic
function as well. Often it is possible to use the Lagrange remainder formula to
obtain a rigorous upper bound of the remainder error. In other instances it is
possible to use other remainder criteria, such as the Leibniz criterion.

In this paper, we will present the implementation of the arcus tangent function.
Other intrinsics are implemented similarly, for a detailed discussion see[12].

For the arcus tangent, the following expansion is used[3]:

arctanX =
∞∑

n=0

(−1)nX
2n+1

2n+ 1
= X − 1

3
X3 +

1
5
X5 + . . .

This series converges for |X| 6 1. To reduce the argument to that range, the
following identity is used[3]:

arctan(X) = 2 arctan
X

1 +
√

1 +X2

Applying this equation once, reduces all arguments from (−∞,+∞) to (−1, 1).
Because convergence of the series for that range still is slow, the reduction is ap-
plied two more times. This reduces the argument to the interval (−0.25, 0.25).
After evaluating the series for the reduced argument, only a multiplication by 8 is
required. This can be performed exactly by multiplying each limb and the error
term in floating point arithmetic.

To obtain an error bound on the remainder of the series, it is in this case not
possible to use the Taylor remainder formula. Careful examination of the term
supx∈(−0.25,0.25)

(
d
dx

)n
arctanx shows, that it grows quickly, so that the Lagrange

remainder term only converges as 1
n . This overestimates the error by several orders

Rigorous High Precision Interval Arithmetic in COSY INFINITY 11

of magnitude. Fortunately, the series has monotonously decreasing elements and
alternating signs. Thus the Leibniz criterion[3] applies, and an estimate of the
remainder to the partial series is given simply by the next term in the series:

Rn =
∣∣∣∣X2n+3

2n+ 3

∣∣∣∣
3.6 Comparison to other packages. It is worth noting some fundamental

differences between our implementation and other high precision implementations
based on floating point expansions, such as the “double double” implementation in
the original Dekker paper [4] and the arbitrary precision arithmetic by Shewchuk
[10].

In those implementations the authors were very careful to develop algorithms
that provide some guaranteed accuracy and derived error estimates for their oper-
ations. For floating point expansions, these estimates always lead to a requirement
for normalization of the input. Normalization, however, is a rather complicated
and computationally expensive operation.

We, on the other hand, use an entirely different approach. Instead of making
any analytic estimates for roundoff errors, we have our numbers validate themselves
by adding a rigorous remainder bound. The only claim we make is that the interval
resulting from an operation rigorously encloses the mathematically correct result. If
the input numbers are denormalized, or if excessive cancellation occurs during the
calculation, it is possible that our algorithm produces significant overestimation.
The result, however, is rigorous nonetheless. Applying our high precision intervals
to real world problems shows that those cases are very rare and that our intervals
typically provide sharp enclosures of the correct results.

We also compared the speed of our implementation to the speed of MPFI. For
this comparison, we added an MPFI data type to COSY INFINITY. First, the
same intervals are initialized once as the MPFI data type and once as our high
precision intervals. The same operation is then repeated 10.000 times at different
precisions, and the CPU time taken for all operations is measured.

Representative for the other operations, Figures 3 and 4 show the ratio between
the runtime for our implementation and the runtime for MPFI for multiplication
and the arcus tangens intrinsic function respectively. The runtime ratio HI/MPFI
is plotted as a function of the number of limbs. The range of limbs tested lies
between 1 and 5, corresponding to a range of 15 to 75 significant decimal digits.

For multiplication, our code performs faster over the entire range of precision.
Even at 75 digits, our algorithms still only take about 83% of the time MPFI takes
to multiply two intervals. Similar results are true for addition and subtraction,
where our algorithms outperform MPFI by at least a factor of two.

For more complicated operations, such as certain intrinsics, MPFI outperforms
our implementation at 75 digits by up to a factor of 3. This is probably due to
highly optimized algorithms for evaluating intrinsic functions. At 45 significant
digits, however, our implementation still is en par with MPFI for most intrinsics.

At higher precisions, our code performs significantly worse. However, our goal
in this implementation was to implement a portable, fast and rigorous interval
package for precisions up to about 100 significant digits. In particular, we focused
on the elementary functions such as addition and multiplication, as these are most
commonly used.

12 Alexander Wittig and Martin Berz

Figure 3 Speed comparison between our interval implementation and MPFI

for multiplication.

Figure 4 Speed comparison between our interval implementation and MPFI

for the arcus tangens intrinsic function.

Rigorous High Precision Interval Arithmetic in COSY INFINITY 13

4 Outlook

Our high precision intervals have already proved useful in applied rigorous
numerical computations. Among other things, we used our high precision intervals
to compute a verified high precision enclosure of an attractive fixed point in the
Hénon map[13].

Furthermore, based on the algorithms presented in this paper, we implemented
non-verified, high precision differential algebra vectors[11]. These are a first step
towards high precision Taylor Models, which are being implemented right now. In
particular, the intrinsic functions for high precision intervals will be very useful in
the implementation of the corresponding intrinsics for high precision Taylor Models.

References

[1] IEEE standard for binary floating-point arithmetic. Technical Report IEEE Std 754-1985,
The Institute of Electrical and Electronics Engineers, 1985.

[2] K. Braune and W. Kramer. High-accuracy standard functions for intervals. In Manfred Rus-

chitzka, editor, Computer Systems: Performance and Simulation, volume 2, pages 341–347.
Elsevier Science Publishers B.V., 1986.

[3] Bronstein, Semendjajew, Musiol, and Mühlig. Taschenbuch der Mathematik. Verlag Harri

Deutsch, 5th edition edition, 2001.
[4] T.J. Dekker. A floating-point technique for extending the available precision. Numerische

Mathematik, 18:224–242, 1971/72.

[5] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmer-
mann. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM

Transactions on Mathematical Software, 33(2):13:1–13:15, 2007.

[6] D. E. Knuth. The Art of Computer Programming, volume I-III. Addison Wesley, Reading,
MA, 1973.

[7] K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis,
Michigan State University, East Lansing, Michigan, USA, 1998. Also MSUCL-1093.

[8] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[9] N. Revol. Multiple precision floating-point interval library. Technical report, SPACES, INRIA
Lorraine and Arenaire, INRIA Rhone-Alpes, 2002.

[10] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric pred-

icates. Discrete & Computational Geometry, 18:305–363, 1997.
[11] A. Wittig and M. Berz. Computation of high-order maps to multiple machine precision.

International Journal Modern Physics A, in print, 2008.

[12] A. Wittig and M. Berz. Design and implementation of a high precision arithmetic with rigor-
ous error bounds. Technical Report MSUHEP 081126, Michigan State University, December

2008.

[13] A. Wittig, M. Berz, and S. Newhouse. Computer assisted proof of the existence of high period
periodic points. Communications of the Fields Institute, in print, 2008.

	1. Introduction
	2. Theory of High Precision Operations
	3. High precision numbers
	4. Outlook
	References

