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The rigorous solution of a generic impulsive planet-to-planet transfer by means of a Taylor-model-based
global optimizer is presented. Although a planet-to-planet transfer represents the simplest case of inter-
planetary transfer, its formulation and solution is a challenging task when the rigorous global optimum is
sought.A customized ephemeris function is derived from JPL DE405 to allow the Taylor-model evaluation
of planets’ positions and velocities. Furthermore, the validated solution of Lambert’s problem is addressed
for the rigorous computation of transfer fuel consumption. The optimization problem, which consists in
findin the optimal launch and transfer time to minimize the required fuel mass, is complex due to the
abundance of local minima and relatively high search-space dimension. Its rigorous solution by means of
theTaylor-model-based global optimizer COSY-GO is presented considering Earth–Mars and Earth–Venus
transfers as test cases.
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1. Introduction

Interplanetary trajectory design problems are usually stated as optimization problems (Di Lizia
andRadice 2004,Myatt et al. 2004) with the goal ofmaximizing the payloadmass, or equivalently
minimizing the fuel necessary on board. Interplanetary transfers are modelled either by continu-
ously propelled arcs or by impulsive maneuvres. In the firs case, e.g. when low-thrust propulsion
systems are considered, the trajectory design is usually approached by applying optimal control
theory, resulting in the solution of two-point boundary-value problems or large-scale parametric
optimizations (Bryson and Ho 1989, Betts 2001). The second case is associated with chemical
engine systems capable of high thrust magnitude but short firin times and low efficien y in terms
of mass consumption. In this case, the thrust action is modelled as a sudden change in the space-
craft velocity and the optimization problem aims at findin the values of parameters describing
the number and the magnitude of the velocity changes as well as the time instant in which they
are applied.
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An impulsive transfer is generally simpler to bemodelled and characterizedby a reducednumber
of variables. Nevertheless, the solution of the optimization problem is challenging as the search
space is usually huge and the objective function exhibits a large number of clustered minima. This
feature even shows up in the simplest case of interplanetary transfer, namely a planet-to-planet
transfer, and is evenmore emphasizedwhen the gravitational pull of other celestial bodies – known
as gravity-assist maneuvres – and deep space maneuvres are considered. As local gradient-based
methods converge to solutions corresponding to local minima, their applications to this category
of problems is unsuitable. For this reason, a great effort has been spent recently so as effectively
to prune unfavourable regions of the search space prior to the optimization run (Izzo et al. 2006,
Armellin et al. 2010) and to approach the problem from a global optimization point of view
(Vasile et al. 2005, Yokoyama and Suzuki 2005). The algorithms applied for this purpose are
usually stochastic global optimizers of different kinds; differential evolution (Storn and Price
1997), genetic algorithms (Golberg 1989), and particle swarm optimizers (Kennedy and Eberhart
1995) being common examples (seeVinko et al. 2007 for a comparison between them).With these
approaches, several runs of the same optimization code are necessary to assess the algorithm’s
effica y, but there is no proof of gaining the global optimum of the problem at hand.
The application of a verifie global optimizer to compute the verifie global optimumof a simple

planet-to-planet transfer is presented in this article. By exploiting the capability of Taylor-model
(TM) algebra (Makino 1998) to deliver the validated enclosure of functions, the optimizer returns
the mathematically proven enclosure of the global optimum. As a consequence, the present work
can be seen as a firs step towards the verifie global solution of complex impulsive interplanetary
transfers.
The remainder of the article is as follows. Section 2 is a brief presentation of Taylor models.

Section 3 contains a description of the global optimizer COSY-GO. In Section 4, the validated
solution of implicit equations is discussed in detail. In Section 5, the mathematical formalization
of the problem is described, focusing on the treatment of the ephemerides evaluation, Lambert’s
problem solution, and objective function evaluation within the TM framework. The discussion of
the results achieved for Earth–Mars and Earth–Venus transfers follows, leaving conclusions and
fina comments to Section 6.

2. Notes on Taylor models

Verifie global optimization needs the determination of rigorous upper and lower bounds of
the objective function in order to implement a branch-and-bound method (Kearfott 1996). The
commonly used interval approach has excelled in solving this problem elegantly from both a
formal and an implementational viewpoint. However, there are situations where the method has
limitations for extended or complicated calculations because of the dependency problem, which
is characterized by a cancellation of various sub-parts of the function that cannot be detected
by direct use of interval methods. This effect often leads to pessimism and sometimes even
drastic overestimation of range enclosure. Furthermore, the sharpness of intervals resulting from
calculations typically scales linearly with the sharpness of the initial discretization intervals. For
complicated problems, and in particular higher dimensions, this sometimes significantl limits
the sharpness of the resulting answer that can be obtained (Makino and Berz 1999).
The Taylor-model approach enables the computation of fully mathematically rigorous range

enclosures while largely avoiding many of the limitations of the conventional interval method
(Makino 1998). The method is based on the inductive local modelling of functional dependencies
by a polynomialwith a rigorous remainder bound, and as such represents a hybrid between formula
manipulation, interval methods, and methods of computational differentiation (Berz et al. 1996,
Griewank and Corliss 1998).
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An nth-order Taylor model of a multivariate function f that is (n + 1) times continuously
partially differentiable on the domain D consists of the nth-order multivariate Taylor polynomial
P expanded around a point x0 ∈ D representing a high-order approximation of the function f ,
and a remainder error bound interval I for verificatio such that

∀x ∈ D, f (x) ∈ P(x − x0) + I. (1)

Thus, the Taylor model (P, I ) is a functional enclosure of f over D. From Taylor’s theorem, it is
clear that the width of the remainder interval I (i.e. the accuracy of the functional enclosure) can
be chosen to scale with the domain size proportional to |x − x0|n+1. The practical computation
of P and I is based on Taylor-model arithmetic, which carries P and I through all the operations
comprising I . (For a comprehensive textbook on interval analysis and rigorous computing the
reader may refer to Moore et al. 2009.) By choosing the size |x − x0| small and the order n

sufficientl high, the size of the remainder interval I can be kept very small in practice. The bulk
of the functional dependency is kept in the polynomial part P with point coefficients and there is
no interval arithmetic-associated inflatio that happens in the polynomial part. Thus, the interval-
related overestimation is rather optimally suppressed with the Taylor-model method (Makino and
Berz 1999). The implementation of the method in the code COSY Infinit (Makino 1998, Berz
and Makino 2006) supports binary operations and standard intrinsic functions, as well as the
antiderivative operation which widens the applications of the method.
Altogether, the Taylor-model approach has the following important properties.

(1) The ability to provide enclosures of any function given by a finit computer code list by a
Taylor polynomial and a remainder bound with a sharpness that scales with order (n + 1) of
the width of the domain.

(2) The computational expense increases only moderately with order, allowing the computation
of sharp range enclosures even for complicated functional dependencies with significan
dependency problems.

(3) The computational expense of higher dimensions increases only verymoderately, significantl
reducing the ‘curse of dimensionality’.

The structure of Taylor models naturally represents a rich resource of information. In particular,
the coefficient of the polynomial part P of a Taylor model are closely related to derivatives. That
means when representing a function f by a Taylor model (P, I ) on a computer, the local slope,
Hessian and higher-order derivatives are obtained almost for free.When a task is focused on range
bounding, those pieces of information become particularly useful.
While range bounding of Taylor models with interval arithmetic in the naive sense (Makino

and Berz 2003) already exhibits superiority over mere interval arithmetic and the more advanced
centred form (Makino 1998), the active utilization of those additional pieces of information
in Taylor models has a lot of potential for developing efficien range bounders. Based on this
observation, various kinds of Taylor-model-based range bounders have been developed (Berz
et al. 2005), and among them the linear dominated bounder (LDB) and the quadratic fast bounder
(QFB) are the backbones of the Taylor-model-based verifie global optimizer COSY-GO, which
will be discussed later.
The linear dominated bounder is based on the fact that, for Taylor models with sufficientl

small remainder bound, the linear part of the Taylor model dominates the behaviour; this is also
the case for range bounding. The linear dominated bounder utilizes the linear part as a guideline
for iterative domain reduction to bound Taylor models.Around an isolated interior minimizer, the
Hessian of a function f is positive definite so the purely quadratic part of a Taylor model (P, I )

that locally represents f has a positive definit Hessian matrix H . The quadratic fast bounder
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provides a lower bound of a Taylor model cheaply when the purely quadratic part is positive
definite More details on polynomial bounders are given by Makino and Berz (2005).

3. COSY-GO

COSY-GO (Berz et al. 2005, Makino and Berz 2010) is a branch-and-bound optimization code
employing local domain reduction techniques exploiting the bounding performances assured by
TM methods. Should one wish to evaluate the global minimum of a sufficientl regular scalar
function f on a given domain A ⊆ R

m, the algorithm starts with an initial value for the global
optimum, the cutoff value, and then proceeds to analyse at each step a subdomain for possible
elimination or reduction. At each step the following tasks are performed.

(1) A rigorous lower bound l of the objective function is obtained on the subdomain of interest
using various bounding schemes hierarchically with the hope of showing that l lies above
the already established cutoff value, which will allow elimination of the subdomain. A firs
assessment is made of whether the remainder bound of the Taylor model at hand is sufficientl
small; if it is not, then the underlying function exhibits too much detail for modelling by local
estimators, and the subdomain is split in the direction of fastest change of the function.

(2) If the remainder bound is sufficientl small, as a firs test the polynomial part of the objective
function is evaluated in interval arithmetic. When it fails to eliminate the box, the LDB
bounder is applied. If it also fails to eliminate the box, and if the quadratic part of the
polynomial representation of the objective function P is positive semi-definite the QFB
bounder is applied.

(3) If the just studied subdomain of interest cannot be eliminated, but is seen to have a lower
bound close to the current cutoff values, domain reduction techniques are brought to bear
based on the LDB and QFB algorithms to reduce the subdomain in size. Once these methods
are applicable, they will allow one to cut the subdomain of interest and rapidly reduce the
active volume.

(4) The cutoff value is updated using various schemes. First, the linear and quadratic parts of the
Taylor polynomial are utilized to obtain a potential cutoff update. In particular, if the quadratic
part of the polynomial is positive definite the minimizer of the quadratic polynomial is tested.
If the quadratic part is not positive definite the minimizer of the quadratic part in the direction
of the negative gradient is tested. For objective functions of non-trivial cost, as in the example
at hand, more sophisticated local searches within and near the current subdomain may also
be carried out.

The algorithm continues to reduce and examine the domain until the minimum dimension allowed
is reached.The result of the optimization is the validated enclosure of theminimumof the problem.

4. Validated solution of implicit equations

As will be shown in Section 5, the evaluation of the objective function for impulsive planet-
to-planet transfers involves the solution of the implicit equations appearing in the ephemerides
evaluation and Lambert’s problem solution. The solution of these implicit equations must be
carefully managed in the TM framework for a validated computation of the objective function.
In this section the method for obtaining the validated solution of a scalar implicit equation is
described first Then, the extension to systems of equations is addressed, which is instrumental to
the applications presented in Section 5.



Engineering Optimization 5

4.1. Validated solution of scalar implicit equations

Let P(x) + I be an nth-order Taylor model of the (n + 1) times differentiable function f over
the domain D = [−1, 1] so that

f (x) ∈ P(x) + I for all x ∈ D. (2)

Let R be an enclosure of the range of P(x) + I over D. Assume P has non-vanishing derivative
everywhere inD.Without loss of generality, suppose P ′(x) > d > 0 for all x ∈ D; i.e. according
to the mean value theorem, P is strictly increasing in D.

Problem. Find a Taylor model c(y) + J on R such that any solution x ∈ D of the problem
f (x) = y lies in

c(y) + J. (3)

Without loss of generality, it is assumed that P(0) = 0. First, determine the polynomial c(y) =
c1y + c2y

2 + · · · by invertingP . The inversion is performed by applying the algorithm illustrated
by Berz (1999), which reduces the inversion problem to the solution of an equivalent fi ed-point
problem. Thus, the polynomial c(y) is the nth-order Taylor expansion of the inverse of f at the
point 0 = P(0). For any given y, it returns an approximate value x = c(y) that satisfie P(x) ≈ y,
and thus alsof (x) ≈ y, depending on howwell the inverse is representable by itsTaylor expansion
over the domain R. However, it is not the true inverse: evaluating P

(
c(y)

)
in the nth-order Taylor

model arithmetic yields P
(
c(y)

) ∈ y + J̃ , where J̃ is due to the terms of orders exceeding n in
P

(
c(y)

)
– and thus scales with at least order (n + 1).

Next a rigorous remainder J for c(y) is computed so that all solutions of f (x) = y lie in
c(y) + J . To this aim the consequences of small corrections �x to c(y) are studied. According
to the mean value theorem,

f
(
c(y) + �x

) − y ∈ P
(
c(y) + �x

) − y + I

= P
(
c(y)

) + �x · P ′(ξ(x)
) − y + I

⊂ y + J̃ + �x · P ′(ξ) − y + I

= �x · P ′(ξ) + I + J̃

(4)

for some suitable ξ(x) that lies between c(y) and c(y) + �x. However, sinceP ′ is bounded below
by d on [−1, 1], the set �x · P ′(ξ) + I + J̃ will never contain zero in [−1, 1], but outside of
the interval

J = −I + J̃

d
, (5)

and thus no solution of f (c(y) + �x) = y exists there. Thus, the following theorem holds.

Theorem 4.1 Any solution x ∈ D = [−1, 1] of f (x) = y lies in the Taylor model c(y) + J ,
with J given by Equation (5).

Some remarks can be made.

Remark 1 No information on the derivative f ′ is needed, which is helpful in practice.

Remark 2 Indeed, if f is not monotonic, it is conceivable that c(y) + J contains multiple
solutions of f (x) = y.
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Remark 3 For any y ∈ [P(−1) + u(I), P (+1) + l(I )], where l(I ) and u(I) are the internal
lower and upper bounds, at least one solution exists due to the intermediate value theorem.

Remark 4 For any y /∈ [P(−1) + l(I ), P (+1) + u(I)], no solution exists.
As an important consequence, the following corollary is obtained.

Corollary 4.2 If f is invertible over D and its Taylor polyomial has non-vanishing derivative
over D, then the above c(y) + J is a Taylor model of order (n + 1) of its right inverse.

It is worth noting that, if f ′(0) �= 0, because of the inverse function theorem there is always a
full neighbourhood of 0 on which the requirements are satisfied
The following example tests the above arguments on the sine function. The solutions of

sin(x) = y (6)

for x ∈ D = [−1, 1] are of interest. An exact representation of the solutions is available in
analytical form, which is trivially given by

x = arcsin(y), (7)

where y lies in the range of sin(x) overD. Nevertheless, the above arguments are followed to fin
a Taylor model c(y) + J that encloses any solution of Equation (6). As a consequence, c(y) + J

must enclose the exact analytical solution (7). The Taylor model P(x) + I of the sine function
on D is computed first Then, P(x) is inverted to obtain c(y). Lastly, the interval J is computed
to build the TM enclosure c(y) + J .
The result of the procedure is shown in Figure 1 using 3rd-order expansions. The analytical

solution is reported and compared with the TM enclosure. The range R of the Taylor model is
assessed using the linear dominated bounder algorithm.As illustrated in the figure for any y ∈ R,
c(y) + J can be evaluated to identify a set that encloses the exact solution.
The accuracy of the enclosure depends on both the order of the Taylor expansions and the width

of D. The effect of the order is investigated in Figure 2. Higher expansion orders yield sharper
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Figure 1. Third-order enclosure of the solutions of sin(x) = y over D.
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Figure 2. Accuracy of the enclosure of the solutions of sin(x) = y over D: comparison between different orders.
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Figure 3. Accuracy of the enclosure of the solutions of sin(x) = y over D: comparison between different widths of D.

intervals J and, thus, higher accuracies. This is confirme in the figure where the enclosures
obtained using different orders are compared. It is also worth observing that the accuracy of
the enclosure of the exact range of sin(x) over D, which is obtained using the LDB algorithm,
improves with order.
The effect of the width of the domain D on the accuracy of the TM enclosure is analysed in

Figure 3. More specificall , the domain D is set as

D = 2−k [−1, 1], (8)

and thewidth ofJ is computed andplotted for different k at fi ed expansionorders.The logarithmic
scale in the figur highlights a linear dependence with k, the slopes of the lines being directly
related to n + 1. This confirm that the width of J scales with order n + 1 of the width of D.

4.2. Validated solution of a system of implicit equations

The arguments introduced in Section 4.1 are extended in the following to the validated solution
of a system of implicit equations.
Consider the vector-valued function f (x) : D ⊂ R

m → R
m, with fi ∈ Cn+1(D), i ∈ {1, . . . , m}.

Let P(x) + I be an nth-order Taylor model of f over D; i.e.

f (x) ∈ P(x) + I , ∀x ∈ D. (9)
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Let R be an enclosure of the range of P(x) + I over D. Without loss of generality, assume

P(0) = 0 (10)

JP(0) = I, (11)

where JP is the Jacobian of P and I is the identity matrix. Note that the assumption (10) can be
met by adding a vector of constants to f , whereas the assumption (11) can be satisfie by an affin
transformation in the codomain of f as long as the Jacobian of P is non-singular at the origin.
Let C(y) be the nth-order Taylor expansion of the inverse of P(x) about P(0). Similarly to the

scalar case, C(y) is not the true inverse. Consequently, describing the range R with a TM number
and evaluating P

(
C(y)

)
over R in nth-order Taylor-model arithmetic yields

P
(
C(y)

) ∈ y + J̃, (12)

where J̃ is due to the terms of orders exceeding n in P(C(y)), and thus scales with at least
order (n + 1).

Theorem 4.3 If

∂Pi

∂xi

(x) ≥ d > 0, ∀i∣∣∣∣∂Pi

∂xj

(x)

∣∣∣∣ ≤ k, ∀j �= i,

(13)

for all x ∈ D, with

d − (n − 1)k > 0, (14)

then any solution x ∈ D of the problem f(x) = y lies in the Taylor model

C(y) + J, (15)

where J = [−a, a]n, with a defined as

a = max
i=1,...,n

|Ii + J̃i |
d − k (n − 1)

. (16)

The absolute value of an interval is define as |I | = max
{|l(I )|, |u(I)|}.

Proof The theorem is proved by studying

f
(
C(y) + �x

) − y, with �x such that C(y) + �x ∈ D. (17)

In particular, the conditions on �x that rule out the existence of solutions of f (x) = y are sought.
Relation (9) brings one to

f
(
C(y) + �x

) − y ∈ P
(
C(y) + �x

) − y + I, (18)

which component-wise reads

fi

(
C(y) + �x

) − yi ∈ Pi

(
C(y) + �x

) − yi + Ii . (19)
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According to the mean value theorem (see Appendix A)

Pi

(
C(y) + �x

) = Pi

(
C(y)

) + ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x, (20)

for some suitable ξi(y, �x) ∈ [0, 1]. Thus,

fi

(
C(y) + �x

) − yi ∈ Pi

(
C(y)

) + ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x − yi + Ii . (21)

Using Equation (12) yields

fi

(
C(y) + �x

) − yi ∈ ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x + Ii + J̃i , (22)

i.e.

fi

(
C(y) + �x

) − yi ≥ ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x + inf(Ii + J̃i )

≥ ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x − |Ii + J̃i |
(23)

and

fi

(
C(y) + �x

) − yi ≤ ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x + sup(Ii + J̃i )

≤ ∇x Pi

(
C(y) + ξi(y, �x)�x

) · �x + |Ii + J̃i |.
(24)

Select now the component ν that satisfie

|�xν | ≥ ∣∣�xj

∣∣ , ∀j. (25)

Hypotheses (13) and (14), and the arguments presented in Appendix B, result in

fν

(
C(y) + �x

) − yν ≥ [
d − k (n − 1)

]
�xν − |Iν + J̃ν |, for �xν ≥ 0 (26)

and
fν

(
C(y) + �x

) − yν ≤ [
d − k (n − 1)

]
�xν + |Iν + J̃ν |, for �xν ≤ 0. (27)

Based on Equation (26), fν

(
C(y) + �x

) − yν > 0 for any �x satisfying

�xν >
|Iν + J̃ν |

d − k (n − 1)
. (28)

Similarly, if

�xν < − |Iν + J̃ν |
d − k (n − 1)

, (29)

then, from Equation (27), fν(C(y) + �x) − yν < 0.
Consequently, there cannot be solutions of the problem f (x) = y, x ∈ D, for �x outside of the

interval J = [−a, a]n, where a is define as

a = max
i=1,...,n

|Ii + J̃i |
d − k (n − 1)

, (30)

and all possible solutions must lie in the Taylor model C(y) + J. �
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5. Problem formulation

Impulsive interplanetary transfers are usually designed in the frame of the patched-conics
approximation. The hypotheses behind this approach can be listed as follows.

(1) The trajectory is split into a sequence of two-body problems for which analytical solutions
are available (conic sections).

(2) The planets’ spheres of influenc are infinitel large in the planetary reference frame, but only
points in the heliocentric frame.

(3) Hyperbolic passages occur instantaneously.
(4) Different conic sections are patched together with instantaneous velocity changes delivered

by the propulsion system.

For each arc, the dynamical model is described by Kepler’s gravitational law

{
ṙ = v

v̇ = − μ

r3
r,

(31)

in whichμ is the gravitational parameter of the central body, and r = (x, y, z) and v = (vx, vy, vz)

are the spacecraft position and velocity vectors, respectively. The solution to Equation (31) is
analytical and it is given by the conic section

r = p

1+ e cosϑ
, (32)

in which p is the semilatus rectus, e the eccentricity, and ϑ the true anomaly (Kaplan 1975). If
e = 0, the conic is a circle; if 0 < e < 1, the conic is an ellipse; if e = 1, the conic is a parabola;
and, if e > 1, it is a hyperbola.
The transfer problem of interest is to bring a spacecraft from a circular orbit around a starting

planet, typically the Earth, to a circular orbit around a target body. As the initial and the fina
orbit lie inside the planets’ spheres of influence the firs and the last phases of the transfer are
hyperbolic legs. These two legs are then connected outside the planets’ spheres of influenc by an
elliptic heliocentric trajectory. The algorithmic fl w for the computation of the objective function
for a planet-to-planet transfer is as follows.

(1) Compute the position and the velocity of the planets at two given epochs t1 and t2, where t1
is the departure epoch and t2 the arrival one.

(2) Determine the elliptic arc connecting the two planets in the transfer time �t = t2 − t1.

(3) Compute the relative velocity at the planets, the two hyperbolic arcs, and the associated
starting and arrival �v.

A different problem is associated with each of the former steps: the firs requires the evaluation
of ephemerides functions, the second is the solution of a two-point boundary-value problem
known as Lambert’s problem, and the last being simple orbital mechanics algebra.All these steps
are classical astrodynamical problems, but they require particular attention when considered at
the validated approach. For this reason each of these problems is examined separately in the
following subsections. Note that throughout this article the subscript ‘1’ will denote the starting
conditions and ‘2’ the arrival conditions. Furthermore, an Earth–Mars transfer will be adopted as
the reference planet-to-planet transfer.
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5.1. Ephemerides

In order to design the transfer it is necessary to know planets’ positions and velocities at given
epochs. The ephemerides function used in this work is based on the ephemerides DE405 of
Caltech’s Jet Propulsion Laboratory (JPL). These have been obtained from a least-squares fittin
of previously existing ephemerides to the available observation data, followed by a numerical
integration of a suitable set of equations describing the motion of the Solar system. The numerical
integrations were carried out using a variable step-size, variable order Adams method. The result
of the integration is stored in the form of interpolatory data (Chebyshev polynomials, each block
of which covers an interval of 32 days). The DE405 ephemerides are valid from 9 December
1599 to 1 February 2200 (Alessi et al. 2007). The internal reference system are the so-called
J2000 coordinates. A detailed description about how these ephemerides are obtained is given by
Williams (2010).
The evaluation of the positions and the velocities of planets within the TM frame does not

allow the use of any external code. In order to avoid this problem, a Taylor interpolation in time of
planets’ orbital parameters (a, e, i, ω, �, M) obtained through JPL ephemerides has been carried
out. In particular, a 3rd-order interpolation is selected to limit the interpolation error to the order
of a few thousand kilometres for the position and ams−1 for velocities over the time windows of
interest, an accuracy compatible with the preliminary optimization problems at hand. Conversion
from orbit elements to cartesian quantities is performed as follows:

x = r
(
cos(ϑ + ω) cos� − sin(ϑ + ω) cos i sin�

)
y = r

(
cos(ϑ + ω) sin� + sin(ϑ + ω) cos i cos�

)
z = r

(
sin(ϑ + ω) sin i

)
vx = v

( − sin(ϑ + ω − γ ) cos� − cos(ϑ + ω − γ ) cos i sin�
)

vy = v
( − sin(ϑ + ω − γ ) sin� + cos(ϑ + ω − γ ) cos i cos�

)
vz = v

(
cos(ϑ + ω − γ ) sin i

)
,

(33)

where the velocity v is

v =
√

μ

r
− μ

a
, (34)

the true anomaly is related to the eccentric anomaly by

tan
E

2
=

√
1− e

1+ e
tan

ϑ

2
, (35)

the fligh path angle is obtained from

tan γ = e sin ϑ

1+ e cosϑ
, (36)

and the eccentric anomaly is related to the mean anomaly by Kepler’s equation,

M = E − e sinE. (37)

Thus, based on the interpolated orbital parameters, the cartesian position and velocity of planets
are computed as a function of time with only the major remaining difficult of solving Kepler’s
equation in a validated way as described in Section 4.



12 R. Armellin et al.

5 6 7 8 9 10
−12

−11

−10

−9

−8

Expansion Order

IW

r
x

r
y

Figure 4. Taylor-model relative IW as a function of expansion order for Earth position.
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Figure 5. Taylor-model relative IW as a function of expansion order for Earth velocity.

Having the ephemerides evaluated in the TM framework gives the validated expansion of
planets’ positions and velocities with respect to departure and arrival epochs. Figures 4 and 5
are relative to Taylor-model evaluations of Earth ephemerides in the interval epoch [3570, 3580]
MJD2000. The ratio between the interval widths (IW) and the TM constant part is shown (in
logarithmic scale) for both cases as a function of the expansion order. It is apparent that the IW
reduces almost exponentially up to order 7 and that the 5th-order expansion guarantees good
accuracy for the ephemerides evaluation.

5.2. Lambert’s problem

In Lambert’s problem, the initial position, fina position, and desired time for the transfer between
the two positions are given. Solving Lambert’s problem define the orbital elements of the desired
transfer orbit, allowing the calculation of the velocities at the initial and fina positions.A diagram
for an Earth–Mars transfer is shown in Figure 6.
Lambert’s theorem states that the time required for the transfer depends only on the semi-major

axis, the sum of the two radii r1 + r2, and the distance between the initial and fina positions, i.e.
the chord length c = |r2 − r1| (Kaplan 1975). The time required for the transfer can be written as

t2 − t1 =
√

a3

μ
[2kπ + (E2 − e sinE2) − (E1 − e sinE1)] . (38)
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Figure 6. Lambert’s problem for Earth–Mars trajectories and starting and arrival velocity triangles definition

The problem now is to fin the correct values of a, E1, E2 and e that give the desired transfer
time.As Lambert stated, however, the transfer time depends only on the three quantitiesmentioned
earlier. The two radii and the chord length are already known from the problem definition The
semi-major axis is the only unknown parameter, and it follows that it is possible to write the
transfer time simply as a function of the semi-major axis

�t = f (a). (39)

All other variables in the equation should be known. This can be done (Prussing and Conway
1993), or the transfer time can be written as a function of some other parameters such as p or
�E. In the present authors’ approach considered here, based on Battin’s algorithm (Battin 1999),
the nonlinear equation to be solved is

log
(
A(x)

) − log(�t) = 0, (40)

in which
A(x) = g(x)3/2 [α(x) − sin α(x) − β(x) + sin β(x)] . (41)

The functions α(x) and β(x) are related to x via the relations

sin2
1
2
α(x) = s

2g(x)
and sin2

1
2
β(x) = s − c

2g(x)
, (42)

with
g(x) = s

2(1− x2)
, (43)

and the semiperimeter
s = (r1 + r2 + c)/2. (44)

The logarithm (40) is adopted to facilitate the solution for x by means of standard Newton’s
iteration. Note that the relation between a and x is simply given by

a = s

2(1− x2)
. (45)

Once the nominal solution is available, Lambert’s problem can be solved in a TM environment
by applying the algorithm described in Section 4. The nth-order Taylor model of v1 = v1(t1, t2)
and v2 = v2(t1, t2) is obtained as the fina output.
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5.3. Objective function evaluation

The previous sections showed how to compute the conic arc that connects two planets for a given
departure and arrival epoch (or transfer time). The procedure to compute the objective function
including the departure and the arrival phases inside planets’ spheres of influenc is described in
the following. After Lambert’s problem has been solved, the outgoing and incoming velocities at
the planetary spheres of influence v∞

1 and v∞
2 , are known, as shown in Figure 6, as

v∞
1 = v1 − vE (46)

and

v∞
2 = v2 − vM. (47)

As mentioned earlier, the goal of the interplanetary transfer is to bring the spacecraft from a
circular orbit around the Earth to a circular orbit around the target planet. Furthermore, an altitude
of 200 km is assumed for both orbits. Thus, two hyperbolic arcs can be designed,whose pericentres
lie on the initial and fina circular orbits of radius rc

i , with i = 1, 2 as illustrated in Figures 7 and 8.
The energy density for the two hyperbolic arcs is

Ei = 1
2
v∞

i
2
, (48)

Figure 7. Sketch of Earth departure phase.

Figure 8. Sketch of planetary arrival phase.
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and the velocity at the pericentre is computed by solving

1
2
v

p

i

2 − μ

r
p

i

= Ei (49)

for v
p

i . The circular velocities associated with the circular orbits are given by

vc
i = √

μ/rc
i . (50)

As a result, the objective function is computed by

�v = �v1 + �v2 = (v
p

1 − vc
1) + (v

p

2 − vc
2). (51)

As spacecraft must be accelerated at departure and slowed down at arrival, each of the former�v

is positive definite
Figure 9 shows the Taylor-model evaluation of the objective function in the box [3570,

3580] × [320, 330] MJD2000 × days, whereas Figure 10 shows IW relative to the TM con-
stant part as a function of the expansion order. As expected, the actual value of the objective
function is included in the TM representation and the IW properly scales with the expansion
order. Note that minimizing �v is equivalent to minimizing the propellant mass as, within the
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Figure 9. Taylor-model evaluation of the objective function for an Earth–Mars transfer.
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Figure 10. Objective function Taylor-model relative IW as a function of the expansion order.
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hypothesis of impulsivemaneuvres, the propellant mass fraction is given by thewell known rocket
equation

f = 1− e−�v/Ispg0 , (52)

in which Isp is the engine specifi impulse (typical values for chemical engines lie in the range
250–400 s) and g0 is the gravitational acceleration of the Earth at sea level.

6. Test cases

Earth–Mars (EM) and Earth–Venus (EV) transfers are considered as test cases. These problems
are bidimensional and they involve two ephemerides evaluations and one solution of the implicit
equation representing Lambert’s problem for each evaluation of the objective function. The depar-
ture epoch t1 and time of fligh �t are chosen as optimization variables in order to deal with a
rectangular search domain. Over a sufficientl large search domain, determining the global opti-
mum is difficul as the objective function shows a roughly periodic behaviour, several bands of
near-minima, and among these a large number of comparable local minima, as clearly highlighted
in Figure 11.
One fundamental problem of the optimization at hand is the presence of discontinuity lines

of the objective function within the search domain. Such discontinuities correspond to the
so-called transitions from the ‘short-way’ to the ‘long-way’ solutions of Lambert’s problem,
and vice versa (Armellin et al. 2010). A geometrical overview of the problem is reported in
Figure 12 for a sample transition from the short-way to the long-way solution. Transfer tra-
jectories for an Earth–Mars transfer are plotted for a fi ed time of fligh of 320 days, moving
from the left side of the discontinuity to the right side. On the left side of the discontinuity
the short-way solutions are selected by the Lambert solver. Moving toward the right side, the
orbital plane inclination of the transfer trajectories tends to increase. The discontinuity occurs
when the transfer trajectory is exactly perpendicular to the ecliptic. Just after the occurrence
of the discontinuity, in order to keep dealing with prograde solutions of the Lambert problem,
the long-way solution is suddenly selected. Corresponding to the previous transition, a plot of
the z-components of v∞

1 and v∞
2 is reported in Figure 13. The increase in the absolute values of

Figure 11. Objective function landscape for Earth–Mars transfer.
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Figure 12. Geometrical overview of the transition from the short-way to the long-way solution.

Figure 13. Discontinuity in v∞
1,z and v∞

2,z (z-components of Equations 46 and 47) at the transition from the short-way
to the long-way solution.

v∞
1,z and v∞

2,z around t1 = 1317 MJD2000 is associated with the increasing difference between
the inclinations of the planetary orbital planes and the transfer trajectory; whereas the discon-
tinuity is due to the switch from the short-way to the long-way solution. The discontinuity
then affects all the algebraic operations (48)–(51) required for the evaluation of the objective
function.
In terms of the coding of the Lambert solver and the subsequent evaluation of the objective

function, the discontinuity represents a transition from one branch of an if statement to another
such branch. Unfortunately, this is a situation that cannot be handled in a direct fashion by self-
verifie software, since it would require the separate treatment of all solutions that fall into one
branch of the if statement, and all other solutions that fall into the other branch.
In the further discussion below, some automatic methods that deal with this problem are

outlined. However, in practical situations the problem is of reduced significance since, in a
neighbourhood of the transition, large values of �v necessarily appear, which automatically lead
to a significan increase in the objective function that immediately precludes such regions. In fact,
it is rather straightforward and common practice to perform simple estimates that determine an
exclusion region around the discontinuities which can be rigorously excluded a priori without
further work (Izzo et al. 2006, Armellin et al. 2010).

6.1. A priori pruning of search space near discontinuity

In the firs approach to the problem, this practice is followed and common estimates are used to
eliminate from the search-space regions that cannot contain the optimum. In order conveniently
to characterize the regions of search space that cannot contain a minimum, the space is firs
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discretized with a grid of equidistant boxes, and then all those boxes for which a simple a priori
estimate shows that a minimum of the search space cannot occur are eliminated. For simplicity,
subdomains are chosen that line up with the coordinates; but with limited extra effort, it is also
possible to choose other objects, such as a discretization into parallelograms that more naturally
follow the line of discontinuity.
As long as this pruning is done in a rigorous way, which is not difficul because of the inherently

large values of the objective function near the discontinuity, this leads to a validated strategy that
does not impose significan burden, but eliminates the branching problem in the evaluation of the
objective function, since now each subdomain of interest can be safely decided to fall into only
one side of the branch.
The Earth–Mars case is now studied in the search space [3000, 4000]× [200, 400]MJD2000×

days subject to a priori pruning as shown in Figure 14(a). Specificall , there is a discretiza-
tion of boxes of 20 days per side, and boxes whose midpoint-transfer radii are almost aligned
(i.e. arcsin(‖r1 × r2‖/r1r2) < 10◦) are pruned away. COSY-GO is then fed with the 447 remain-
ing boxes and run adopting a 5th-order expansion and setting the minimum box side to 0.1 day.
The optimization process requires 2233 steps and only 64.3 s of CPU time on a Xeon Dual Core
2.66GHz laptop platform and ends with three remaining boxes, whose enclosure is given in
Table 1.
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Figure 14. Analysis of Earth–Mars transfer domain reduction sequence.
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Table 1. EM and EV transfers optimal solution enclosures with the a priori pruning approach.

EM EV

�v km s−1 [5.6974155, 5.6974160] [7.079470, 7.079472]
t1 MJD2000 [3574.30, 3574.37] [2715.69, 2715.78]
�t day [323.38, 323.48] [133.37, 133.47]

Table 2. EM and EV transfers search-space definition

EM EV

t1 MJD2000 [1000, 6000] [1000, 6000]
�t day [150, 600] [80, 350]

When the larger search space define in Table 2 is considered together with the same domain
discretization and pruning criteria, the initial number of feasible boxes rises to 4899. In this case
the number of steps required to compute the same global optimum enclosure is 25,931 with a
computational time of 715 s.
It is illuminating to observe the details of the optimizer’s box splitting, reduction and elimination

sequence. To this end, Figure 14 shows some zoom pictures in the optimizer’s sequence of box
splitting, reduction and elimination. Figure 14(b) shows boxes just at the point of being eliminated,
at a location away from any local minimum. It is worth noting how boxes get shrunk significantl
by the action of the LDB and QFB domain reduction tools; for example, the box covering the
middle of the picture gets reduced by about a factor of fi e horizontally and a little more than two
vertically, before being eliminated. The volume reduction of the box to the left of the middle box
is even more dramatic; while a box to its right was firs reduced by only small amount by LDB,
and then subsequently split into two equal parts, before being eliminated.
The behaviour near the global minimum is also rather revealing. Figure 14(c) shows the neigh-

bourhood of the minimizer at a scale of about 16 days by 14 days. It is seen that boxes at the
bottom are reduced in domain by LDB before being eliminated, and boxes to the left and right
are being significantl reduced. The last picture of the sequence shows the situation near the
minimizer at a scale of about 14 by 7 days, again showing the interplay of domain reduction and
box elimination.
Overall, a quantitative analysis of the active phase space region and the elimination pattern

shows that boxes are eliminated with an average size of about 100 days squared, which must
be considered rather favourable considering the fin detail in the objective function on the one
hand, and its complexity involving a verifie solution of an implicit equation on the other. It is also
worthwhile to mention that there is no cluster effect problem visible, i.e. boxes near the minimizer
follow a rather favourable pattern.
The search space of Table 2 is considered for the transfer toVenus. The same pruning technique

adopted for the transfer to Mars is used, but on a discretization of boxes of 10 days. The optimizer
is then fed with 12,056 boxes. The number of iterations required is 88,556 with a computational
time of 2399.1 s. The enclosure of the solution is given in Table 1.
It is worth mentioning that if the departure and arrival legs are neglected (i.e. the objective func-

tion is simply computed by�v = v∞
1 + v∞

2 ) the enclosures of theminimum�v for the transfers to
Mars and Venus are [5.659527, 5.659531] and [6.062911, 6.062919] km s−1, respectively. These
values compare well with the 5.6695 and 6.0638 km s−1 reported by Liu and Dai (2009) and
Armellin et al. (2010), which were obtained with different models and optimization methods.
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Table 3. EM and EV transfers optimal solution enclosures with the automated pruning approach.

EM EV

�v km s−1 [5.6974154, 5.6974160] [7.079469, 7.079472]
t1 MJD2000 [3574.28, 3574.38] [2715.69, 2715.77]
�t day [323.41, 323.48] [133.33, 133.46]

6.2. Automated pruning of the search space near discontinuity

It is worthwhile to study in detail the possibility of automating the pruning of the search space
near the discontinuity lines. A firs solution that is on the one hand somewhat simplistic, but on
the other hand nevertheless allows for a detailed search of the parameter space, is simply to utilize
the failure mode of the Taylor-model implementation of COSY Infinit . Specificall , if there is a
situation encounteredwhere aTaylormodel cannot be evaluated, an error fla is set instead, and all
subsequent operations involving the erroneous Taylor model are themselves set to be erroneous.
The COSY-GO verifie global optimizer reacts to such a fla by simply splitting the relevant box
of interest and trying again.
The advantage of this approach is its simplicity and rigour. It is certainly fully automatic, and

any computation involving the (many) occurring erroneous Taylor models takes only minimal
computational effort for propagating the corresponding error flag On the other hand, the method
leads to a simplistic box halving scheme that has the additional undesirable property that usually
at least one of the split boxes is retained, namely the one containing the discontinuity line in the
firs place. This leads to a substantial increase in the number of boxes that need to be studied, in
particular if the discontinuity regions are of extended size, as they are in the problem at hand.
This approach is applied to optimize both Mars and Venus transfers on the search domain

of Table 2. Also for these optimization runs, a 5th-order expansion and a minimum box side of
0.1 day are chosen. The enclosure of the optimal�v and the corresponding optimal time variables
are given in Table 3. In practice, the price to pay for obtaining the validated optimal solution in
this simplistic manner is the computational time: the optimization processes require 202,789 and
476,425 iterations, corresponding to computational times of 7474.8 and 17,557.1 s (on the same
machine used before). Thus, this simplistic treatment of the pruning problem of the minimization
leads to an increase in computational time by an order of magnitude.
In the present authors’opinion, the bestmethod to attack the problemat hand in a fully automated

fashion is the following. In case a subdomain is detected to contain a discontinuity, it is attempted
to construct a sufficientl thin Taylor-model ‘band’ that contains the discontinuity. This can be
readily achieved by utilizing an implicit function solver such as the one discussed in Section 4, but
instead of using it to solve for the solution of Lambert’s problem, use it to solve for the condition
that produces the discontinuity. The resulting Taylor model including the discontinuity could then
be broadened so that it can be safely eliminated.

7. Conclusion

This article has shown a firs application of the Taylor-model-based global optimizer COSY-GO
to space trajectory design. Simple impulsive planet-to-planet transfers were used as test cases,
showing the effica y of themethod in findin the enclosure of the global minimum of the objective
function. It is important to stress that the proposed optimization technique is deterministic, as
opposed to all the available stochastic global optimizers, and it delivers the rigorous enclosure
of the problem’s global optimum. When used with a suitable a priori pruning technique to avoid
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undetermined regions of the objective function, favourable computation times can be achieved.
On the other hand, fully automated detection of the undetermined regions requires further work;
while it is possible to do this in an automated way based on arithmetic error traps, this approach
leads to an increase in computational expense of one order of magnitude. Further work will focus
on amore efficien representation of discontinuity bands arising from the Lambert solving process
and the determination of sufficientl wide bands around them such that the remaining active region
always contains unique and continuous solutions. Future effortwill be devoted to the reformulation
of the problem in order to minimize the troubles associated with the discontinuities. This step
is considered mandatory for the extension of the method to the rigorous global optimization of
impulsive transfers that include multiple gravity assists and deep space maneuvres.
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Appendix A

Given a scalar function g(x) : R
n → R, with g continuous and differentiable, the aim of this appendix is to show that

g(x + �x) = g(x) + ∇xg(x + ξ(x, �x)�x) · �x, (A1)

for some suitable ξ(x, �x) ∈ [0, 1].
Consider the continuous and differentiable function G(t) : [0, 1] → R define as

G(t) = g(x + t�x). (A2)

The application of the mean value theorem for scalar functions to Equation (A2) yields

G(x + t�x)|t=1 = G(x + t�x)|t=0 + dG
dt

(x + t�x)

∣∣∣∣
t=ξ(x,�x)

(A3)

for some ξ(x) ∈ [0, 1]. Based on the definitio of G,

G(x + t�x)|t=1 = g(x + �x)

G(x + t�x)|t=0 = g(x).
(A4)

Moreover

dG
dt

(x + t�x)

∣∣∣∣
t=ξ(x,�x)

= ∇xg(x + t�x)|t=ξ(x,�x) · �x

= ∇xg(x + ξ(x, �x)�x) · �x.

(A5)

Altogether, Equations (A3), (A4) and (A5) give

g(x + �x) = g(x) + ∇xg(x + ξ(x, �x)�x) · �x. (A6)

Appendix B

Given a vector-valued function g(x) : D ⊂ R
n → R

m, with gi continuous and differentiable on D for all i ∈ 1, . . . , m.
According to the mean value theorem for multivariate functions reported in Appendix A,

gi(x + �x) = gi(x) + ∇xgi(x + ξi (x, �x)�x) · �x, (B1)

for x ∈ D, x + �x ∈ D, and some suitable ξi (x, �x) ∈ [0, 1]. For the sake of clarity, defin hi = x + ξi (x, �x)�x ∈ D,
and rewrite Equation (B1) as

gi(x + �x) = gi(x) + ∂gi

∂xi

(hi )�xi +
∑
j �=i

∂gi

∂xj

(hi )�xj . (B2)

http://www.esa.int/gsp/ACT/doc/ARI/ARI%20study%20Report/ACT-RPT-MAD-ARI-03-04101a-Globaloptimisation-Reading.pdf
http://www.esa.int/gsp/ACT/doc/ARI/ARI%20study%20Report/ACT-RPT-MAD-ARI-03-04101a-Globaloptimisation-Reading.pdf
http://iau-comm4.jpl.nasa.gov/XSChap8.pdf
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Suppose now that the components of ∇xgi can be bounded as

∂gi

∂xi

(x) ≥ d > 0, ∀i

∣∣∣∣ ∂gi

∂xj

(x)

∣∣∣∣ ≤ k, ∀j �= i,

(B3)

for all x ∈ D, with

d − (n − 1)k > 0. (B4)

Select the component ν that satisfie

|�xν | ≥ |�xj |, ∀j. (B5)

Thus, from Equation (B2),

gν(x + �x) = gν(x) + ∂gν

∂xν

(hν)�xν +
∑
j �=ν

∂gν

∂xj

(hν)�xj

{≥ gν(x) + d�xν − (n − 1)k�xν, for �xν ≥ 0

≤ gν(x) + d�xν − (n − 1)k�xν, for �xν ≤ 0.
(B6)
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