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The Beam Dynamics simulation package in COSY INFINITY is built upon a differential
algebra data type. With it, it is possible to compute transfer maps or arbitrary systems
to arbitrary order. However, this data type is limited by the precision of the underlying
floating point number model provided by the computer processor.

We will present a method to extend the effective precision of the calculations based
purely on standard floating point operations. Those algorithms are then integrated into
the differential algebra data type to efficiently extend the available precision, without
unnecessarily affecting overall efficiency. To that effect, the precision of each coefficient
is adjusted automatically during the calculation.

We will then proceed to show the effectiveness of our implementation by calculating
high precision maps of combinations of homogeneous dipole segments, for which the
exact results are known, and comparing the high precision coefficients with the results
produced by the traditional COSY beam physics package.
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rations.
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1. Theory of High Precision Operations

We will begin by introducing some elementary operations on floating point numbers
which we will use to build our high precision implementation on.

1.1. Floating Point Numbers

To represent calculations on the real numbers on a computer, most modern proces-
sors use floating point numbers. The concept behind the representation of a floating
point number is essentially the same as the “scientific notation” in terms of relevant
digits and a power of ten to represent the order of magnitude. The same is done
with floating point numbers. The only difference is that, due to the binary number
system, a power of two is used to signify the magnitude.
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Definition 1.1. We define the set of all floating point numbers R to be given by

R = {mz · 2ez | 2t−1 � |mz| < 2t; M < ez < M},
where t, M and M are positive integer constants.

The constants t, M and M define the floating point number system. M and M

limit the exponent range and thus the largest and smallest representable numbers.
To make the following proofs easier to understand, we will assume that the exponent
range is unlimited, i.e. M = −∞ and M = ∞. This is, of course, not true for
computer systems, where overflows and underflows of the exponent may happen.
In our practical implementation we have to deal with those cases separately. The
parameter t is the mantissa length in binary digits and thus defines the relative
precision of the floating point system (see below).

In the following we will use floating point systems with different mantissa lengths
which we will denote by Rt. Over- and underflows notwithstanding, we clearly have
that Rt ⊂ Rt′ if t � t′. The lower bound requirement on the mantissa is called the
normalization. With this additional requirement, the values represented by floating
point numbers become unique. Mantissae with absolute value less than 2t−1 can
be multiplied by a power of two so that they lie within the allowed range for the
mantissa, while the exponent is adjusted accordingly.

Given any real number r ∈ R within the range of the floating point representa-
tion, we will denote by r̃ ∈ R the closest floating point number in the given system
of floating point numbers. Then it follows readily from Definition 1.1 that

|r − r̃|
|r| < εm = 2−t.

The value εm is called the machine precision and is given by the length of the
mantissa t.

Every floating point implementation has to provide at least the basic operations
addition, subtraction, and multiplication. Clearly the mathematical result of any
of those operations on two arbitrary floating point numbers a, b ∈ R does not
necessarily have to be in R. Thus, the floating point operations corresponding to
+,−,× are not the same as their mathematical counterparts on the real numbers.
Let ⊕,�,⊗ denote the floating point operations for +,−,×.

Definition 1.2. Let � denote one of the floating point operations ⊕,�,⊗ and •
the same operation on the real numbers.
The operation � is said to be round-to-nearest if ∀a, b ∈ R

|(a � b) − (a • b)| = min
x∈R

(x − (a • b)).

Note that if a floating point operation is round-to-nearest, the result is the
floating point number closest to the mathematically correct result. In case of a
toss-up, i.e. if the mathematically correct result is exactly between two floating
point numbers, we will accept either one. Another immediate consequence is that if
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the result of an operation is representable exactly by a floating point number then
we obtain the correct result without roundoff errors.

From the above definition, a bound for rounding errors and a useful condition
for the mantissa of the result of a round-to-nearest operation � easily follow. Let
z = mz · 2ez = a � b. Then

|z − (a • b)| < εm · z. (1)

This is clear since if the error was more than εm · z then either the floating point
number (mz + 1) · 2ez or (mz − 1) · 2ez would be closer to the correct result. Fur-
thermore for the mantissa mz, the following equation holds.

mz =
[
ma · 2ea • mb · 2eb

2ez

]
, (2)

where [x] denotes rounding to the nearest integer.
In most modern computers the constants t, M, M are defined to follow the IEEE

754 standard.1 The double precision numbers defined in that standard specify that
t = 53, M = 1023, M = −1024. Thus, for double precision numbers εm = 2−53 ≈
10−16. Therefore in double precision we can represent about 16 valid decimal digits.
The standard also defines that the elementary floating point operations ⊕,�,⊗ can
be set to be round-to-nearest. Consistent with the notation introduced above, we
will denote the set of double precision floating point numbers by R53.

1.2. Exact operations

In the following subsections we will state some well-known facts about obtaining
exact results for the basic floating point operations. While this may sound surprising
at first, it is indeed possible to obtain the roundoff errors of the basic floating point
operations exactly from within the floating point arithmetic. The theorems and
proofs given here are originally due to Dekker,2 who showed that the theorems also
hold with slightly lesser requirements on the underlying floating point operations
than prescribed by the IEEE 754 standard. But since our implementation will build
on IEEE 754 double precision floating point numbers, we will restrict ourselves to
those. To give the reader an idea of how the proofs of those theorems work, we will
prove some of the theorems while referring the reader to [2] for others.

1.2.1. Two-Sum

The first theorem will provide us with a way to calculate the exact roundoff error
occurring when adding two floating point numbers.

Theorem 1.1. Let two double precision floating point numbers a and b such that
|a| > |b| be given. Let z = a⊕b, w = z�a and zz = b�w. Then, neglecting possible
over- or underflows during the calculation, we have that z + zz = a + b exactly.
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Proof. Let a = ma ·2ea and b = mb ·2eb . Since |a| > |b| and floating point numbers
are normalized, we have that ea � eb. It is sufficient to show that w ∈ R53 and
b − w ∈ R53, then the result follows readily from optimality of the floating point
operations.

Let z = a ⊕ b = mz · 2ez . From Equation 2 we get that

mz =
[
ma · 2ea−ez + mb · 2eb−ez

]
.

Since |a + b| < 2|a| we have that ez � ea + 1. Now we consider the two cases
ez = ea + 1 and ez � ea.

• Assume ez = ea + 1. Then mz =
[
ma · 2−1 − my · 2eb−ea−1

]
and letting w =

mw · 2ea we find that

|mw| = |mz · 2ez−ea − ma|
= |mz · 2ez−ea − ma − mb · 2eb−ea + mb · 2eb−ea |
� |2mz − ma − mb · 2eb−ea | + |mb · 2eb−ea |
< 2|mz − ma · 2−1 − mb · 2eb−ea−1| + 253

< 2
1
2

+ 253.

Since mw is an integer, we therefore have that mw � 253 and thus w ∈ R53, i.e.
w is a double precision floating point number.

• If ez � ea the exact same proof carries through, the only difference being that
we define w = mw · 2ez .

To prove that zz ∈ R53, we first note that we can write w = i · 2eb for some
integer i since ea � eb. Secondly, we have that |b − w| = |b − z + a| � |b| by
optimality. To see this simply let z = x, and then apply Definition 1.2. We thus
have

|zz| = |b − w| = |mb − i| · 2eb � |b| = |mb| · 2eb < 253 · 2eb ,

and therefore (mb − i) · 2eb = zz ∈ R53.

Note that by Definition 1.1 floating point numbers are symmetric, i.e. if a ∈ R

then −a ∈ R. Thus the above theorem automatically provides exact subtraction as
well.

It is worth mentioning that there are also other algorithms to calculate the
same two values without the condition that a > b, but requiring some additional
floating point operations. The following algorithm is due to Knuth.3 The advantage
of this method is that due to pipelining on modern processors it is often faster to
perform the three additional floating point operations instead of having to evaluate
a conditional statement on the absolute values of a and b.

Theorem 1.2. Let two double precision floating point numbers a and b be given.
Let z = a⊕ b, bv = z� a, av = z� bv and zz = (a� av)⊕ (b� bv). Then, neglecting
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possible over- or underflows during the calculation, we have that z + zz = a + b

exactly.

Proof. For a proof see, for example, [3].

1.2.2. Splitting

Before we can move on to the exact multiplication, we require the concept of the
splitting of a double precision number.

Definition 1.3. Let a ∈ R53 be given. We call ah, at ∈ R26 the head and the tail
of the splitting of a if

ah =
[
ma · 2−26

] · 2ex+26,

at = a − ah.

This definition may sound surprising at first. After all a has 53 mantissa bits, but
both ah and at only have 26 bits each yielding a total of 52 bits. The solution to
this riddle is the fact that the difference |[x]− x| � 1/2, but depending on x it can
have either positive or negative sign. So the missing bit is the sign bit of the tail of
the splitting.

The following theorem, also presented by Dekker, allows us to calculate such a
splitting of a double precision number.

Theorem 1.3. Let a ∈ R53 be given and let p = x ⊗ (227 + 1). Then the head of
the splitting of a is given by ah = p ⊕ (x � p).

Proof. Since the proof of this theorem is somewhat technical and does not con-
tribute much to the understanding of these operations, we refer the reader to the
papers of Dekker2 or Shewchuk.4

1.2.3. Multiplication

With the notion of a splitting, we can formulate the following theorem for exact
multiplication of two double precision numbers:

Theorem 1.4. Given two double precision floating point numbers a and b let a =
ah + at, b = bh + bt be a splitting as defined above. Also let p = (ah ⊗ bh), q =
(at ⊗ bh)⊕ (ah⊗ bt) and r = (at ⊗ bt). Then, neglecting possible over- or underflows
during the calculation, z = p ⊕ q and zz = (p � z) ⊕ q ⊕ r satisfy z + zz = a · b

exactly.

Proof. First note that for any two numbers x, y ∈ R26 their product x · y ∈
R52 ⊂ R53. This is clear since for x = mx · 2ex and y = my · 2ey we have that
x · y = mx · my · 2ex+ey and |mx · my| < 252 since |mx| < 226 and |my| < 226.
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We also have that

a · b = (ah + at) · (bh + bt) = ah · bh + ah · bt + at · bh + at · bt.

Since ah, at, bh, bt ∈ R26, each single term in this sum is in R52. Furthermore, the
two cross terms ah · bt and at · bh have the same exponent and therefore their sum
is in R53. Thus p, q, and r, as defined in the statement of the theorem, are exact,
and we obtain that a · b = p + q + r.

Now we perform an exact addition of p and q as described above, yielding the
leading term z = p ⊕ q and a remainder term z1 = (p � z) ⊕ q. We thus have
a · b = z + z1 + r. Close examination of the proof of the exact addition shows
that r and z1 have the same exponent and both are in R52, so their sum can be
calculated exactly in R53. This leaves us with the final equation a ·b = z+(z1⊕r) =
z + ((p � z) ⊕ q ⊕ r) = z + zz, which completes the proof.

1.3. High precision numbers

Based on the exact multiplication and addition, it is now possible to implement
high precision numbers. Those numbers are stored as unevaluated sums of dou-
ble precision floating point numbers. The value represented by that high precision
number is given by the exact sum of all terms:

Definition 1.4. A high precision number a is given by a finite sequence of double
precision floating point numbers ai. We call each ai a limb of the number. The value
of a is given by

a =
n∑

i=1

ai.

The sequence ai is also called a floating point expansion of a.

Note that in this definition we do not specify any requirements as to the relative
size of the ai. In general we would like the ai to be ordered by magnitude in such a
way that |ai| ≈ εm|ai−1|. If that condition is true for all limbs, we call the number
normalized.

Depending on the desired accuracy, the maximum length is fixed before calcula-
tions commence. Although the machine precision is almost 10−16, we conservatively
estimate that each additional limb adds 15 more significant decimal digits to the
expansion. Thus for a desired accuracy of n digits the number of limbs necessary is
given by 
n/15�.

In order to make our high precision numbers rigorous, we add an error bound
to the expansion, similarly to the remainder bound of Taylor Models.5,6

Definition 1.5. A high precision interval a is given by a high precision number
consisting of n limbs ai and a double precision error term aerr. The value of the
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interval is then given by

a =

[
n∑

i=1

ai − aerr,

n∑
i=1

ai + aerr

]
.

For shorter notation we also denote the above interval by a =
∑n

i=1 ai ± aerr.
This way of storing intervals as only one high precision midpoint and a sim-

ple double precision error term has obvious advantages over intervals stored as two
high precision endpoints. Only one high precision number is needed, so the memory
footprint of the high precision intervals is smaller. Furthermore, the computation
time is less since operations only need to operate on one high precision number,
whereas the error term can be calculated quickly in double precision arithmetic.
Finally, this representation fits in nicely with the general concept of our high preci-
sion numbers. As we will see in the next section, verification is almost automatic in
our algorithms. Thus our high precision intervals are almost as fast as non-verified
high precision numbers would be.

1.3.1. Accumulator

The core operation used by our high precision numbers is the addition of a sequence
of double precision numbers. The algorithm to perform that operation is called the
accumulator. It takes a sequence of n double precision numbers ai and returns
another sequence of double precision numbers bi of predefined maximum length.
If there are roundoff errors or the result does not fit into the requested length, we
optionally return an accumulated, outward rounded error term, which contains an
upper bound on the error of the result. The input sequence is not required to be in
any specific order, but to minimize the roundoff errors and to speed up execution
time it is best if the input is sorted by decreasing order of magnitude. The output
sequence is not guaranteed to be ordered, yet typically it will even be normalized,
depending on the amount of cancellation happening during operations.

The implementation of this accumulator algorithm is not complicated. Let
a1, . . . , an denote the double precision numbers in the input array. Using the exact
addition presented in the previous section, we begin by adding a1 and a2 exactly
resulting in a result sum1 and an error term b1. Then we continue to exactly add
sum1 and a2 into sum1 and an error term b2. This process is repeated until we have
added all an. The resulting term sum1 then is the first limb of the result. Note that
after this procedure we are left with b1, . . . , bn−1 error terms. To calculate the next
limb, we just repeat the same procedure on b1, . . . , bn−1, and so forth. Once the
maximum number of limbs is reached, the absolute values of all remaining error
terms are added up and rounded outwards to give a rigorous bound on the error.
This algorithm is graphically represented in Fig. 1.
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Fig. 1. The accumulator algorithm. In this example we want to add six double precision numbers
a1 . . . a6. The arrows indicate the error term of the exact addition of the two numbers above them.
If only three limbs are desired for the result the summation terminates after three iterations and
the left over terms are either discarded or accumulated into an outward rounded error term.

1.3.2. High precision interval operations

Utilizing the accumulator as outlined above, we have implemented a rigorous high
precision interval arithmetic data type in COSY INFINITY.7 As in any arithmetic,
the two most important operations are addition and multiplication of two such
intervals. Using the accumulator, addition is fairly straightforward. All we need
to do is copy the limbs of each interval into an array and then send it through
the accumulator. Since we get exact values for the leftover roundoff errors in this
process, obtaining a remainder bound is trivial. For the multiplication we essentially
use the fact that we can multiply each limb of the first argument with each limb of
the second argument exactly using Dekker’s algorithm. Then all the results of those
multiplications are added up using the accumulator. Here, again, the accumulator
gives us precise bounds for the left-over errors.

Division and intrinsic functions such as square roots, trigonometric functions,
etc. are then implemented based on addition and multiplication. Using argument
reduction based on mathematical identities, Taylor expansions, and Taylor remain-
der formulae for some intrinsics8 or interval Newton iterations9 for others, it is
possible to calculate rigorous enclosures of the correct results. We will not go into
more detail of this implementation, for a full discussion see [6].

At this point it is worth noting some differences between our implementation
and other high precision implementations based on floating point expansions, such
as the “double double” implementation in the original Dekker paper2 and the ar-
bitrary precision arithmetic by Shewchuk.4 In those implementations the authors
were very careful to develop algorithms that provide some guaranteed accuracy and
derived error estimates for their operations. For floating point expansions, these es-
timates always lead to a requirement for normalization of the input. Normalization,
however, is a rather complicated and computationally expensive operation. We, on
the other hand, use an entirely different approach. Instead of making any analytic
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estimates for roundoff errors, we have our numbers validate themselves by adding
a rigorous remainder bound. The only claim we make is that the interval result-
ing from an operation rigorously encloses the mathematically correct result. If the
input numbers are badly conditioned or if excessive cancellation occurs during the
calculation, it is possible that our algorithm produces significant overestimation.
The result, however, is rigorous nonetheless. Applying our high precision intervals
to real world problems shows that those cases are very rare and that our inter-
vals typically provide sharp enclosures of the correct results.10 To the best of our
knowledge, our implementation is the only rigorous interval implementation based
on floating point expansions as of now.

2. Implementation of a High Precision Differential Algebra

Utilizing the same basic algorithms outlined above, we can begin to implement
high precision DA vectors. Instead of starting from scratch, we will extend the
already existing implementation of a DA vector in COSY. The final goal for this is
to extend the existing DA vector type to high precision in such a way that it can
act as a drop in replacement for the traditional double precision type. That is, old
code should run without any major modification besides adding one command in
the beginning of the code to select the desired precision. All subsequent operations
should be transparently carried out without any change to the user interface. The
full implementation of this is beyond the scope of this paper, but we will present
the basic algorithms used.

As with the scalar data type, the two most important operations are addition
and multiplication. Once these two have been properly implemented all other op-
erations will follow naturally from those two. But before we can begin with the
details of the implementation we shall introduce the way DA vectors are stored in
our implementation.

2.1. Storage

Currently, DA vectors are stored as a list of double precision coefficients and an
associated coding integer denoting the monomial for this coefficient. The method
by which these coding integers are calculated is beyond the scope of this paper. For
details, see [11]. Our way of representing high precision numbers blends in naturally
with this storage format. Instead of only storing one double precision number per
monomial, we will simply store several limbs continuously, all with the same coding
integer. As with the high precision numbers, the value for each coefficient is the
sum of all double precision numbers with the same coding integer.

By thus storing the limbs continuously in memory, we greatly simplify the ad-
dition and multiplication process as will be seen later. Also the typical output of
such a DA vector is rather easy to interpret. As with the traditional DA vectors
we simply print a list of all coefficients. Only this time there will not only be one
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coefficient per monomial, but several. In the typical case the coefficients will de-
crease by orders of εm, so that the first coefficient printed should be roughly what
the traditional DA vectors would produce, while all following coefficients will be
corrections to that value. To make the output rigorous, we also print the exact
binary representation of the floating point number as given in Definition 1.1.

2.2. Addition

The addition of two DA vectors is a fairly straightforward operation. It is a simple
merging of the two vectors, where a monomial is copied into the output vector if
it only appears in one of the vectors, or is added and then copied if a monomial
appears in both vectors. In the high precision implementation we do exactly the
same with the only difference that to add up two monomials appearing in both
input vectors, we first copy the limbs into a temporary array, alternating between
the two vectors. That way, as in the case of the high precision interval addition,
we typically obtain an order of the array elements in roughly decreasing order of
magnitude.

This array is then sent through the accumulator (see 1.3.1) that accumulates
the numbers, starting with the smallest ones at the end of the temporary array,
into the output vector. Once the maximum number of limbs has been reached, the
absolute values of the left over terms are added up and kept in a separate tallying
variable. This is in preparation for the implementation of Taylor Models, where all
calculations are made rigorous by keeping an error bound.

This way of adding numbers is essentially the same we used for high precision
scalars. Of course we thus get all the benefits that implementation had, including
the automatic renormalization in case the input was denormalized and not too much
cancellation occurs. Also the addition of a DA vector and a scalar (i.e. in COSY
either a real or a high precision number) follows trivially from this. As always,
once addition is implemented, by symmetry of the floating point numbers we also
automatically have subtraction.

2.3. Multiplication

The more complex operation, and thus the core of our DA implementation, is the
multiplication of two DA vectors. This is a very important operation that needs
to be carried out quickly as it is used often throughout calculations. The perfor-
mance of all other arithmetic operations depends crucially on this one operation.
We therefore have taken great care to make this operation as fast as possible.

Because our way of storing high precision coefficients is quite natural in the
current DA implementation, we can use most of the current implementation with
only minor changes. A detailed description of the existing DA multiplication is
beyond the scope of this paper, the reader is referred to [11] for full details. All we
need to know here is that the algorithm walks through each coefficient in the first
DA vector and multiplies it with every relevant coefficient in the second DA vector,
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adding the result to a location in a temporary array which is determined by the
coding integers of the first and the second coefficient. In order to determine which
coefficients are “relevant”, the algorithm first sorts the second DA vector by the
monomial order of the coefficients. Note that this is not the same ordering induced
by the coding integers.11

To amend this algorithm for efficient high precision operations, several things
are necessary. First the temporary array which keeps all the new resulting coeffi-
cients needs to be enlarged, so it can keep the maximum number of limbs for each
coefficient. Then we need to add the high precision multiplication. The naive way
of achieving this would be to first extract all limbs for a given coefficient, and then
to utilize the multiplication routine for high precision intervals. That, however, is
very time consuming and also does not make use of some intrinsic properties of
coefficients of DA vectors, which can be exploited to speed up the operation. So
instead, we will rewrite the multiplication from scratch without relying on the high
precision interval code here.

First, note that for the exact multiplication we need to split every coefficient
into a head and a tail. This operation only has to be done once for each coefficient,
and the most natural place to do the splitting is when the second DA vector is
sorted by order. The first vector does not need to be pre-split since there every
coefficient is only used once. Next, note that, instead of multiplying all limbs of the
high precision coefficients at once, we can just multiply each limb separately and
add the result to the appropriate resulting coefficient. There are two operations
involved in this, a multiplication and then an addition.

One of the intrinsic properties of coefficients in DA vectors is that the mag-
nitude of coefficients typically decrease exponentially with the order. We can use
this fact to our advantage. In the COSY implementation of DA vectors, there is a
cutoff value that specifies a lower bound on coefficients to be kept in the DA vec-
tor. Coefficients that are below that cutoff value are swept out of the calculation.
We keep that concept of a cutoff value ε for our high precision implementation.
Assuming that the high precision coefficients are normalized, we then can say that
the last limb of any coefficient is of order ε/εm since all terms of order ε or lower
are discarded. Now, when multiplying two coefficients, we do not immediately start
with an expensive high precision multiplication. Instead, we first multiply the two
coefficients in floating point arithmetic and then compare the order of the resulting
number. If this product is of order ε/εm then the roundoff error due to floating
point precision is of order (ε/εm) · εm = ε and thus is subject to the cutoff. In this
case, there is no need to do any precise operations. We can proceed exactly as in
the case of the traditional DA vectors, where the result is just added to the last
limb of the correct monomial in the temporary array.

Only when this floating point multiplication yields a result that is of larger
order than ε/εm do we perform a precise multiplication of the two coefficients. We
still retain the approximate result of the floating point operation, though. This is
because, in the next step, we need to add the two double precision numbers we
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obtained from the exact multiplication to the resulting high precision coefficient.
Naively, one could just copy the two numbers and all limbs in the result into an
array and then send that through the accumulator. That, however, is not the most
efficient way to perform the addition. Note that if we know the order of magnitude
of the numbers we want to add, we can skip all limbs of higher order in the result
since during the addition their value will not be affected. This is where the floating
point product we calculated as a first step comes in. By estimating the order of
magnitude of the approximate product, we can determine at which limb in the
result we have to start to add the precise product.

The addition then also is carried out in an especially fast way. Assuming that the
result is normalized, it is not necessary to add all numbers using the accumulator
algorithm. Instead, we can do the following. Assume a1 and a2 are the two parts of
the precise multiplication, and ck is the limb of the result we determined to start
our addition at. Then we perform an exact addition of a1 and a2 yielding ã and an
error term a11. Secondly, we exactly add ã and ck to yield the new limb ck and an
error term a22. Now we simply advance to the next limb of the result and repeat
the same operations with a11, a22 and ck+1. We continue this process until we reach
the maximum length of the result or until a11 and a22 are both zero.

A graphical representation of this algorithm is shown in Fig. 2. It is worth noting
that at the end of this procedure, the two error terms left over are the exact roundoff
error. Thus it is very easy to turn the DA vectors into rigorous Taylor Models later
by simply adding the two left over terms to the correct tallying variable used in the
rigorous Taylor Model operations.
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Fig. 2. Addition in the DA multiplication algorithm. a1 and a2 are the result of the exact
addition, ck is the limb of the result we start adding to. In this example there are four more
limbs after that. The arrows indicate the error term of the exact addition of the two numbers

above them.

Last we note that, since the limbs of a coefficient are stored linearly, we can keep
the number of lookups in the coding integer tables constant. As in the traditional
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DA vector case, only one lookup for each resulting monomial is required. To achieve
that, we simply check if the coding integer for each coefficient is that same as that
for the preceding one. If so, it is not necessary to perform another lookup since the
last calculated address is still valid.

This completes the multiplication algorithm for high precision DA vectors.
To practically implement the algorithm outlined above, we have to have a way

to estimate the order of magnitude of a floating point number. Fortunately, the
representation of floating point numbers offers an easy way to do that. It is very
fast to extract the exponent from a floating point number. But for the exponent ea

of a double precision floating point number a we have that

ln2(a) � e < ln2(a) + 1,

and thus it is a very good measure for the order of magnitude of a.
The efficiency of this implementation can be seen when comparing it to the

traditional DA multiplication. Due to the floating point test we introduced, only
operations which really need to be carried out in high precision are evaluated in that
way. Practically this means that most higher order coefficients, which are typically
very small, are treated exactly the same as before. Only the relatively few lower
order coefficients are operated on in higher precision, but even here we try to keep
the overhead small by only working on the relevant limbs. Thus the overhead is
kept at a minimum.

2.4. Other arithmetic operations

The implementation of all other arithmetic operations from here on is straightfor-
ward. In fact, we can use the almost exact same code that already exists for the
double precision DA vectors. The only somewhat non-trivial thing we need are the
high precision intrinsic functions for high precision numbers. But as mentioned be-
fore, we already did implement a complete data type for high precision intervals
based on the same representation used for the coefficients. So we can simply use
those functions to calculate the needed high precision intrinsics.

The code for DA intrinsics essentially uses two methods: either a fixed point
iteration or a simple Taylor expansion in the DA vector up to the necessary order
to calculate the intrinsics. Without going into too much detail about the DA imple-
mentation, all intrinsics are reduced to one essential function. The intrinsics split
off the constant part of the DA vector, evaluate the intrinsic on it using the cor-
responding high precision interval operation and then construct a one-dimensional
polynomial of the non-constant remaining part of the DA argument. This is then
evaluated efficiently by the procedure DAFUN. The original implementation of that
function passes coefficients of the polynomial to evaluate as an array of double pre-
cision numbers. In the high precision implementation that clearly does not yield
the desired result. The coefficients are instead passed as COSY variable numbers
referencing high precision intervals. That is an easy and fast way to pass coefficients
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to DAFUN while still allowing easy calculation of those coefficients in the calling
intrinsic function. It also has the added benefit that repeating coefficients only re-
quire one COSY variable, as the same variable can be referenced several times as
a coefficient. Those coefficients, of course, have to be calculated in high precision,
otherwise the loss of precision there will lead to a loss of precision in the resulting
DA vector and neutralize all benefits of high precision DA vectors.

Inside DAFUN we perform exactly the same operations as in the existing double
precision implementation. Starting with the argument as the result we successively
shift the highest remaining coefficient into the (empty) constant part of the result
and multiply it by the argument using the high precision DA multiplication. We
continue until all coefficients are used up. This is exactly the approach of the original
implementation. The only difference is that we not only have to copy one but several
double precision numbers into the result each time, as the coefficients themselves
are high precision numbers consisting of several limbs. Since the DA vectors are
non-verified, we can discard the high precision interval information and only use
the interval’s mid point as the coefficient.

With that change to DAFUN and minimal changes to all intrinsic functions
to use high precision numbers for the coefficients, we can easily implement all
remaining arithmetic operations. This for now completes the implementation of
our basic high precision DA vectors. There are other functions in COSY which
require further attention to make them work with the high precision DA vectors.
Particularly the coefficient extraction operations to extract a certain coefficient
from a DA vector need to be adjusted to extract not only one, but all limbs and to
return a high precision number instead of just a double precision number.

2.5. Output

To output a high precision DA vector, we use essentially the same output format as
for the traditional DA vectors. Non-zero coefficients of the expansion are printed,
sorted by their order, each in one line. The first number in each line represents a
running index of the coefficient, starting with 1. This is followed by a non-rigorous
decimal fraction with 16 digits after the decimal point, representing an approx-
imation to the coefficient’s value. Note that, due to the nature of floating point
numbers, not every floating point value can be represented as a decimal fraction of
that length. The third field gives the order of that coefficient, followed by the expo-
nents. Each integer in the exponent field represents a power of the corresponding
independent variable.

Thus far, the output follows the traditional format. The last field in the line,
however, is new. Here we print a rigorous representation of the floating point num-
ber. This is achieved by extracting the exact mantissa and exponent from the rep-
resentation of the floating point number, as given by Definition 1.1. To assure the
representation is compact, yet readable, we followed the representation of decimal
fractions. Numbers are output as their mantissa value, the letter “b”, followed by
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the exponent. Similar to the letter “E” in the decimal fraction notation used in the
first field, the “b” represents 2 raised to the power of the following integer.

Consider, for example, the following output line

6 -.1250000000000000 2 2 0 -1b-3

This is the 6th line of the output, the decimal representation of the coefficient
is given as −0.125. The coefficient has order two, and belongs to the x2y0 = x2

term. The exact representation is given by −1b − 3 = −1 · 2−3 = − 1
8 . Although in

this example the exact and decimal representation are the same, this is generally
not true due to possible rounding in the conversion to a decimal fraction.

If the DA vector contains high precision coefficients, each limb of the coefficients
is printed as a regular coefficient. Since the limbs are stored sequentially, they will
also appear in sequence in the output. If the high precision coefficient is normalized,
typically each limb will be about 10−15 times smaller than the previous limb. An
example of this output style is given below.

1 0.8660254037844386 1 1 0 3900231685776981b-52

2 0.5017542110903451E-16 1 1 0 8141427543753187b-107

3 -.7479771237866948E-33 1 1 0 -8745358328802511b-163

4 0.2653073781648097E-49 1 1 0 87312899972227b-211

Note how each line has the same exponents, x1y0 = x, thus signaling that these
coefficients represent limbs of the same high precision coefficient. The correct value
for this coefficient is the exact sum of all limbs. To calculate a decimal representation
of the coefficient, one can simply add up the exact representation of each limb using
a third party high precision package.

3. Illustrating Example

The DA vectors in COSY INFINITY were initially implemented to derive arbitrary
order transfer maps for beam physics applications.12 This is particularly useful in
connection with assessment of long-term stability through symplectic tracking.13,14

To show how our high precision DA vectors can help to get even better results, we
will present transfer maps for several homogeneous dipole magnet segments.

Currently we cannot yet just run the existing COSY INFINITY code with high
precision DA vectors due to the missing implementation of some essential functions
used in the COSY beam physics package. Instead, we have manually derived an
algebraic equation to calculate the final coordinates xf and af of a beam depending
on the initial position xi and slope ai in a homogeneous dipole magnet of reference
radius r0 and angle θ based on the geometry of the problem.
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Let

cx = r0 sin(ai),

cy = xi + r0 (1 − cos(ai)) ,

A = tan(θ)2 + 1,

B = 2 (tan(θ)cx + cy) ,

C = c2
x + c2

y − r2
0 .

Then

xf =
−B +

√
B2 − 4 · A · C
2
√

A
− r0, (3)

af = θ − arctan
(

r0 sin(ai) − (xf + r0) sin(θ)
xi + r0(1 − cos(ai)) − (xf + r0) cos(θ)

)
. (4)

The corresponding COSY INFINITY function that represents the same beam
line element is MS r0 θ 1 0 0 0 0 0;.

With our high precision DA vector implementation we should, of course, be
able to reproduce essentially the same map as the COSY beam code, except for
small roundoff errors. Our test case will be a homogeneous dipole segment of angle
θ = π

6 and reference radius r0 = 1. The expansion for the final position and slope
as calculated by the current COSY INFINITY double precision code using the
command

MS 1 30 1 0 0 0 0 0;

is given in Fig. 3. Comparing that to the results of the evaluation of Eq. (3) in high
precision DA arithmetic with about 60 digits, given in Fig. 4, shows that, indeed, the
leading limb of the result is the same as in the COSY beam physics expansion. All
the small roundoff errors of magnitude 10−15 encountered in the double precision
expansion, however, are not seen in the high precision implementation. We have
set the cutoff value, below which coefficients are discarded, to 10−60 in the high
precision operation. That is why there seem to be no roundoff errors in the high
precision map. They were all below the cutoff value.

Note how some of the coefficients actually do not require high precision. At first
glance it looks like there is no benefit to high precision calculations. All there is, is
the same number as in the double precision case. But actually this result shows how
well our implementation works. Those coefficients can be accurately represented by
only one double precision number. All digits up to 10−60 are actually 0.
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To see the full power of the high precision DA vectors, we now combine 12 of
those 30 degree segments together to form a full 360 degree bend. Clearly the result-
ing transfer map has to be the identity. Simply repeating the COSY MS command
12 times yields the expected transfer map shown in Fig. 5. The linear coefficients
are almost 1 whereas the other coefficients are all of order 10−15 or less. On the
other hand, iterating Eq. (3) 12 times with high precision DA vectors results in
the map shown in Fig. 6. In these calculations, we set the cutoff value to 10−70.
That way, the small roundoff error terms become visible in the result. As before the
result is the identity map, up to roundoff noise introduced during the calculation.
The notable difference is that, since we work with high precision numbers of length
60, the noise is of the order of 10−63.

xf :

I COEFFICIENT ORDER EXPONENTS

1 0.8660254037844386 1 1 0 0

2 0.4999999999999999 1 0 1 0

3 -.1249999999999999 2 2 0 0

4 0.4330127018922192 2 1 1 0

5 0.5801270189221930E-01 2 0 2 0

6 -.1250000000000000 3 1 2 0

7 0.2165063509461096 3 0 3 0

8 -.7812499999999993E-02 4 4 0 0

9 0.5412658773652738E-01 4 3 1 0

10 -.1406249999999999 4 2 2 0

11 0.1623797632095823 4 1 3 0

12 0.6690675473054825E-02 4 0 4 0

13 -.1562499999999999E-01 5 3 2 0

14 0.8118988160479110E-01 5 2 3 0

15 -.1718749999999999 5 1 4 0

16 0.1353164693413186 5 0 5 0

---------------------------------------

af :

I COEFFICIENT ORDER EXPONENTS

1 -.4999999999999999 1 1 0 0

2 0.8660254037844386 1 0 1 0

3 -.2500000000000000 2 0 2 0

4 -.6250000000000000E-01 4 0 4 0

5 0.2220446049250313E-15 5 2 3 0

--------------------------------------

Fig. 3. Transfer map for a 30 degree homogeneous dipole with COSY beam package.



February 23, 2009 12:32 WSPC/Guidelines-IJMPA 04447

1036 A. Wittig & M. Berz

xf :

I COEFFICIENT ORDER EXPONENTS EXACT REPRESENTATION

1 0.8660254037844386 1 1 0 3900231685776981b-52

2 0.5017542110903451E-16 1 1 0 8141427543753187b-107

3 -.7479771237866948E-33 1 1 0 -8745358328802511b-163

4 0.2653073781648097E-49 1 1 0 87312899972227b-211

5 0.5000000000000000 1 0 1 1b-1

6 -.1250000000000000 2 2 0 -1b-3

7 0.4330127018922193 2 1 1 3900231685776981b-53

8 0.2508771055451726E-16 2 1 1 8141427543753187b-108

9 -.3739885618933474E-33 2 1 1 -8745358328802511b-164

10 0.1326536890824049E-49 2 1 1 87312899972227b-212

11 0.5801270189221933E-01 2 0 2 2090127860996437b-55

12 -.2667865061111657E-17 2 0 2 -6926173687902441b-111

13 0.1119742698409979E-34 2 0 2 4189454815015701b-168

14 -.9845464222053095E-52 2 0 2 -2592120999413b-214

15 -.1250000000000000 3 1 2 -1b-3

16 0.2165063509461096 3 0 3 3900231685776981b-54

17 0.1254385527725863E-16 3 0 3 8141427543753187b-109

18 -.1869942809466737E-33 3 0 3 -8745358328802511b-165

19 0.6632684454120243E-50 3 0 3 87312899972227b-213

20 -.7812500000000000E-02 4 4 0 -1b-7

21 0.5412658773652741E-01 4 3 1 3900231685776981b-56

22 0.3135963819314657E-17 4 3 1 8141427543753187b-111

23 -.4674857023666842E-34 4 3 1 -8745358328802511b-167

24 0.1658171113530080E-50 4 3 1 21828224993057b-213

25 -.1406250000000000 4 2 2 -9b-6

26 0.1623797632095823 4 1 3 45705840067699b-48

27 -.4469896349870486E-17 4 1 3 -1450564298463051b-108

28 0.2449402781674419E-33 4 1 3 2863844940720025b-163

29 0.2101110160114334E-49 4 1 3 138295453756081b-212

30 0.6690675473054831E-02 4 0 4 7713823633230503b-60

31 0.2003954727104893E-18 4 0 4 2081025566838551b-113

32 0.2799356746024948E-35 4 0 4 4189454815015701b-170

33 -.2461366055511375E-52 4 0 4 -2592120999411b-216

34 -.1562500000000000E-01 5 3 2 -1b-6

35 0.8118988160479113E-01 5 2 3 45705840067699b-49

36 -.2234948174935243E-17 5 2 3 -1450564298463051b-109

37 0.1224701390837209E-33 5 2 3 2863844940720025b-164

38 0.1050555080057157E-49 5 2 3 553181815024319b-215

39 -.1718750000000000 5 1 4 -11b-6

40 0.1353164693413186 5 0 5 4875289607221227b-55

41 -.1297677216343504E-16 5 0 5 -4211203333632873b-108

42 -.3094644200303947E-33 5 0 5 -7236524105121281b-164

43 0.1750925133428610E-49 5 0 5 3687878766828823b-217

------------------------------------

Fig. 4. Transfer map for a 30 degree homogeneous dipole with high precision DA vectors (nor-
malized).
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af :

I COEFFICIENT ORDER EXPONENTS EXACT REPRESENTATION

1 -.5000000000000000 1 1 0 -1b-1

2 0.8660254037844386 1 0 1 3900231685776981b-52

3 0.5017542110903451E-16 1 0 1 8141427543753187b-107

4 -.7479771237866948E-33 1 0 1 -8745358328802511b-163

5 0.2653073781648059E-49 1 0 1 349251599888903b-213

6 -.2500000000000000 2 0 2 -1b-2

7 -.6250000000000000E-01 4 0 4 -1b-4

-----------------------------------

Fig. 4. (Continued)

xf :

I COEFFICIENT ORDER EXPONENTS

1 0.9999999999999993 1 1 0 0

2 -.1665334536937735E-15 1 0 1 0

3 -.1665334536937734E-15 2 1 1 0

4 0.3330669073875470E-15 2 0 2 0

5 0.5499073418846478E-15 4 2 2 0

6 0.3348016308635238E-15 4 1 3 0

7 0.1942890293094024E-15 4 0 4 0

8 -.1387778780781446E-15 5 4 1 0

9 -.1110223024625157E-15 5 3 2 0

10 0.1110223024625157E-15 5 2 3 0

11 0.1082467449009528E-14 5 1 4 0

---------------------------------------

af :

I COEFFICIENT ORDER EXPONENTS

1 0.1665334536937735E-15 1 1 0 0

2 0.9999999999999993 1 0 1 0

3 -.2220446049250313E-15 4 1 3 0

4 -.7359851755371739E-15 5 4 1 0

5 0.9601694439531627E-15 5 3 2 0

6 0.1214306433183765E-14 5 2 3 0

7 0.5273559366969494E-15 5 1 4 0

--------------------------------------

Fig. 5. Transfer map for 12 30 degree homogeneous dipoles with COSY beam package.
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xf :

I COEFFICIENT ORDER EXPONENTS EXACT REPRESENTATION

1 1.000000000000000 1 1 0 1b0

2 0.1001967514747971E-62 1 0 1 3712637180178849b-261

3 -.8517491040037048E-63 2 2 0 -3156025864275235b-261

4 0.8502528978208232E-63 2 1 1 6300963802800349b-262

5 -.8058934833360440E-63 2 0 2 -5972229768846003b-262

6 -.1421155290465671E-62 3 3 0 -164558540213685b-256

7 -.1914009193660878E-62 3 2 1 -7092067947309569b-261

8 -.3175427147967325E-62 3 1 2 -367689343684029b-256

9 0.1793778628155982E-62 3 0 3 3323285999734849b-260

10 0.3216870906455098E-62 4 4 0 372488203065175b-256

11 -.7424413638917452E-63 4 3 1 -5502005546318573b-262

12 -.2598190020076057E-62 4 2 2 -4813597610562419b-260

13 0.2515338308647966E-62 4 1 3 4660100446352085b-260

14 0.1805036934614915E-62 4 0 4 6688287929906621b-261

15 0.8011932350143374E-63 5 5 0 5937397668167309b-262

16 -.7490211353162293E-62 5 4 1 -6938457771293817b-259

17 -.7799594535945731E-62 5 3 2 -7225050772168895b-259

18 0.4235531564115624E-62 5 2 3 7847056781432733b-260

19 -.1500571371277421E-62 5 1 4 -5560137412157345b-261

20 0.1584098366644266E-63 5 0 5 4695707121437689b-264

------------------------------------

af :

I COEFFICIENT ORDER EXPONENTS EXACT REPRESENTATION

1 0.3560837904659925E-63 0 0 0 75b-217

2 -.2278936258982352E-63 1 1 0 -3b-213

3 1.000000000000000 1 0 1 1b0

4 0.1367361755389411E-62 1 0 1 9b-212

5 0.7976276906438231E-63 2 2 0 21b-214

6 0.1583069429958924E-63 2 1 1 2346328533794189b-263

7 -.6077163357286271E-63 2 0 2 -1b-210

8 -.1367361755389411E-62 3 3 0 -9b-212

9 0.1411139791891778E-62 3 2 1 2614381195344969b-260

10 -.2765903754149412E-62 3 1 2 -5124316389156745b-260

11 -.2051042633084117E-62 3 0 3 -27b-213

12 -.1139468129491176E-63 4 4 0 -3b-214

13 0.2033073242981725E-62 4 3 1 941655193509359b-258

14 0.2449856478406028E-62 4 2 2 129b-215

15 0.9779722569634157E-63 4 1 3 7247452854395351b-262

16 0.1185759022251755E-62 4 0 4 8787296929185793b-262

17 -.4329978892066468E-62 5 5 0 -57b-213

18 0.7659812972263426E-62 5 4 1 7095565977803831b-259

19 0.5849269731388036E-62 5 3 2 77b-213

20 0.1000543052127116E-61 5 2 3 4634198815107191b-258

21 -.5147305191874726E-62 5 1 4 -2384068888437037b-258

22 0.2468847613897548E-62 5 0 5 65b-214

------------------------------------

Fig. 6. Transfer map for 12 30 degree homogeneous dipoles with high precision DA vectors
(normalized).
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