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Abstract: The 3D Laplace equation is one of the important PDEs of
physics and describes the phenomonology of electrostatics and magnetostat-
ics. Frequently very precise solution of this PDE is required; but with con-
ventional finite element or finite difference codes this is difficult to achieve
because of the need for an exceedingly fine mesh which leads to often pro-
hibitive CPU time.

We present an alternate approach based on high-order quadrature and a
high-order finite element method. Both of the ingredients become possible
via the use of high-order differential algebraic methods. Various examples
of the method and the precision that can be achieved will be given. For
example, using only about 100 finite elements of order 7, accuracies in the
range of 10−6 can be obtained in the 3D case.
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1. Introduction

In this paper, we study some methods for finding highly accurate numerical
approximations of the solution of the Laplace equation
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∆ψ (−→r ) = 0

in the volume Ω ⊂ R3under specification of �∇ψ (−→r ) on the surface ∂Ω. This
equation is of particular interest in science and engineering because it de-
scribes static problems in electromagnetism, heat conduction, and a variety
of other important problems. The existence and uniqueness of solutions for
the 3D case can easily be shown through the application of Green’s formu-
lae; in particular, it is well-known that specification of the derivative of ψ is
sufficient for uniqueness of the solution.

However, in many practical cases the full gradient of ψ is available, and
the methods we develop will take into account this additional information.
For example, in the electric or magnetic case measuring the fields �E or �B
on the surface ∂Ω entails the knowledge of the full �∇ψ and not only the
component that happens to be normal to the surface. Furthermore, if ∂Ω
happens to follow metal, it is known a priori from physical reasons that the
non-normal components of �∇ψ vanish.

It is well known that analytic closed form solutions for the 3D case can
be found for problems with certain regular geometries where a separation of
variables can be performed. However, in most practical 3D cases, numerical
methods are the only way to proceed. Usually the finite difference or finite
element approach are used to find the numerical solution as data set in the
region of interest. But because of their usually relatively low approximation
order, for the problem of precise solution of PDEs, the methods have limited
success because of the prohibitively large number of cells required.

In the following, we develop a method that determines local finite ele-
ments of in principle unlimited order, and show results of computations up
to order 9 which allow to achieve unusually high accuracy with unusually
few cells. In Section 2 we discuss the benefits of using boundary data and
present the analytic closed form solution for the 2D case that can be easily
found by application of Cauchy’s integral formula. We then use a 2D exam-
ple to highlight the advantages of the methods that use the boundary data
to compute the solution.

In Section 3 we present the theory and the implementation of the new
scheme to find the solution of the 3D Laplace equation with the gradient
boundary conditions. This scheme is based on the Helmholtz Theorem and
the differential algebraic tools [1] of the code COSY Infinity [3, 2]. We
conclude with an application of this new scheme to a 3D magnetostatic
problem.
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2. Methods Using Boundary Data

The methods developed in the subsequent sections are based on representing
the solution in terms of surface integrals. These methods based on boundary
data have the following basic desirable properties:

1. The approximate solution obtained for the inside is infinitely often
differentiable because the so-called ”kernel” in the integral is. This allows
the use of Taylor expansion techniques for the representation of the solution.

2. If the boundary data have errors, as long as they represent a harmonic
function, the resulting errors on the inside will not exceed those of the surface
errors because of the well-known fact that harmonic functions assume their
maximum on the boundary. This is particularly important for the analysis
of the consequences of systematic errors.

3. If the boundary data have randomly distributed errors, the process of
integration over the surface will tend to average those out. Thus the resulting
solution on the inside will often be significantly more accurate than the data
on the surface.

2.1. The Two Dimensional Case

As an introduction to the general approach, we begin with the discussion
of the 2D case. The theory of this case can be fully developed within the
framework of elementary complex analysis, which makes the entire method
rather transparent. Cauchy’s integral formula states that if the complex
function f is analytic in a region containing the path C, and if α is a point
in the interior of C, then

f(a) =
1

2πi

I
C

f (z)

z − α
dz , (1)

where the integral denotes the path integral over C. Cauchy’s formula is an
integral representation of f which permits us to compute f anywhere in the
interior of C based on the value of f on C. Let now �f = (fx, fy) : R2 →
R2 with fx = Re(f) and fy = − Im(f). Because of the Cauchy-Riemann
conditions, we have that ∂fx/∂y = ∂fy/∂x, and thus �f admits a potential
F , which in turn satisfies ∂2F/∂x2 + ∂2F/∂y2 = 0. Furthermore, F can be
computed from �f by mere integration (in R2) over an arbitrary path. Thus
F is a solution to the 2D Laplace equation the gradient of which is specified
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on C, and it can be computed in terms of an integral over the surface followed
by a simple path integral.

For the purpose of illuminating the method, we choose an example where
the path C is a circle enclosing the region of interest. We divide the perimeter
of the circle into equal 500 subsections of half length l = 4π/500/2 ≈ 0.0125
each. For the point α = 1 + i inside the circle of radius 2, we look at the
Taylor expansion of the integral kernel 1/ (z − α) with respect to the arc
length variable at the point s0 =

√
3+i on the circle. The expansion is carried

out using high-order automatic differentiation in the variable (s−so)·l, where
s0 is the center of the subsection. The resulting real and imaginary parts of
the coefficients of this expansion are:

I COEFFICIENTS ORDER

1 0.000000000000000 -.2174096954013957 0

2 0.1292820323027551E-01 0.7464101615137748E-02 1

3 -.5125145207369106E-03 0.5125145207369108E-03 2

4 -.9429469459320545E-05 -.2576178965128279E-04 3

5 0.1358429640429984E-05 0.4104759770491565E-06 4

6 -.3573701117784867E-07 0.6828212126069532E-07 5

7 -.1625148053818077E-08 -.1387364193455211E-08 6

8 0.1262955182214571E-09 0.6248216385868244E-10 7

9 -.2137193331532445E-11 0.1186779665333633E-10 8

10 -.2256154520790502E-12 0.2963052833686976E-12 9

11 0.9935878898026400E-14 0.3377579654709185E-13 10

12 -.1417190659393024E-15 0.3712825785891593E-14 11

It can be seen that in this expansion, the contributions of higher order
terms decrease rapidly. Thus it is possible to obtain an approximation of
the Cauchy path integral equation (1) by merely integrating the Taylor poly-
nomial on each of the separate parts of the integration path. The overall
accuracy of this approach will be approximately that of the accuracy of each
expansion; so carrying the expansion to order 10, we may expect an accuracy
around 10−14.

3. The Three Dimensional Case

References [8, 6] provide extensions to the Cauchy’s Integral Formula to
higher dimensions. The scheme we use for the 3D case is based on the
Helmholtz vector decomposition theorem; see for example [7, 11, 12, 9, 10].

We begin by representing the solution of the PDE via Helmholtz’ Theo-

rem, which states that any vector field
−→
B which vanishes at infinity can be
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written as −→
B (�x) = �∇× �At (�x) + �∇φn (�x) , (2)

where

φn (�x) =
1

4π

Z
∂Ω

�n (�xs) ·
−→
B (�xs)

|�x− �xs|
ds− 1

4π

Z
Ω

�∇ ·−→B (�xv)
|�x− �xv|

dV and

�At (�x) = −
1

4π

Z
∂Ω

�n (�xs)×
−→
B (�xs)

|�x− �xs|
ds+

1

4π

Z
Ω

�∇×−→B (�xv)
|�x− �xv|

dV .

Here ∂Ω is the surface which bounds the volume Ω. �xs denotes a point
on the surface ∂Ω, and �xv denotes a point within Ω. �n is the unit vector
perpendicular to ∂Ω that points away from Ω. �∇ denotes the gradient with
respect to �xv.

If the curl and divergence of �B vanish, which is the case for the field
described by the potential obtained from Laplace’s equation, then the volume
integral terms vanish, and φn (�x) and �At (�x) are completely determined from
the normal and the tangential component of �B on the surface ∂Ω as

φn (�x) =
1

4π

Z
∂Ω

�n (�xs) ·
−→
B (�xs)

|�x− �xs|
ds , (3)

�At (�x) = −
1

4π

Z
∂Ω

�n (�xs)×
−→
B (�xs)

|�x− �xs|
ds. (4)

For any point within the volume Ω, the scalar and vector potentials de-
pend only on the field on the surface ∂Ω. Furthermore, the interior fields
will be analytic even if the field on the surface data fails to be differentiable.
To conclude we mention in passing that there are also various higher dimen-
sional extensions to the Helmholtz Theorem [14, 13] which may be useful to
also solve certain four dimensional boundary value problems.

3.1. Surface Integration and Finite Elements
via Differential Algebraic Techniques

Since the expressions in equations (3) and (4) are analytic if �x is not on
the surface, they can be approximated by a Taylor expansion, which for
small enough domains is expected to represent the function well. The idea is
now to expand them to higher orders in BOTH the two surface variables �xs
and the three volume variables �x. The dependence on the surface variables
will be integrated over surface sub-cells, which results in a highly accurate
integration formula with an error order equal to that of the expansion.
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The volume Ω is subdivided into volume elements. Using the prescription
for the surface field, the Taylor expansion of the field is computed at the
center of each volume element. The dependence on the volume variables
will thus be retained in polynomial form, which leads to a high order finite
element method. By using sufficiently high order, high accuracy can be
achieved with a small number of surface elements, and more importantly,
a small number of volume elements. The final solution inside the overall
volume is thus given by local expansions of the field in each of the volume
elements.

To find the local expansions for each volume element, we first split the
domain of integration ∂Ω into smaller elements Γi. From the surface field
formula we extract approximate Taylor expansion in the surface variables �xs
about the center of the surface element. Then the integral kernel 1/ |�r − �rs|
and the field �B on the surface are Taylor expanded in the surface variables
�rs about the center of each surface element. We also Taylor expand the
kernel in the volume variables �r about the center of the volume element. All
these operations are performed automatically using the differential algebraic
tools in the code COSY, see [3, 2, 1]. The final step is to integrate and
sum the resulting Taylor expansions for all surface elements. Depending
on the accuracy of the computation needed we choose step sizes, order of
expansion in the three volume variables and order of expansion in the two
surface variables s1 and s2.

We obtain the scalar potential φn (�x) by choosing the integrand g(x, y) =
�ns · �B (�xs) / |�r − �rs|, and the vector potential �At (�x) by choosing g(x, y) =

�ns × �B (�xs) / |�r − �rs|. The field
−→
B (�x) can be computed using equation (2).

All the mathematical operation to perform the expansion, surface integra-
tion, curl and divergence were implemented using the high-order multivariate
differential algebraic tools [1] available in the code COSY Infinity, see [3, 2],
and they directly allow to obtain the finite elements to arbitrary order.

4. An Analytical Example: The Bar Magnet

As a reference problem we consider the magnetic field of an arrangement
of two rectangular iron bars with inner surfaces (y = ±y0) parallel to the
mid-plane (y = 0) . The interior of these uniformly magnetized bars, which
are assumed to be infinitely extended in the ±y-directions, is defined by:
x1 ≤ x ≤ x2, |y| ≤ y0, and z1 ≤ z ≤ z2. From this bar magnet one can
obtain an analytic solution for the magnetic field �B (x, y, z) — see for example
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Figure 1: (a) Geometric layout of the bar magnet, consisting of two
bars of magnetized material. (b) Magnetic field By on the center
plane of the bar magnet. B0 = 1T and the interior of this magnet is
defined by −0.5 ≤ x ≤ 0.5, |y| ≤ 0.5, and −0.5 ≤ z ≤ 0.5

[4, 5] - and the result is given by

By (x, y, z) =
B0
4π

X
i,j

(−1)i+j
"
arctan

Ã
Xi · Zj

Y+ ·R+ij

!
+ arctan

Ã
Xi · Zj

Y− ·R−ij

!#
,

Bx (x, y, z) =
B0
4π

X
i,j

(−1)i+j
"
ln

Ã
Zj +R−ij
Zj +R+ij

!#
,

Bz (x, y, z) =
B0
4π

X
i,j

(−1)i+j
"
ln

Ã
Xj +R−ij
Xj +R+ij

!#
, (5)

where Xi = x−xi, Y± = y0± y, Zi = z− zi, and R±ij =
³
X2
i + Y 2j + Z2±

´ 1
2
.

The geometric layout and mid plane field of such a magnet is shown in Figure
1.

We note that because of the symmetry of the fields in equation (5), only
even order terms exist in the Taylor expansion of this field about the origin.
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4.1. Results and Analysis

As a first step, we study the performance of the surface integration method.
To this end, we consider a cube of edge length 0.8, whose center coincides
with the center of the interior of the uniformly magnetized bars. The six
surfaces of the cube are each subdivided into a 44 × 44 mesh. On each of
the mesh cells, the contribution from the Helmholtz integral is expanded
using differential algebraic tools [1], and the resulting polynomial is inte-
grated. The Figure 2 shows the accuracy of the predicted field, compared
with the exact solution, as a function of the order of expansion within the
surface mesh cells. Results are shown for the points (0, 0, 0), (0.1, 0.1, 0.1),
(0.2, 0.2, 0.2) and (0.3, 0.3, 0.3). It can be seen that at order six, an accuracy
of approximately 10−12 is reached, which is very high compared to conven-
tional numerical field solvers.
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Figure 2: Error for the field calculated for the bar magnet exam-
ple for individual points (0, 0, 0), (0.1, 0.1, 0.1), (0.2, 0.2, 0.2) and
(0.3, 0.3, 0.3)

We note that a change from an even order to the next higher order does
not produce significant change in the error, which is due to the specific sym-
metry of the magnetic field and the resulting fact that even orders dominate
in the Taylor expansion.

For the next example, we split the volume inside the bar magnet into
4×4×4 finite elements of width ±0.1. Within each of the elements, a Taylor
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expansion in the three volume variables is carried out, resulting in a polyno-
mial representation of the field within the finite element cell. The polynomial
representation is used to evaluate the field at 1000 randomly chosen points
within the cell, and comparing the result with the analytical answer. Figure
3 shows the resulting RMS error for finite elements centered around (0, 0, 0),
(0.1, 0.1, 0.1), (0.2, 0.2, 0.2) and (0.3, 0.3, 0.3). The plot for the finite element
centered at (0.3, 0.3, 0.3) shows the behavior of the RMS error as we ap-
proach the boundary. It can be seen that the method remains stable as we
approach the boundary. For the finite elements well within the volume of
interest, it can be seen that at order 7, an accuracy of approximately 10−6

is reached.
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Figure 3: Average error for the field calculated for the bar magnet
example for finite elements of total width 0.2 around points (0, 0, 0),
(0.1, 0.1, 0.1), (0.2, 0.2, 0.2) and (0.3, 0.3, 0.3)

We see that the method of simultaneous surface and volume expansion,
all of which can be carried out fully automatically using differential algebraic
tools [1] implemented in the code COSY, see [3, 2], leads to accuracies that
are significantly higher than those of conventional finite element tools, even
when unusually large finite elements are used.

For the purpose of illustration, we now show some of the resulting Taylor
expansions. We begin with the resulting field equation (3) over one surface
element centered at (−0.39,−0.39, 0.4) and compute the field contributions
at the point (0.1, 0.1, 0.1). In the representation of the Taylor expansion
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below, the entries in the first column provide the number assigned to each of
the coefficients in the Taylor expansion to easily identify them. The entries
in the second column provide the numerical value of the coefficients. The
entries in the fourth, fifth and the sixth columns provide the expansion orders
with respect to the volume variables (x, y, z). And the entries in the seventh
and eighth column provide the expansion orders with respect to the surface
variables (xs, ys). It can be seen that in this expansion, the contributions
of higher order terms depending on the surface variables decrease rapidly,
illustrating the rapid convergence of the method.

Sample eighth order Taylor expansion in two surface variables

I COEFFICIENT ORDER EXPONENTS

1 0.1430015055365947E-01 0 0 0 0 0 0

2 0.6922600731781813E-03 1 0 0 0 1 0

3 -.9437452710153340E-03 1 0 0 0 0 1

4 -.1561210105220474E-04 2 0 0 0 2 0

5 -.4471499751575185E-04 2 0 0 0 1 1

...

20 -.3232493054085583E-07 5 0 0 0 1 4

21 0.6156849473575023E-07 5 0 0 0 0 5

22 0.8960505971632865E-10 6 0 0 0 6 0

23 0.1890553337467643E-08 6 0 0 0 5 1

24 -.9792219471281489E-09 6 0 0 0 4 2

...

41 -.2417698920592542E-10 8 0 0 0 4 4

42 0.7717865536738434E-10 8 0 0 0 3 5

43 -.2649803372019223E-11 8 0 0 0 2 6

44 -.2561415687161454E-10 8 0 0 0 1 7

45 0.8506329051477273E-10 8 0 0 0 0 8

--------------------------------------------

We now present the Taylor expansion of the field equation (3) over one
surface element, and simultaneously over one volume element inside the vol-
ume of interest. The center of the surface element is at (−0.39,−0.39, 0.4)
and the center of the volume element is at (0.1, 0.1, 0.1). In this case the
coefficients of the Taylor expansion depend on both the surface and the vol-
ume variables. Once again we notice that the contributions of higher order
terms decrease rapidly with an increase in order.
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Figure 4: Average error VS volume element length

Sample eighth order Taylor expansion in two surface variable

and three volume variables

I COEFFICIENT ORDER EXPONENTS

1 0.1430015055365947E-01 0 0 0 0 0 0

2 -.9590481459719684E-02 1 1 0 0 0 0

3 -.9590481459719684E-02 1 0 1 0 0 0

4 -.9768082968233012E-02 1 0 0 1 0 0

5 0.6922600731781812E-03 1 0 0 0 1 0

...

422 -.1498862045486747E-06 6 0 2 0 2 2

423 -.7743571762444490E-07 6 1 0 1 2 2

424 -.4431814352690413E-06 6 0 1 1 2 2

425 -.5355653167206839E-08 6 0 0 2 2 2

426 -.1876734453768074E-06 6 2 0 0 1 3

...

1283 -.2417698920592547E-10 8 0 0 0 4 4

1284 0.7717865536738462E-10 8 0 0 0 3 5

1285 -.2649803372019148E-11 8 0 0 0 2 6

1286 -.2561415687161455E-10 8 0 0 0 1 7

1287 0.8506329051477271E-10 8 0 0 0 0 8
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Figure 5: Average error VS number of volume elements

We now equivalently study the error dependency on the size (length)
of the volume element or the number of volume elements chosen for the
computation.

For the order of computation 3, 5, 7 and 9, Figure 4 and Figure 5 provide
the dependence of the average error on the length of the volume element
and the total number of volume elements. As an example, for cell lengths of
0.1, which leads to a total number of only 550 finite elements, an accuracy
of 10−10 can be reached with a ninth order method. Similarly, for a seventh
order method with a cell length of 0.2, corresponding to 64 boxes, accuracies
of about 10−6 can be reached.
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