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ABSTRACT
A Taylor model of a smooth function f over a sufficiently
small domain D is a pair (P, I) where P is the Taylor poly-
nomial of f at a point d in D, and I is an interval such that
f differs from P by not more than I over D. As such, they
represent a hybrid between numerical techniques for the in-
terval and the coefficients of P and algebraic techniques for
the manipulation of polynomials. A calculus including addi-
tion, multiplication and differentiation/integration is devel-
oped to compute Taylor models for code lists, resulting in
a method to compute rigorous enclosures of arbitrary com-
puter functions in terms of Taylor models. The methods
combine the advantages of numeric methods, namely finite
size of representation, speed, and no limitations on the ob-
jects on which operations can be carried out with those of
symbolic methods, namely the ability to treat functions in-
stead of points and making rigorous statements.

We show how the methods can be used for the problem
of rigorous global search based on a branch and bound ap-
proach, where Taylor models are used to prune the search
space and resolve constraints to high order. Compared to
other rigorous global optimizers based on intervals and lin-
earizations, the methods allow the treatment of complicated
functions with long code lists and with large amounts of
dependency. Furthermore, the underlying polynomial form
allows the use of other efficient bounding and pruning tech-
niques, including the linear dominated bounder (LDB) and
the quadratic fast bounder (QFB).

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.1.6 [Numerical Analysis]: Optimization—global
optimization, nonlinear programming

General Terms
Algorithms
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1. INTRODUCTION
An n-th order Taylor model of a multivariate function f
that is (n + 1) times continuously partially differentiable
on the domain D consists of the n-th order multivariate
Taylor polynomial P, expanded around a point x0 ∈ D and
representing a high order approximation of the function f,
and a remainder error bound interval I for verification, the
width of which scales in (n + 1)-st order that satisfy

f(x) ∈ P (x − x0) + I for all x ∈ D.

The definition of Taylor models, Taylor model binary op-
erations, and Taylor model intrinsic functions were thor-
oughly developed[6, 4], and a verified implementation of
Taylor model arithmetic in the code COSY INFINITY[3]
is based on the floating point treatment of the Taylor coeffi-
cients. The details about the implementation can be found
in [10, 6, 4]. Utilizing the Taylor model concept and arith-
metic, various Taylor model based schemes have been devel-
oped. For example, see [6, 2, 5, 1].

The exact definition of Taylor models implemented in
COSY INFINITY, namely representing the underlying func-
tion f by a high order Taylor multivariate polynomial P
with floating point coefficients and enclosing the function f
around P by a remainder error bound interval I that scales
in high order, allows us to develop numerous efficient algo-
rithms for various problems that require practical verifica-
tion. We have shown in various publications (for example,
see [6] and references therein.) the properties of Taylor mod-
els, which enable the superb performance of Taylor model
based schemes compared to conventional schemes. In short
words, those properties are 1) sharpness of remainder in-
tervals, 2) suppression of the dependency problem, and 3)
reducing the curse of dimensionality.

Besides those repeatedly demonstrated properties, the struc-
ture of Taylor models naturally has a rich resource of infor-
mation. Namely the coefficients of the polynomial part P of
a Taylor model are nothing but the derivatives up to order
n. That means when representing a function f by a Taylor
model (P, I) on a computer, we also obtain the local slope,
Hessian and higher order derivatives free. When a task is
focused on range bounding, those pieces of information be-
come particularly useful.
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Figure 1: Investigation of a trapping region of the Henon map H.

While naive range bounding of Taylor models, namely
merely evaluating each monomial of P using interval arith-
metic then summing up all the contributions as well as the
remainder interval I [4], already exhibits the superiority
over the mere interval arithmetic and the more advanced
centered form [6], the active utilization of those additional
pieces of information in Taylor models has a lot of potential
of developing efficient range bounders. Based on this ob-
servation, we have developed various kinds of Taylor model
based range bounders, and among them, we will introduce
the particularly efficient bounders, namely the linear domi-
nated bounder (LDB) and the quadratic fast bounder (QFB)
below, which are the backbones of Taylor model based ver-
ified global optimizer COSY-GO[7] that will be discussed
afterward as well as some examples.

2. PERFORMANCE OF TAYLOR MODEL
METHODS: TIGHT ENCLOSURES FOR
THE HENON ATTRACTOR

To illustrate the performance of Taylor model methods
and their advantages over other verified methods including
the interval approach, we consider an important example
from the theory of dynamical systems, the Henon attractor.
Specifically, we consider the standard Henon map

H(x, y) = (1 − ax2 + y, bx).

We set the parameters a = 1.4 and b = 0.3, which are the
values originally considered by Henon. It is easy to see that
the map H has two fixed points

�p1 ≈ (0.63135, 0.18940) and �p2 ≈ (−1.13135,−0.33941).

Different from other dynamical systems with attractors, the
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Henon map has the property that not all points in the plane
approach the attractor; rather, many diverge to infinity.

2.1 Non-Rigorous Assessment of the Henon
Attractor

We first perform a numerical experiment illustrating this
phenomenon. Specifically, we study the region

D = [−1.5, 1.5] × [−0.5, 0.5]

and cover it by 101× 101 = 10201 equidistant points. All of
the resulting 10201 points are mapped through the Henon
map H repeatedly. Any point mapped too far away from D
is discarded; as a criterion, we choose a cutoff of [−1000, 1000]
×[−1000, 1000]. Through 12 iterations of the Henon map
H, 8062 points survived. These points, which give an ap-
proximate picture of the basin of attraction of the Henon
attractor, are shown in the top left picture of Figure 1.

The set F of 8062 surviving floating point numbers are
mapped repeatedly by H, and the mapped points at each
iteration are shown in Figure 1 for the iterations numbers
from 1 to 5, and finally in Figure 2 for the iteration number
12. Each of these regions provide a non-rigorous estimate of
an outer enclosure of the attractor.

2.2 Rigorous Enclosure of the Henon
Attractor with Interval Methods

In order to gain a rigorous understanding, we now study
the same problem using interval methods. Henon himself al-
ready showed that the quadrilateral Q with the corner points

q1 = (−1.060,−0.500), q2 = (+1.245,−0.140)

q3 = (+1.320, +0.133), q4 = (−1.330, +0.420)

forms a trapping region, i.e. H(Q) ⊂ Q. In the case of the
Henon map, this is easily shown by hand by merely studying
the images of the curves comprising the four edges of Q.
When parameterizing these edges linearly, upon application
of H they will form quadratic polynomials, for which it is
easy to determine the distances to the edges of Q and in fact
show that they lie fully inside Q.

For the study with intervals, we utilize neighboring points
in the set F as corner points of a total of 5062 interval boxes
which together fully cover the quadrilateral Q representing
the trapping region. We denote the set comprising the union
of these interval boxes by I. We now propagate the set I
through the Henon map H repeatedly with the goal of ob-
taining a sharper and sharper enclosure of the attractor.
Figure 3 shows the situation for iterations 0 to 5. We first
observe that the set I is not fully mapped inside of itself,
thus not allowing to prove computationally that I is indeed a
trapping region for the attractor. Furthermore, subsequent
iterations do not lead to a significant refinement of the sit-
uation due to the problem of interval overestimation; and
the covering of the attractor with smallest area is already
obtained in the second iterate.

2.3 Rigorous Enclosure of the Henon
Attractor with Taylor Model Methods

In order to utilize Q for the study with Taylor models, we
first construct a Taylor model that maps the unit domain
box [−1, +1]2 onto Q. This can apparently not be achieved
by merely using an affine transformation since Q is not a
parallelepiped. However, we observe that any polynomial of

Table 1: Performance of the Henon map iterations
using Taylor models

Iteration 1 2 3 4 5
Number of TMs 1 1 1 9 32

Remainder error 10−14 10−13 10−11 10−10 10−9

the form

P (x, y) =

�
P H

x (x, y)
P H

y (x, y)

�
=

�
a + axx + ayy + axyxy
b + bxx + byy + bxyxy

�

i.e. missing the purely single variable terms x2 and y2 maps
the four edges of the box [−1, +1]2 into straight lines. In
order to determine the coefficients in P, it is thus sufficient
to demand

P (−1,−1) = q1, P (+1,−1) = q2,

P (+1, +1) = q3, P (−1,+1) = q4,

which leads to the system of equations

+a − ax − ay + axy = q1x

+a + ax − ay − axy = q2x

+a + ax + ay + axy = q3x

+a − ax + ay − axy = q4x,

and likewise for the b coefficients. Because of the special
structure of the system with coefficients of ±1, the system is
very easy to solve by just suitable addition and subtraction,
and we obtain

a =
+q1x + q2x + q3x + q4x

4

ax =
−q1x + q2x + q3x − q4x

4

ay =
−q1x − q2x + q3x + q4x

4

axy =
+q1x − q2x + q3x − q4x

4
.

In passing we note that the method readily generalizes to
higher dimensions.

The resulting quadratic polynomial P0 thus satisfies
P0([−1, +1]2) = Q and will serve as the starting Taylor
model (with vanishing remainder bound). We now iterate
P0 through H repeatedly in Taylor model arithmetic, popu-
lating the remainder bound. Furthermore, if in any one step
the remainder bound exceeds a certain pre-specified thresh-
old, the step is discarded and the domain of the polynomial
split along the dominating direction. This will lead to a
decrease of the remainder bound, and overall a dynamic de-
composition of the resulting structure into several Taylor
models.

Figures 4 and 5 show the resulting structures for itera-
tions 0 to 5, at which point the attractor is enclosed with
a sharpness given by printer resolution. The actual sharp-
ness of the remainder errors at the fifth iterate is 10−9 on
average, so the method has an overestimation that is many
orders of magnitude lower than that of the interval method.

For a more quantitative analysis, Table 1 lists the number
of Taylor models produced by dynamic domain decomposi-
tion as well as the average width of the remainder bounds
of these Taylor models as a function of the number of itera-
tions. The Taylor model computation order is 33.
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Figure 2: Non-rigorous estimate of an outer enclosure of the attractor of the Henon map H. The two marked
points are fixed points, and Henon’s trapping region Q is shown.

3. BOUNDERS AND DOMAIN PRUNING
FOR GLOBAL OPTIMIZATION

In the following we utilize Taylor model methods for rig-
orous global optimization based on the conventional branch
and bound methods. Specifically, the method discards and
prunes regions based on rigorous upper bounds for the min-
imizer. Discarding and pruning is based on the LDB and
QFB algorithms described below.

3.1 The Linear Dominated Bounder LDB
The linear dominated bounder (LDB) introduced in [4] is
based on the fact that for Taylor models with sufficiently
small remainder bound, the linear part of the Taylor model
dominates the behavior, and this is also the case for range
bounding. The linear dominated bounder utilizes the linear
part as a guideline for iterative domain reduction to bound
Taylor models.
LDB Algorithm
Wlog, find the lower bound of minimum of a Taylor model
P + I in D.

(1) Re-expand P at the mid-point c of D, call the resulting
polynomial Pm and the centered domain D1.

(2) Turn the linear coefficients Li’s of Pm all positive by suit-
ably flipping coordinate directions, call the resulting poly-
nomial P+.

(3) Compute the bound of the linear (I1) and nonlinear (Ih)
parts of P+ in Dn. The minimum is bounded by [M, Min] :=
I1 + Ih. If applicable, lower Min by the left end value and
the mid-point value.

(a) If d =width([M, Min]) > ε, set Dn+1 such that ∀i, if
Li > 0 and width(Dn+1,i) > d/Li, then Dn+1,i := Dn,i +
d/Li. Re-expand P+ at the mid-point c of Dn+1. Prepare
the new coefficients Li’s. Go to 3.

(b) Else, M is the lower bound of minimum.

Any errors associated with re-expansion and estimating
point values are included in the remainder error bound in-
terval. If f is monotonic, the exact bound is often obtained
with high accuracy. If only a threshold cutoff test is needed,
the resulting domain reduction or elimination is often supe-
rior. The reduction of the domain of interest works multi-
dimensionally and automatically, and the observed domain
reduction rate is thus often fast. Even when there is no linear
part in the original Taylor model, by shifting the expansion
point, normally a linear part is introduced.

3.2 The Quadratic Fast Bounder QFB
The natural next idea of Taylor model bounding is to uti-
lize the quadratic part of P, and a preliminary scheme of
a quadratic dominated bounder (QDB) is discussed in [4].
For the task of global optimization in practice, an efficient
bounding of the quadratic part in the vicinity of interior
minimizers is important. Around an isolated interior min-
imizer, the Hessian of a function f is positive definite, so
the purely quadratic part of a Taylor model P + I which lo-
cally represents f, has a positive definite Hessian matrix H.
The actual definiteness can be tested in a verified way us-
ing the common LDL or extended Cholesky decomposition.
The quadratic fast bounder (QFB) provides a lower bound
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Figure 3: Mapping of a trapping region of the Henon map H using interval enclosures.

of a Taylor model cheaply when the purely quadratic part
is positive definite. It is based on the following observation.

Let P + I be a given Taylor model in D, and let H be the
Hessian matrix of P. We decompose the polynomial P into
two parts via

P + I = (P − Q) + I + Q.

Then a lower bound for P + I is obtained as

l(P + I) = l(P − Q) + l(Q) + l(I).

For QFB, we choose

Q = Qx0 =
1

2
(x − x0)

tH(x − x0)

with any x0 ∈ D. If H is positive semidefinite, l(Qx0) = 0,
and the value 0 is attained. The remaining P − Qx0 does
not contain pure quadratic terms anymore, but consists of

linear as well third and higher order terms P>2. If x0 is
chosen to be the minimizer of the quadratic part P2 of P in
D, then x0 is also a minimizer of the remaining linear part
(a consequence of the Kuhn-Tucker conditions), and so the
lower bound estimate is optimally sharp. Thus by choosing
x0 close enough to the minimizer of P2 in D, a contribution
of P2 − Qx0 to the lower bound can be very small. For a
given P2 in D, x0 can be determined inexpensively by an

iterative scheme to search a series of x
(i)
0 in the direction of

−∇P2 while limiting x
(i)
0 to stay inside D.

4. THE VERIFIED GLOBAL OPTIMIZER
COSY-GO

For the example problems of verified global optimization
in the next subsections, we apply three branch-and-bound
kind methods available in the code COSY-GO[7]. The first
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Figure 4: Mapping of a trapping region of the Henon map H using Taylor model enclosures.

one is the Taylor model-based optimizer utilizing the LDB
and QFB algorithms (LDB/QFB). We compare the perfor-
mance with two other optimizers; one based on mere interval
bounding (IN) and one based on bounding with centered
form (CF). The sub domain box list management is per-
formed in the same way for all three optimizers. At each
sub domain box step, the following tasks are performed.

• A function bound is estimated using the tools described
below; if the lower bound is above the cutoff value, the
box is eliminated; if not, the box is bisected.

• Bounding schemes are applied in a hierarchical man-
ner. The mere interval bounding is estimated for all
optimizers. If the interval bound fails to eliminate
the box, the centered form bounding is performed for
the CF optimizer. Likewise, for the LDB/QFB op-
timizer, if the interval bound fails, the naive Taylor

model bound[6] based on interval evaluation of the
Taylor polynomial is determined, and only when it
fails, the LDB bound is determined. If it also fails
and the quadratic part of the local Taylor model of
the function is positive definite, the QFB bounding is
performed.

• When the LDB bound fails to eliminate the box, how-
ever, often the box can be reduced before bisection.

• The cutoff value is updated. The mid-point value es-
timate is conducted for all optimizers.

• For the LDB/QFB optimizer, the linear and quadratic
parts of the local Taylor model are utilized to guess a
candidate for the global minimizer to obtain a better
cutoff value estimate.

16



-0.4

-0.2

 0

 0.2

 0.4

-1.5 -1 -0.5  0  0.5  1  1.5

Figure 5: The fifth iterate of mapping of a trapping region of the Henon map H using Taylor model enclosures.

Table 2: Performance of various optimizers.
f(x) = 1 + x5 − x4 in [0, 1] Beale function fB in [−4.5, 4.5]2

IN CF LDB/QFB IN CF LDB/QFB
Total box processing steps 12471 145 17 3407 3285 353

Max number of active boxes 4044 11 3 236 234 52

Retained small boxes (< 10−6) 2591 4 1 25 25 3
LDB domain reduction steps – – 8 – – 108

4.1 A One Dimensional Polynomial
The first example problem is to search the minimum of the
polynomial

f(x) = 1 + x5 − x4

in [0, 1], suggested by R. Moore[8]. The function has a shal-
low minimum at x = 0.8, and looks rather innocent as shown
in Figure 6, but the dependency problem and the high or-
der of the polynomial prevents the mere interval bounding
method from being successful.

Table 2 summarizes the performance of the three optimiz-
ers. The Taylor model LDB/QDB optimizer eliminates all
sub domain boxes but the one containing the minimum in
17 steps, among which 8 steps are size reductions by LDB.
There are at most 3 active boxes kept in the whole opti-
mization process. On the other hand, the interval optimizer
requires a total of 12471 steps, and retains 2591 small boxes
(< 10−6).

The centered form optimizer performs better than the in-
terval optimizer, but cannot reach the performance of the
LDB/QFB optimizer. The sub domain boxes active in each
step are shown in Figure 6, and an example of LDB domain
reduction can be seen in the processing of the parent box in
step 5 to yield the bisected boxes appearing in steps 6 and 7.
As seen later in Figure 7, the LDB domain reduction works
favorably also in multidimensional cases.

4.2 The Beale Function
The next example is the Beale function[9]

fB(x1, x2) = (1.5 − x1(1 − x2))
2 +�

2.25 − x1(1 − x2
2)
�2

+
�
2.625 − x1(1 − x3

2)
�2

.

The problem is to find the minimum in the initial domain
[−4.5, 4.5] × [−4.5, 4.5] with verification. The function has
little dependency and the minimum 0 occurs at (3, 0.5), how-
ever the very shallow behavior of the function makes a ver-
ified global optimization task difficult.

The performance of the optimizers is summarized in Fig-
ure 7 and Table 2. Square expressions in fB are not utilized
to simplify the arithmetic. We observe no advantage in the
centered form optimizer compared to the interval optimizer.
On the other hand, the LDB/QFB optimizer significantly
outperformed both others because of more efficient box re-
jection and LDB domain size reduction.
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Figure 6: Global optimization of f(x) = 1 + x5 − x4 in [0, 1] (top left). Sub domain boxes for minimum search
are shown at each step: (top right) the interval, (bottom right) the centered form, and (bottom left) the
LDB/QFB optimizers.
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