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In this paper we present an algorithm for a verified global fixed point finder. More specifically,
a method is described to automatically identify and classify regions of the search space which are
guaranteed to either contain none, precisely one, or one or more fixed points, as well as regions that
may or may not contain fixed points. The fixed point finder is implemented with Taylor Models
in COSY INFINITY, allowing for very efficient identification of fixed points even in numerically
complicated systems with high dependency and strong cancellation.

We then apply the fixed point finder to find higher order periodic points in a transfer map
taken from the Tevatron accelerator. The results are compared to predictions made from tune
shifts computed using normal form theory. A high order approximation to the stable and unstable
manifolds of a set of hyperbolic periodic points is computed and shown.
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Introduction. The study of fixed points and periodic points of maps, such as transfer
maps for storage rings and synchrotrons, can reveal much information about the behavior of
such a dynamical system. This is particularly true for beam transfer maps, as it is often the
case that undesirable chaotic behavior in an accelerator is observed near periodic points. So
automated detection of such periodic points can be of great help in determining dynamic
apertures more rigorously.

In order to do so, it is of course first necessary to find the fixed and periodic points of
a given map. For all but the very simplest maps, it is not possible to derive a closed form
analytic solution for all fixed points or periodic points of a given period. Leveraging the
power of modern computers, the use of numerical methods can be of great help in determining
fixed and periodic points. Simple numerical techniques, such as Newton methods, have been
around for a long time and are a well known tool for such tasks. When applied to a
map using floating point numbers readily available in computer hardware, they can quickly
identify isolated, approximate fixed points.

However, these techniques suffer from two major drawbacks. Given a starting point,
they converge to a single fixed or periodic point approximation, but there is no information
obtained about possible other fixed or periodic points in a given area. Secondly, floating
point numbers are not mathematically rigorous due to round-off errors caused by the finite
precision of floating point numbers. Therefore, even if a floating point candidate of a possible
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fixed or periodic point is identified, it is not guaranteed that the underlying map really
exhibits the same fixed or periodic point.

In the following, we present an algorithm for a verified, global fixed and periodic point
finder. That is, we will identify regions within a prescribed search space where we can say
with certainty that there are no fixed or periodic points. For the remaining regions, we will
perform rigorous tests to determine if they include exactly one, or possibly several, fixed or
periodic points. As a result, all fixed points and periodic points up to a pre-specified period
will be found with certainty.

To perform rigorous computations, we use the technique of Taylor Models [1] as imple-
mented in the COSY INFINITY [2] rigorous computation package. It will be shown that
Taylor Models are particularly well suited for this type of problem, and yield superior results
to other rigorous computational techniques such as interval arithmetic.

We then proceed to illustrate the algorithm by applying it to a real world transfer map
of the Tevatron accelerator at Fermilab. This map is represented as a polynomial of order
twenty, presenting particular numerical challenges to overcome.

Fixed Points and Their Identification. Let K ∈ Rm be a compact set andM : K →
Rn, n ∈ N, a sufficiently often continuously differentiable map. Ideally, we are interested in
finding all periodic points of given order p > 0 in a compact subset. That is, we want to
find all x ∈ K such that

Mp(x) = x. (1)

Due to the finite precision of numerical computations, it is in general not possible to find
all such fixed points precisely. Therefore we will slightly reformulate the problem. Instead
of computing all possible solutions xi ∈ K exactly, we will determine small compact subsets
Xi ⊂ K such that for some xi ∈ Xi Equation (1) holds. It will be our goal to make the Xi

sufficiently small in measure to get a good enclosure of the real periodic point.
We then further classify each subset Xi by whether it contains exactly one, or one or

more periodic points. As is typical for verified computation there is also the possibility of
remaining subsets about which no statement can be made at all. That is, there is possibly
a third category of sets for which we do not know if they contain any periodic points at all.

Furthermore, since the case p > 1 coincides with x being a fixed point of the map Mp,
without loss of generality we will only consider fixed points in the following.

Classification. We begin by describing the mathematical foundation for classifying a
single subset C ⊂ K according to the above criteria. To that end, we recall two important
theorems of Analysis, the Schauder fixed point theorem [3] and the Banach fixed point
theorem [4]:

Theorem 1 (Schauder’s fixed point theorem). Let C ⊂ Rn be non-empty, convex, and
compact, and f be a continuous map from C → C. Then

∃xi ∈ C such that f(x) = x.

Theorem 2 (Banach’s fixed point theorem). Let C be a non-empty, complete metric
space and f : C → C be a contraction. Then

∃!x ∈ C such that f(x) = x.

Recall that f is a contraction if ∃k, 0 6 k < 1 such that

|f(x)− f(y)| < k |x− y| ∀x,y ∈ C.
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The requirements of Theorem 1 are well suited for rigorous numerical computations.
Computing an enclosure of the image of a suitable set C is a straightforward task for any
verified numerics packages, as is bounding an checking for inclusion.

Note that Theorem 2 can be understood as an extension of Theorem 1. If the all pre-
requisites of Theorem 1 are met, and thus existence of a fixed point in C is already proved,
uniqueness is obtained by the additional requirement that f be a contraction on C.

Verification. The verification of the contraction property, unfortunately, is not quite as
straightforward as the verification of the inclusion mapping property in Theorem 1. In the
following, we will provide an overview over various ways to assert the contractive property
of f , and discuss their fitness for verified numerical computations.

We begin with the following definition of the operator norm of a matrix:
Definition 1 (Matrix Operator Norm). Let A be a n× n matrix. The matrix operator

norm of A is given by

||A|| = sup
|x|=1

|A · x| = sup
x6=0

|A · x|
|x|

where the vector norm | · | is the Euclidean norm on Rn. It is easy to see that due to linearity
both expressions are equivalent.

Lemma 1. Let C ⊂ Rn be a non-empty, convex, and compact set and f by a continuously
differentiable function on C such that ||Df(x)|| < k < 1 ∀x ∈ C. Then f is a contraction
on C.

Proof. Given any two distinct points x,y ∈ C, consider the function G : [0, 1] → R
given by the dot product

G(t) = (f(y)− f(x)) · f ((1− t)x + ty) .

Applying the Mean Value Theorem to this function, one finds that for some ξ ∈ (0, 1)

(f(y)− f(x)) · (f(y)− f(x)) = G(1)−G(0) =

= G′(ξ) = (f (y)− f (x)) · (Df ((1− ξ)x + ξy) · (y − x)) .

Applying the Cauchy-Schwarz inequality to the expression on the right hand side one thus
obtains

|f(y)− f(x)|2 6 |f (y)− f (x)| ||Df ((1− ξ)x + ξy)|| |y − x|

and hence
|f(y)− f(x)| < k |y − x| .

Corollary 1. Let C ⊂ Rn be non-empty, compact, convex and f : C → C continuously
differentiable with ||Df(x)|| < 1 ∀x ∈ C. Then

∃!x ∈ C such that f(x) = x.

Proof. Apply Lemma 1 and the Banach fixed point theorem.

The problem with Corollary 1 is to determine a rigorous upper bound for the operator
norm of the derivative. Definition 1 defines what the value is, but provides no direct way of
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computing it for a given matrix. To that end, recall the following standard result of matrix
theory [5]:

||A|| =
√
λmax (A∗A)

where again A ∈ Cn×n, and A∗ denotes the adjoint matrix, i. e. the transpose conjugate of
A, and λmax denotes the largest eigenvalue of a matrix.

Unfortunately, while A∗A can be computed easily, determining the largest eigenvalue of
a matrix rigorously is non-trivial in general. This is particularly true in higher dimensions.
For the special case of dimension 2, however, the eigenvalues can be computed by an analytic
expression. So in this special case this approach is rather straightforward and provides an
analytic way to compute the matrix norm and verify the contraction property.

Since direct calculation of of the operator norm is not straightforward, another option is
to use a more readily computed quantity to provide an upper bound of ||A||. Consider, for
example, the following upper bound:

||A|| 6
√
n||A||∞ (2)

where ||A||∞ indicates the maximum absolute sum of the rows of A, i. e.

||A||∞ = max
i=1,...,n

n∑
j=1

|ai,j |.

Proof. For any x ∈ Rn we have

|Ax|2 =

n∑
i=1

 n∑
j=1

aijxj

2

6 n max
i=1,...,n

 n∑
j=1

|aij ||x|

2

= n|x|2
 max

i=1,...,n

n∑
j=1

|aij |

2

.

Clearly, ||A||∞ is easily computed in a verified setting for any matrix A. Unfortunately,
in general this inequality is a rather crude upper bound of the operator norm ||A||.

Using inequality (2), it is possible to obtain a much more accurate condition to test for
the contraction property of f under certain circumstances. Since we are only interested in
showing the uniqueness of a fixed point, it is irrelevant in what coordinate system the map
is a contraction. The following approach to compute the operator norm ||A|| does so by
changing into a more suitable coordinate system.

Let T : C → Rn be an invertible, smooth coordinate transformation from C to T (C).
Then the following are equivalent:

• f has a unique fixed point in C;

• F = T ◦ f ◦ T−1 has a unique fixed point in T (C).

This is clear since for x ∈ C such that f(x) = x one finds that T (x) satisfies F ◦T (x) = T (x)
and vice versa for y ∈ T (C) such that F (y) = y, T−1(y) satisfies f ◦ T−1(y) = T−1(y).

Let the derivative of F be decomposed into a purely diagonal part L and a purely off-
diagonal part N such that

DF = L+N.

Then applying the triangle inequality yields

||DF || 6 ||L||+ ||N ||.
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The operator norm ||L|| is simply the largest absolute value of the diagonal entries of L,
while ||N || can be estimated by inequality (2).

Let H denote the convex hull of T (C). By the assumptions of Corollary 1, Theorem
1 applies and yields at least one fixed point of f in C and hence a fixed point of F in
T (C) ⊂ H. If ||DF || < 1 on H, Lemma 1 applied to the function F on H establishes the
uniqueness of that fixed point and thus the uniqueness of the corresponding fixed point of
f in C ⊂ T−1(H).

Note that if T can be chosen such that the derivative of F on T (C) is approximately
diagonalized, the entries in N are small compared to those in L, and the overestimation
introduced by the estimation of ||N || is negligible compared to ||L|| and the bound in ||DF ||
will be a rather tight one. Furthermore, if T (C) itself is already convex, there is also no
additional overestimation introduced by evaluating the derivative over the convex hull of
T (C).

Such a coordinate transformation T applicable in the neighborhood of some point x ∈ C
can be found relatively easily if Df(x) is diagonalizable at x. Then T can be chosen to be
an approximation of the matrix of eigenvectors. In that case, also T (C) will be convex if C
was convex, as T is a linear transformation.

To obtain a sharp bound, the derivative is only required to be approximately diagonal.
It is thus not necessary to compute eigenvalues or eigenvectors rigorously. Only the matrix
inversion T−1 has to be performed rigorously.

Preconditioning. While Theorem 1 is well suited for numerical computations, it poses
one major problem. In the case of a hyperbolic, elliptic, or expanding fixed point, Theorem
1 does not apply directly at all, as there is generally no set C around the fixed point that is
mapped into itself.

Even if applied directly to an attractive fixed point, the self mapping property may not
succeed. One approach lies in performing all computations in a coordinate system aligned
with the eigenvectors to overcome this problem.

There is, however, a much more powerful method to transform the map into a form that
is applicable to Theorem 1 based on the well known Newton Method [5] used to approximate
roots of differentiable functions.

Consider the operator
CA : f 7→ A · (f − id) + id,

where A is a regular matrix and id represents the identity operator.
Since f(x) − x = 0 ⇔ A (f(x)− x) = 0 for regular A, we find that any fixed point of

the map CAf is also a fixed point of the map f and vice versa. We say that f and CAf are
equivalent with respect to their fixed points.

Assume x is a fixed point of f and hence CAf . We want to choose the matrix A in such
a way that x becomes a strongly attracting fixed point of CAf . To that extend, consider the
derivative of CAf :

D(CAf) = A · (Df − I) + I.

If Df(x) − I is a regular matrix, i. e. 1 is not a singular value of Df , then fixing A =
−(Df(x)− I)−1 yields

D(CAf)(x) = −I + I = 0.

That is, with this choice of A, CAf has a strongly contracting fixed point at x. This is
true independently of the type of fixed point the map f has at x. Furthermore, if Df − I
is not regular, it is possible to perturb it a little such that it becomes invertible. In that
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case, the derivative of CAf will not vanish completely, but if the perturbation was is small
enough, CAf will still be a strong contraction.

Thus, by applying Theorem 1 on CAf and a non-empty, convex, compact set C around x,
it is possible to obtain verification of the required self mapping property much more easily
than by direct application to f .

The operator CA is also very advantageous in the proof of uniqueness of a fixed point in
C with Theorem 2. Since A is chosen such that the derivative of CAf vanishes at the fixed
point x, by continuity the ∞-norm of D(CAf) is small on all of C, provided C itself is small
enough. It is then possible to apply Lemma 1 to easily show uniqueness of the fixed point
of CAf , and thus of f , in C by bounding D(CAf) over C and utilizing inequality (2).

The effect of this preconditioning is shown in fig. 1. The dashed box has side length 10−4

in each direction and is centered around a period 15 point of a map of the Hénon family.
The solid black object indicates the return of that box after 15 iterations. Without precon-
ditioning, the resulting object is mostly linear with relatively small non-linear curvature.
Clearly, the image does not map into the original box. In the preconditioned case, the same
initial box is shrunk into a very highly non-linear object at least one order of magnitude less
in size than the original box.

Figure 1: The effect of preconditioning, a box of size 10−4 × 10−4 in a Hénon map and its
15th iterate without (left) and with (right) preconditioning

Implementation. The operator described above provides a versatile method to classify
single boxes around a fixed point. In the following, we extend this to an algorithm for a
global fixed point finder as described in the introduction. To easily satisfy the requirement
of Theorem 1 that the sets must be convex, compact and non-empty, our implementation
will only operate on sets that are interval boxes. Interval boxes are subsets of Rn given by
a non-empty, finite interval in each component, i. e.

B = [b1, b1]× [b2, b2]× · × [bn, bn].

Clearly, interval boxes are convex and as long as bi, bi ∈ R ∀i = 1, . . . , n, they are compact,
and if bi < bi ∀i = 1, . . . , n they are non-empty.

Let K be the interval box in which one wants to find the fixed points. The simplest
method is to divide the search space into an even grid of fixed size boxes, and then checking
each single small box for a fixed point using the classification presented in the previous sec-
tion. However, even in two dimensional maps, that approach often is prohibitively expensive
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in terms of computations required. In order to compute all fixed points in a box of size 1×1
to an accuracy of 10−4, already 104 · 104 = 108 boxes must be checked.

Instead of fixing a grid, it is better to adaptively select the size of boxes to test in each
region of the map based on the complexity of the map in that region. We use a stack-based
“divide-and-conquer” style algorithm to successively remove parts of the search space that
do not contain fixed points. Whenever no fixed point is present in the currently tested box,
it is discarded. If there is no conclusive result for the current box either way, i.e. it may
or may not contain a fixed point, the box is split into smaller boxes and analysis continues
with one of the smaller boxes.

At this point, we intentionally leave it open how exactly the “size” of an interval box is
measured, as such a measure may depend on the application. Commonly employed measures
include the volume of the interval box, or the length of the longest side. Furthermore, it is
not necessary at this point to specify an algorithm for the “splitting” of a box, as long as
the employed algorithm results in a reduced measure of the split boxes. A simple splitting
algorithm is to divide one of the longest sides of the box in half.

To guarantee that the search for fixed points terminates, there are certain pre-prescribed
thresholds relating to the size of the boxes under consideration. The first is the desired
maximum size of the verified fixed point enclosures, denoted by Ω1. All boxes that contain
or may contain fixed points will be at most of this size. The second constant, Ω2, provides
a lower limit on the size of boxes that are considered. Once the size of a box falls below
this threshold, it will not be split any further, independently of its current status. We will
discuss these limits in more detail below.

Algorithm. The basic algorithm for the verification procedure with automatic box size
control is as follows:

1. Start with initial box K on the stack.

2. Take the top box S off of the stack and classify the box:

• if S is verified to contain no fixed points, discard it;

• else, if the size of the S is larger than Ω1, split S and push the two resulting
pieces onto the top of the stack;

• else, if there is a unique fixed point in S, store S in the list of found unique fixed
points;

• else, if the size of S is larger than Ω2, split along the longest side of S and push
the two pieces onto the top of the stack;

• otherwise, place S in the list of non-unique fixed points if existence was verified,
else in the list of undecided boxes.

3. Continue with 2 until there are no more boxes on the stack.

In practice, the classification of a box S is performed in several steps, checking after
each if further tests are necessary. The following gives the order in which verification is
performed:

1. Compute f(S) in Taylor Model arithmetic. If f(S)
⋂
S = ∅, stop as there is certainly

no fixed point of f in S.
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2. Compute an approximate A = (Df(x) − I)−1 in floating point arithmetic, for some
x ∈ S. If the inverse does not exist or is very badly conditioned, set A to a more
suitable “approximate” inverse.

3. Compute CAf(S) in Taylor Model arithmetic. If CAf(S) 6⊂ S, stop as existence is not
verified.

4. Compute D (CAf) (S) in Taylor Model arithmetic using a provided analytic expression
for Df and subsequently test the bound on the operator norm of the derivative to be
less than one to verify uniqueness.

Analysis. The use of Taylor Models to carry out the verified computations makes
the computation of the matrix A in the construction of the operator CA particularly easy.
By evaluating f over an interval box, very good approximations of the derivatives at the
center point of the box can be obtained very easily from the first order coefficients of the
resulting Taylor Model. Due to the differential algebraic nature of Taylor Models, no separate
computation is necessary.

The tests for inclusion of a Taylor Model in the original set are done by computing
interval bounds on each Taylor Model. In general, it is true that interval enclosures of
Taylor Models are substantially larger than the Taylor Model itself. In this particular case,
however, the use of interval bounds suffers from no additional overestimation beyond that
of the quality of the generated interval enclosure. This is because the initial box S is itself
an interval box. Thus for CAf(S) to lie within S, each coordinate bound of CAf(S) must lie
in the corresponding interval of S.

The use of Taylor Models for these computations is essential for another reason. For
the contraction operator CA to work properly, it is required to have strong control over the
dependency problem. This is because CA is constructed above such that the first derivative
is nearly cancelled out. This cancellation, however, can only occur if it is computed symbol-
ically, e. g. using Taylor Models. With mere interval evaluation, the dependency problem
caused by this cancellation would lead to vast blowup of the resulting interval, and thus
render the operator inefficient. The reader familiar with verified global optimization will
find the above algorithm very familiar. Most verified global optimizers, such as for example
COSY GO [6,7], use very similar methods to successively examine the entire search space
and prune regions where there is no extremum.

This global fixed point finder goes beyond the minimal task of global optimization of
enclosing the optimum by not only producing a list of enclosures of fixed points, but also
verifying and classifying them in the same step, thus typically guaranteeing the existence
and in most cases also the uniqueness of a fixed point in each resulting box.

Constants. As described above, there are two constants controlling the behavior of the
algorithm with respect to box sizes. The first constant, Ω1, is the maximum size of boxes
stored in the results list. Any boxes larger than this size are either discarded because they
do not contain fixed points, or are split into smaller boxes to be analyzed. To the user, this
parameter specifies the desired accuracy of the fixed point enclosures.

The second constant, Ω2, is the minimum size below which a box is never split any
further. Boxes that have been split blow this size, and could not be classified yet, will be
added to the “unclassified” list. From the user’s perspective, this value is a cutoff value when
the algorithm should give up attempts to classify a box.
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Therefore, resulting boxes in any of the three lists (unique fixed points, fixed points, and
undecided) will always range in size between Ω1 and Ω2.

The ideal choice of these constants is problem dependent and can greatly affect the
performance of the overall algorithm. In general, of course, Ω1 > Ω2 should hold. In
practice, however, there is a lower limit for the size of Ω1 below which the algorithm becomes
significantly less effective due to limited floating point precision. In our experiments, a good
choice for the constant Ω1 in double precision computations is about 10−7.

Dependency Problem and Order Loss. Since the objective functions that need to
optimized in our problem of finding period n periodic points consists of iteratively evaluating
the objective function n times, the resulting code for a single evaluation is quite extensive
and very susceptible to the dependency problem. In this context, the use of Taylor models
provides a significant advantage because of their ability to control the dependency problem
[8].

However, even when using Taylor models, the limited accuracy of floating point arith-
metic leads to a secondary but important effect, namely an effective loss of computation
order when the coefficients of Taylor Models become too small. The coefficients of a con-
verging Taylor Model scale with the order of their monomial. In particular, the error bound
of a Taylor Model of order n scales as O(xn+1) with the width of the Taylor Model [9].

This scaling law of Taylor Models holds true as long as the limited precision of floating
point numbers is not considered. However, in an IEEE 754 [10] compliant double precision
floating point environment, such as utilized by COSY INFINITY, a floating point number
is only stored with about 16 significant decimal digits. This finite precision requires careful
bookkeeping of the truncation errors during Taylor Model operations. Great care has been
taken in implementing Taylor Models to bound all those errors in the remainder bound of
the Taylor Model.

However, the round-off error of each floating point operation does not scale according to
the above Taylor Model scaling law. The round-off error for a given coefficient of the Taylor
Model resulting from a Taylor Model operation only scales as the coefficient itself. So for
linear coefficients, the round-off error only scales linearly, while the round-off error for the
constant part does not scale at all.

Under most circumstances, this poses no problem as the absolute value of the round-off
error is very much smaller than the error due to the truncation of the Taylor series. However,
as the coefficients of a Taylor Model become smaller, the size of the truncation error is greatly
reduced, and the non-scaling round-off errors become a relatively larger contribution to the
error.

Eventually, the higher order terms of the Taylor Model get smaller than the round-off
errors. Effectively then those orders are lost, in the sense that keeping these terms in the
Taylor Model does not increase the accuracy of the computation. We call this effect order
loss.

Consider as an example an the function

f(x) = (1 + x+ x2)/3.

Evaluate this function with a Taylor Model box of width 2 · ε around 0 of the form T = ε ·x.
Since the operations are performed in double precision floating point arithmetic, the round-
off error for the resulting constant part (1/3) is on the order of 10−16 as 1/3 is not a finite
binary fraction. The round-off error of ε/3 and ε2/3, respectively, is on the order of 10−16 · ε
and 10−16 · ε2.
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Let now ε = 2−10 ≈ 10−3. That way ε and ε2 are exact floating point numbers, and the
only round-off error occurs when dividing by 3. Floating point round-off errors for each of
the resulting coefficient are on the order of 10−16, 10−20, and 10−24 respectively and thus
taken all together the error bound of the resulting Taylor Model is of order 10−16, while the
second order coefficient is 1/3 · 2−20 ≈ 3 · 10−7.

Consider now the case where ε = 2−30 ≈ 10−9. Again ε and ε2 are exact floating point
numbers, and the only round-off error occurs when dividing by 3. The round-off errors for
each coefficient are now on the order of 10−16, 10−25, and 10−34 respectively. Clearly, since
the round-off error of the constant part does not scale with ε, the resulting error bound is still
on the order of 10−16. However, this time the second order coefficient, 1/3 · 2−60 ≈ 3 · 10−19

is much smaller than the error bound. Thus the contribution of the second order coefficient
to the value of the Taylor Model over the domain [−1, 1] is negligible relative to the error
due to round-off.

Carrying out the above computation using only first order Taylor Models would yield
the same quality result as the second order computation. Thus effectively the second order
is lost, and the error scales no better than that of a first order Taylor Model. As ε gets even
smaller, the Taylor Model asymptotically behaves no better than a classic interval.

The only way to prevent this order loss is to perform the computation using a higher
precision for the coefficients. That way the round-off error of the constant part is reduced,
and higher order computations remain viable for smaller values of ε. Of course for any finite
precision, there exists an ε such that the Taylor Model behaves no better than an interval.

Note that this is a markedly high-order effect. The closest analog of order loss in interval
arithmetic is practically never observed because it only occurs with very narrow intervals.
Consider an interval in which both the lower and upper bound are stored as double precision
numbers. Since double precision numbers are discreet, there is a minimum width for an
interval. Once that minimum width has been reached, attempts to reduce the width of the
interval will not lead to a smaller result.

In practice that means an interval around the number 1 cannot be smaller than about
10−16, which for all practical purposes does not pose a problem. In Taylor Models, however,
this effect is much more pronounced in the higher order terms, because of the Taylor Model
scaling law.

Periodic Points in Accelerator Maps. We implemented the above algorithm for a
fixed point finder in two dimensions using the rigorous COSY INFINITY [2] programming
environment. We then applied it to an accelerator transfer map representing the Tevatron
accelerator.

The transfer map is an 11th order map, computed by Pavel Snopok using the COSY
INFINITY beam physics package [11]. The model of the Tevatron used is a slightly simplified
model consisting of all dipole, quadrupole and sextupole bending magnets, but omitting
certain corrective beam line elements, such as electrostatic separators and solenoids. This
omission still produces a very close approximation of the real dynamical system. Moreover,
it results in a symmetric map in which the x-a plane is invariant.

For this application, we restrict ourselves to the two dimensional motion in the invariant
x− a plane. If there is chaos in the full system, it is very likely to also be present in the two
dimensional subspace. For this purpose, we extracted from the full four dimensional map
the two dimensional map of the x− a plane into itself.

Using the particle tracking facilities of COSY’s beam physics package, we produced a
tracking picture of the system using evenly spaced initial particle coordinates (see fig. 2, top).
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Figure 2: Tracking of evenly spaced particles through the transfer map in the x − a plane
(1400 iterations, 5 mm spacing between rings) (top) and location of the periodic points
identified (bottom)
Between the rings are two sets of period 5 points, the elliptic ones with their associated islands
around them. Two period 8 points are in the top left and bottom right corner.
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Periodic points found for periods from 1 through 20
in the region [-0.09, 0.09]×[-0.06,0.06]

Period Unique boxes Area (Ω1) Time, <sec> Periodic points Tune
1 1 4 · 10−19 0 1 0.592

2 1 4 · 10−19 0 0 1

3 1 4 · 10−19 0 0 2/3 ≈ 0.666

4 1 4 · 10−19 0 0 3/4 = 0.75

5 11 4 · 10−19 6 10 3/5 = 0.6

6 1 4 · 10−19 0 0 4/6 ≈ 0.666

7 1 4 · 10−19 0 0 5/7 ≈ 0.714

8 3 4 · 10−19 6 2 5/8 = 0.625

9 1 4 · 10−19 1 0 6/9 ≈ 0.666

10 11 4 · 10−16 13 0 6/10 = 0.6

11 1 4 · 10−16 1 0 7/11 ≈ 0.636

12 1 4 · 10−16 2 0 8/12 ≈ 0.666

13 1 4 · 10−16 107 0 8/13 ≈ 0.615

14 1 4 · 10−16 2 0 9/14 ≈ 0.643

15 11 4 · 10−16 21 0 9/15 = 0.6

16 3 4 · 10−12 18 0 10/16 = 0.625

17 1 4 · 10−12 4 0 11/17 ≈ 0.647

18 1 4 · 10−12 359 0 11/18 ≈ 0.611

19 1 4 · 10−12 10 0 12/19 ≈ 0.632

20 11 4 · 10−12 33 0 12/20 = 0.6

Estimating the region of stability to be within the region shown, [−0.09, 0.09]× [−0.06, 0.06],
we started the periodic point finder to work on that region.

Table shows the number of enclosures containing a unique periodic point found for periods
up to 20. As all COSY beam maps, this map is origin preserving since it represents the
reference trajectory. Hence for every period, there is at least one periodic point identified,
namely the origin. Similarly, periodic points of period 5 are also listed for periods 10, 15,
and 20. But since all of the periodic point enclosures contain exactly one periodic point, and
we know that periodic points of lower period must be present, we can subtract out those
points of lower period from the results. The count of periodic points without those duplicate
points is given in the second to last column.

This computation rigorously proves that there are only periodic points of periods 5 and
8 within the region of interest. Note that for the period 5 points, there are two separate sets
of 5 points each, while for the period 8 points only two were found. The missing 6 points of
their orbit lie outside the search area and thus are not identified. Fig. 2 (bottom) illustrates
the location of all periodic points identified up to period 20.

Due to the splitting algorithm we chose in our implementation, always cutting along the
longest side of a box, the resulting periodic point enclosures are roughly square. Their area
is less than the parameter Ω1 we specified, given in the area column. As is expected due to
the broken scaling law it was necessary to increase the targeted area as the period increases
to guarantee successful verification. Note, however, that even the enclosures at period 20
still are accurate up to an error of about 10−6.

The time given is the CPU time consumed for the search rounded to the nearest full sec-

104



 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09
Amplitude (in Normal Form Coordinates)

Tune Resonance

5/8

8/13
11/18

3/5

order 3
order 5
order 7
order 9

order 11

Figure 3: Polynomial expansions of tune shifts computed to orders 3, 5, 7, 9, and 11 along
with the first low order resonances

ond and measured running on a single core of our Intel Xeon X5677 system at 3.5 Ghz. It is
interesting to note the vast differences in execution times between different periods. Partic-
ularly periods 13 and 18 take significantly longer than all other periods. This phenomenon
will be analyzed in more detail in the next section.

Tune Shifts. The Tevatron map analyzed by us exhibits a linear tune of about 0.5915.
The accelerator was intentionally designed such that the linear tune is close to the funda-
mental resonance 3/5 = 0.6. Normal form theory predicts a shift of the tune as the distance
form the reference orbit increases. Those tune shifts can help explain why we found period
5 periodic points.

Normal form transformations based on differential algebra methods [12] applied to our
beam transfer map M : R2 → R2 provide a coordinate transformation T : R2 → R2 such
that the map T ◦M ◦ T −1 takes elliptic orbits into circular orbits around the origin up to
a given order, and the tune shift t(r) only depends on the radius of the circle [13].

When the tune shift t(r) attains a rational value of the form n/k with n, k ∈ N, pe-
riodic points of period k are expected to appear in the map in normal form coordinates.
Consequently, the original mapM also should exhibit periodic points of the same period.

We used the COSY INFINITY beam physics code to compute an expansion of the tune
shift in normal form coordinates [12] to various orders. In fig. 3, those tune shifts are plotted
as a function of the radius in normal form coordinates. Also marked are several interesting
resonances.

The wild oscillations of the function at different orders for large radii indicate that the
polynomial expansion of the tune shift does not converge very well for values above ap-
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proximately 0.06. However, for values below about 0.05 the plots are in good agreement,
suggesting good convergence in that region.

The last column of table shows the nearest fraction n/p, n ∈ N for each period p that
is larger than the tune of the Tevatron, 0.5915. We chose to list larger values as the tune
appears to be shifting upwards in the tune shift plots. As mentioned before, the resonance
for the period 5 points is by design very close to the tune of the Tevatron. This is because
then automatically other low order resonances occur significantly further from away the
Tevatron tune.

The next two closest resonances, occurring for periods 13 and 18, are 8/13 ≈ 0.615 and
11/18 ≈ 0.611. Interestingly enough, those two periods were also the two periods taking the
longest for the global periodic point finder to treat, taking up to 12 times longer than all
other periods. This indicates that those periods are “closer” to produce periodic points, i. e.
points do return to within very close proximity of their origin. However, our periodic point
finder has shown that none actually return exactly to themselves (except the origin). This
complicates the search for our algorithm and results in significantly longer execution times.

From the normal form tune shift plots in fig. 3 we can determine the radius for which
the tune shift reaches 3/5 = 0.6. In all orders it is consistently located at about 0.0387.
At this tune in the normal form we would expect period 5 points to appear. To compare
this prediction with the results of the periodic point finder, we transformed the coordinates
(x, a) of the center of one of the identified period 5 enclosures into normal form coordinates
(X,A) = T (x, a) and computed its radius R =

√
X2 +A2.

The point we chose for this is x ≈ 0.00137 and a ≈ −0.0295, which, in COSY’s normal
form coordinates, becomesX ≈ 0.00631 and A ≈ −0.0375, and thus has a radius R ≈ 0.0381.
As can be seen, both the radius predicted from the normal form tune shift plot as well as
the periodic point identified by the periodic point finder are in agreement within about 2%
of each other.

Unfortunately, this is the only valid prediction that can be made from the tune shift plot.
In all of the plots, the next tune, 11/18, seems to be crossed. However, the periodic point
finder proved that there are no periodic points of period 18 related to this tune within the
search region.

The reason for this is the slow convergence of the normal form transformation due to the
closeness of the linear tune to the 3/5 resonance. The tune shift expansions shown above
do not converge for the values at which 11/18 would be obtained.

Converting one of the period 8 points we identified by the same normal form coordinate
transformation as used for the period 5 point above, we find that its amplitude would be
about 0.238. This is clearly far beyond the convergence of the normal form expansion, hence
its existence could not be predicted by the tune shift plots.

This comparison highlights a problem associated with the normal form methods applied
to this type of problem. Since accelerators are intentionally designed to operate near one
of the fundamental resonances, the convergence of the tune shift expansion is slow and the
region in which reliable predictions can be made is rather small. Unfortunately, with non-
verified computations it is not clear a priori how large that region is. Verified tools, such as
this periodic point finder, can help in identifying rigorously such regions.

Manifolds. For further analysis, we concentrate on the hyperbolic period 5 points
identified in the stable region of the map. In order to show the existence of chaos, we
numerically computed the one dimensional stable and unstable manifolds of one of these
points. If there are homoclinic intersections, i. e. intersection between the stable and
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Figure 4: Top: the initial polynomial approximation of the solid stable (red) and dashed
unstable (blue) manifolds of the hyperbolic period 5 points in the tracking picture; bottom:
the full manifold braid after 50 turns
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unstable manifolds, this gives rise to chaotic motion.
Using methods developed by Johannes Grote e. a. [14-16] we compute a 20th order

polynomial approximation of the manifolds at the period 5 point in the interval box (x, a) =
([0.00137155595, 0.00137155598], [−0.0295197926,−0.0295197924]). The verified enclosures
of the local manifolds generated by this method were small pieces of length on the order of
0.003 and a thickness of about 0.0001.

There are two reasons for those relatively poor verified enclosures. For one, the initial
enclosure of the periodic point is not sharp enough for a good estimate. While an enclosure
of approximately 10−9 in width may be very good for practical applications, it is too big an
enclosure for the verified manifold generator. It causes any rigorous function evaluation at
the periodic point to automatically pick up an error bound of that size, independently of
any other errors added by the computation. Due to this, even the non-verified polynomial
manifold approximation is only mapped into itself with an error on the order of about 10−9.

Secondly, evaluating the full polynomial map and its derivative in Taylor Model arith-
metic over such a relatively large box, introduces considerable additional overestimation,
especially for the derivative. This forces the verification algorithm to increase the error
bound on the manifold enclosure, and together these two effects cause the relatively poor
result.

To obtain much sharper enclosures of the manifolds that can be used for further, rigorous
analysis, a higher precision enclosure of the periodic point is necessary. We believe that such
a change will drastically increase the accuracy of the resulting manifold enclosures.

Meanwhile, we will carry out our analysis using the existing, non-verified DA approxi-
mations of the manifolds. The initial manifolds are shown in fig. 4, top, for a parameter
domain of [−1, 1]. The manifolds for the other points in the orbit are obtained by simply
iterating the manifolds for one of the points forward 4 more times.

In order to extend the length of the manifold, we iterate the initially generated mani-
fold pieces through the map for the unstable manifold, or the inverse of the map for the
stable manifold. The inverse of the map is here computed using non-verified DA inversion
techniques.

Computation of the eigenvalues of five iterations of the Tevatron transfer map at the
periodic points yield eigenvalues λs = 0.969 and λu = 1.032. Since the eigenvalues give the
growth rate of the local manifold around the periodic points, this means that a large number
of iterations is necessary to extend the length of the manifold.

Furthermore, with higher iterations convergence of the single polynomial approximation
will become worse. To overcome this problem, we cover the manifold by several polynomials,
each on the domain [−1, 1], which are expanded locally, instead of around the periodic point.
If after an iteration through the map the highest order coefficients of one of those polynomials
become larger than 10−12, we split this polynomial in the middle of the domain into two
pieces, and reparametrize each back onto the domain [−1, 1]. This yields a list of polynomials
that each cover a piece of the manifold locally. This algorithm is a non-verified version of
the verified manifold iteration algorithm described in [14].

Fig. 4, bottom, shows the resulting manifold braid after 50 iterations. Each of the
manifolds is covered by 6 polynomials. The plot suggests that the manifolds between the
periodic points might form heteroclinic connections, i. e. the stable manifold of one point
is also the unstable manifold of its neighbors, forming the braid-like pattern seen in the
picture.

With very sharp, rigorous enclosures of the manifolds, it may be possible to show that
the manifolds of one periodic point really do intersect the manifolds of its neighbor. If that
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were the case, the connections certainly would not be heteroclinic. At this point, however,
we are unable to decide the question whether these manifolds form homoclinic intersections
or heteroclinic connections conclusively.

Conclusion. A fast, rigorous, global periodic point finder has been implemented. The
use of Taylor Models has been shown to produce fast results even for high period points in
numerically difficult maps.

The main restriction to obtaining sharper enclosures and higher periods is the limited
precision of the underlying double precision floating point numbers. With the advent of high
precision Taylor Models, which are currently in development, the order loss associated with
limited precision can be contained and even better results will be obtained.

Applying these techniques to dynamical systems such as beam transfer maps allows the
automated analysis of those maps for regions of stability and aides in identifying regions of
potential chaos. The rigorous character of the method presented augments the qualitative
results obtained from existing methods of analysis.

While currently we cannot decide whether homoclinic intersections occur in this map,
we believe that here, too, high precision Taylor Models will allow us a more detailed, rigor-
ous analysis. Further analysis of the mathematical consequences of the symplecticity of the
transfer map may reveal an analytical explanation for the existence of heteroclinic connec-
tions between periodic points, although the authors are not aware of any such results in the
literature.
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171–180.
4. Banach S. Sur les opérations dans les ensembles abstraits et leurs application aux équations
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