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Abstract

The tools used to compute high-order transfer maps based on differential algebraic (DA) methods have recently been augmented by

methods that also allow a rigorous computation of an interval bound for the remainder. In this paper we will show how such methods

can also be used to determine rigorous bounds for the global extrema of functions in an efficient way. The method is used for the

bounding of normal form defect functions, which allows rigorous stability estimates for repetitive particle accelerator. However, the

method is also applicable to general lattice design problems and can enhance the commonly used local optimization with heuristic

successive starting point modification. The global optimization approach studied rests on the ability of the method to suppress the so-

called dependency problem common to validated computations, as well as effective polynomial bounding techniques. We review the

linear dominated bounder (LDB) and the quadratic fast bounder (QFB) and study their performance for various example problems in

global optimization. We observe that the method is superior to other global optimization approaches and can prove stability times

similar to what is desired, without any need for expensive long-term tracking and in a fully rigorous way.
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1. Introduction

In this paper we describe a practical method to rigorously
assess the long-term stability of storage rings and other
repetitive systems. The approach is based on methods of
rigorous global optimization and will be applied to
the study of the dynamics of the Tevatron at Fermilab.
The theoretical foundation of the stability estimate is the
method of normal forms [1,2] that allows to determine a
family of three approximate invariants I of the motion. The
defect of these invariants I, i.e. the quantity

d ¼ maxðIðMÞ � IÞ
e front matter r 2005 Elsevier B.V. All rights reserved.
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where M is the transfer map describing one revolution, can
be used to provide bounds for minimum stability. In fact, if
the distance of the outermost approximate invariant to the
disallowed region is a, then the number of iterations
necessary to reach this region is apparently at least a=d.
Thus, bounding d from above allows to assert stability, and
the sharpness of the bound directly determines the quality
of the stability estimate.
High-order map methods relating final and initial

conditions of phase space variables for one revolution of
the accelerator by the transfer map M have grown into a
very widely used tool since their inception [3]; many details
can be found in [2]. Recently, methods have been
developed that allow not only the computation of the
maps themselves, but also rigorous bounds for their
remainders [4–6]. As we shall illustrate, these methods
can also be used very beneficially for the problem of
rigorously finding the global maximum or minimum of a
function, and thus for the rigorous estimate of stability
time of the Tevatron.

www.elsevier.com/locate/nima
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In the following sections we will briefly outline general
ideas about rigorous global optimization and how they can
be enhanced using the tools to compute remainder bounds
for maps. We will illustrate the performance of these
methods with various examples, and then apply them to the
study of the Tevatron normal form defect problem. We will
arrive at a rigorous stability estimate for the Tevatron that
is practically relevant.

2. Rigorous global optimizers

Rigorous, validated, or verified global optimization
characterizes the attempt of finding bounds of the global
maximum or minimum of a sufficiently smooth function
over a given domain. This task is distinct from the widely
known and applied method of local optimization in that
not only a nearby local extremum is sought. Furthermore,
enclosures for the extrema and the points where they are
assumed are obtained in a fully mathematically rigorous
way, including the accounting of all effects of numerical
inaccuracy.

2.1. Interval-based methods

The simplest method for validated global minimization is
the interval branch-and-bound approach that successively
studies sub-boxes of the original domain and attempts to
prove that they cannot contain the minimum, upon which
they are discarded. Usually these algorithms are based on a
stack of boxes to be studied, which is initialized with the
original full domain, as well as a rigorous upper bound for
the minimum, the so-called cutoff, which is initialized with
the result of a function evaluation in interval arithmetic at
a suitably chosen point.

There are many variations used in practice, but the most
elementary approach is based on picking the oldest box
from the stack, evaluating the function on the center of the
box to possibly obtain an update for the cutoff, and
determining a lower bound of the function over the box
by interval evaluation. If this lower bound exceeds
the current cutoff, the box can be discarded; if it
does not, then the box will be split along its longest
direction and the two resulting boxes will be added to
the stack for further study. By executing all operations
in outward rounded interval arithmetic, full rigor of
the argument is retained. This is not the place to do justice
to the wide field of interval global optimization, but we
rather refer to some of the common references on the topic
[7–10].

Different from local optimization, the complexity of
which often scales polynomially in dimension, that of
global optimization can frequently grow exponentially with
dimension. This is exemplified by the function f n on
½�1; 1�n in n variables xi given by f ðx1; . . . ;xnÞ ¼

Pn
i¼1

cosðxi=2pÞ; apparently, each term in the sum assumes a
minimum for xi ¼ �

1
2
, so that there are 2n local minima.

While local optimizers will settle into one of these
depending on the starting point chosen, global optimizers
at the very least have to probe all of them.
Performing global optimization using interval tools can

introduce further complications. The two most important
ones are that
(1)
 Interval methods are known for the fact that the
resulting range bounds contain potentially significant
overestimation, depending on the complexity of the
function; this is frequently referred to as the dependency

problem.

(2)
 It is usually observed that as the global optimization

algorithm progresses, the number of boxes in the stack
that lie in the vicinity of a local minimum remains
nearly constant for a long time and thus all these
neighboring boxes have to be split in each step, slowing
down the process of elimination [11]; this is frequently
referred to as the cluster effect.
2.2. Control of the dependency problem

It was recognized in Ref. [12] that the computation of a
map with remainder bound of a functional dependency can
significantly reduce the dependency problem. The reason
for this simple yet very powerful observation is that the
dominating part of the description of the function is caught
by the Taylor coefficients. Thus, any operations on
representations of functions merely require floating point
arithmetic for the treatment of coefficients, and thus no
overestimation occurs (with the exception of small effects
due to the limited mantissa length and the resulting floating
point errors, which are rigorously accounted for [13]).
Overestimation does occur, as with all interval arithmetic,
within the arithmetic of the remainder bound; but the
influence of this remainder bound is many orders of
magnitude smaller than that of the coefficients and thus its
harm is reduced accordingly.
To illustrate this phenomenon, let us consider the

following simple one-dimensional function:

f ðxÞ ¼
X30
i¼0

ð�1Þi
x2i

ð2iÞ!

which is recognized to be the power series representation of
cosðxÞ up to order 60; over the domain ½0; 4p�, it represents
cosðxÞ to an accuracy of better than 10�15. In Fig. 1 we
show the overestimation of the true range of the function
(which is assumed to be that of cosðxÞÞ for the naive
interval method, as well as the more advanced approaches
of mean value form and centered form (see for example
Ref. [9]) for domains of width 2�j for the values j ¼ 1; . . . ; 8
around x ¼ p=4. The results are compared with what is
obtained by first determining the map representation of the
function, and then evaluating the polynomial part of this
map representation in interval arithmetic. Apparently all
methods become sharper for larger j, but the sharpness of
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Fig. 1. Relative overestimation for the range bounding by the interval-,

mean value-, and centered form methods, as well as with maps with

remainders of orders 1, 2, 6, and 9 at x ¼ p=4.
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Fig. 2. Relative overestimation for the range bounding by the interval-,

mean value-, and centered form methods, as well as with maps with

remainders of orders 1, 2, 6, and 9 at x ¼ 2pþ p=4.
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the map approach is superior because the map representa-
tion has less dependency than the original problem.

Performing the same comparison again for
x ¼ 2pþ p=4, where the function has the same form except
that the dependency problem is more significant, we see
that the map approach provides a significant improvement,
as seen in Fig. 2. Indeed, the higher order map methods
achieve the same amount of overestimation as in the
previous case, while the interval-, centered form- and mean
value form methods suffer from overestimation due to the
dependency problem.

A substantially more detailed study of the behavior of
the method for many other cases can be found in Ref. [14].
2.3. The linear dominated bounder, LDB

As we saw, the map representation with remainder
bound can significantly reduce the dependency problem.
However, it is even possible to obtain sharper bounds yet
by replacing the interval evaluation of the polynomial part
with more sophisticated methods. In particular, we will in
the following study the so-called linear dominated bounder
(LDB) first introduced in Ref. [15]. It is based on using the
map representation to determine a linear function that is a
lower bound to the original function, and use this
linearization and simple linear constraint methods to
successively reduce the domain that can contain the
extremum.
Within the framework of validated global optimization,

after reducing the dependency problem with map methods
as shown above, this will now lead to a tool to effectively
reduce or eliminate boxes. While there is nothing that can
help the inherent exponential complexity of high-dimen-
sional problems, it will help improve practical performance
significantly. Given a domain D, we consider the repre-
sentation of the function f by a Taylor polynomial P and a
rigorous bound for the remainder I, which can be obtained
by the above-mentioned methods [4–6] such that

f ðxÞ 2 PðxÞ þ I for all x 2 D.

In case we are away from a stationary point, the linear part
of P will dominate the behavior of the representation. The
linear dominated bounder utilizes the linear part as a
guideline for iterative domain reduction to bound P.
Specifically, the algorithm is as follows.
LDB Algorithm
(1)
 Re-expand P at the mid-point c of D, call the resulting
polynomial Pm and the centered domain D1.
(2)
 Make the linear coefficients Li of Pm all positive by
flipping coordinate directions as necessary; call the
resulting polynomial Pþ.
(3)
 In step n, compute interval bounds of the linear ðI1Þ
and nonlinear ðIhÞ parts of Pþ in Dn. The minimum is
then bounded by ½M ;M in�:¼I1 þ Ih. If applicable,
lower M in by the current cutoff, the actual function
value at the lower endpoints, and that at the midpoint.
(4)
 Let d ¼ widthð½M ;M in�Þ. If d lies below a termination
value, stop. Otherwise, if Lia0; the domain containing
the minimum can be restricted to Dnþ1;i:¼
minðDn;i þ d=Li; D̄n;iÞ. Re-expand Pþ at the mid-point
c of Dnþ1. Prepare the new coefficients Li, and continue
with step 3.
Any errors associated with re-expansion and estimating
point values are included in the remainder error bound
interval. If f is monotonic, the exact bound is often
enclosed with high accuracy. If only a threshold cutoff test
is needed, the resulting domain reduction or elimination is
often very effective.
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We now consider the performance of the LDB approach
for the problem discussed in the previous sections. Figs. 3
and 4 contain the behavior of Figs. 1 and 2 on the left, as
well as the results of using the LDB bounder on the right.
Observe that even in a high-dependency case, the LDB
bounder significantly outperforms the other methods,
achieving accuracies that exceed those of conventional
interval-based tools by 10 orders of magnitude.

2.4. The quadratic fast bounder, QFB

The natural next idea of the bounding of the polynomial
is to explicitly bound the quadratic part of P. This will help
in cases where the linear part alone is not dominating, for
example, in the proximity of a local minimizer. Exact range
bounding of a general quadratic polynomial has a
complexity that scales exponentially with dimension and
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6, and 9 at x ¼ p=4 for naive interval evaluation of P (left) and using the LD
can thus be expensive. A preliminary scheme of a quadratic
dominated bounder (QDB) is discussed in Ref. [15], and a
more advanced method as well as the bounder QFB that
will be discussed in the following is introduced in Ref. [16].
However, obtaining a lower bound of the quadratic

polynomial near a local minimizer, which is the most
important problem in global optimization, turns out to be
much simpler. Indeed, in sufficient proximity of an isolated
interior minimizer of the function f, the Hessian of f is
positive definite, and so the purely quadratic part of a
representation Pþ I that locally encloses f also has a
positive definite Hessian matrix H. The actual definiteness
can be tested in a validated way using the common LDL or
extended Cholesky decomposition [16]. The quadratic fast
bounder (QFB) provides a lower bound of Pþ I cheaply
when the purely quadratic part is positive definite. It is
based on the following observation.
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Given the quadratic form

QðxÞ ¼ 1
2

xt �H � xþ a � xþ b

where H is symmetric, we determine the so-called Ordered
LDL (OLDL) Decomposition (L: lower diagonal with unit
diagonal, D: diagonal) of H as follows:
(1)
 Pre-sort rows and columns by the size of their diagonal
elements.
(2)
 Successively execute conventional LtDL decomposition
step in interval arithmetic, beginning by representing
every element of H by a thin interval; in step i:
(a) If lðDði; iÞÞ40 proceed to the next row and column.
(b) If uðDði; iÞÞo0, exchange row and column i with

row and column i þ 1, i þ 2; . . . If a positive
element is found, proceed as in step (a). If none is
found, stop.
Similar to what is done in conventional Cholesky or LDL
decomposition, it is useful to give careful consideration to
the case in which 0 2 Dði; iÞ, or Dði; iÞ is too small. In this
case, it is useful to apply a small correction C to H, i.e. to
study H þ C instead of H, such that all elements of D are
clearly positive or negative. As is typical also in non-
validated LDL decomposition, C is usually chosen to be
diagonal, and jCj is lumped into the remainder bound of
the original problem. The resulting LDL decomposition
has the important property that sufficiently near a local
minimizer, D will contain only positive elements that are
sufficiently away from zero.

In the wider vicinity of a local minimum, the method
may still possibly determine that all diagonal terms of D

can be proven positive, in which case positive definiteness is
asserted. If this is not the case, at least the upper part where
Dði; iÞ40 will describe a large positive semi-definite sub-
space.

In the following we study the case in the near proximity
of a minimizer where the OLDL decomposition succeeds to
assert that H is positive definite. We will now use that
knowledge to determine a sharp lower bound for f . Let
f 2 Pþ I over D. We decompose the polynomial P into
two parts and write

Pþ I ¼ ðP�QÞ þ I þQ.

Then a lower bound for Pþ I is obtained as

lðPþ IÞ ¼ lðP�QÞ þ lðQÞ þ lðIÞ. (1)

For the purpose of the QFB algorithm, we choose

Q ¼ Qx0
¼ 1

2
ðx� x0Þ

tHðx� x0Þ (2)

with some suitable x0 2 D.
Since H is positive definite, lðQx0

Þ ¼ 0, and the value 0 is
attained (at x ¼ x0). The remaining P�Qx0

does not
contain pure quadratic terms anymore, but consists of
linear as well as third and higher order terms P42. If x0 is
chosen to be the minimizer of the quadratic part P2 of P in
D, then x0 is also a minimizer of the remaining linear part
(a consequence of the Kuhn–Tucker conditions), and so
the lower bound estimate (1) is optimally sharp. Thus, by
choosing x0 sufficiently close to the minimizer in D of P2,
the contribution of P2 �Qx0

to the lower bound can
become arbitrarily small.
A simple and efficient way to determine a sequence x

ðnÞ
0

of candidates for x0 is based on determining the ‘‘feasible
descent direction’’

g
ðnÞ
i ¼

�
qQ

qxi

if x
ðnÞ
i inside

min �
qQ

qxi

; 0

� �
if x

ðnÞ
i on right

max �
qQ

qxi

; 0

� �
if x

ðnÞ
i on left

8>>>>>>><
>>>>>>>:

and to move in the direction of gðnÞ until we hit the
bounding box or a one-dimensional quadratic minimum
along the line. The method is very fast, can cover large
ground per step, and in the terminology of constrained
optimization, can change the set of active constraints very
quickly. As a result, we obtain an inexpensive third order
cutoff test that requires very few, if any, iterations to
determine a useful x0.

2.5. The validated global optimizer, COSY-GO

For the example problems of validated global optimiza-
tion in the next sections, we apply three branch-and-bound
methods available in the code COSY-GO [17]. The first one
is the optimizer utilizing the LDB and QFB algorithms. We
compare the performance with two other optimizers; one
based on mere interval bounding (IN) and one based on
bounding with centered form (CF). The subdomain box list
management is performed in the same way for all three
optimizers. At each step in which a subdomain is being
studied for possible elimination, the following tasks are
performed:
(1)
 A lower bound l of the function is obtained using
various bounding schemes in a hierarchical manner. If
the lower bound is above the cutoff value, the box is
eliminated; if not, the box is bisected.
(a) Interval bounding of the polynomial P is utilized

for all optimizers; if it fails to eliminate the box,
then additional tests are performed.

(b) For the CF optimizer, centered form bounding is
performed. For the COSY-GO optimizer, as a first
test the polynomial part is evaluated in interval
arithmetic. When it fails to eliminate the box, the
LDB bounding and possible domain reduction is
executed. If it also fails to eliminate the box, and if
the quadratic part of the polynomial P is positive
definite, QFB bounding is performed.
(2)
 The cutoff value is updated using various schemes.
(a) The conventional midpoint test is performed for all

optimizers.



ARTICLE IN PRESS
M. Berz et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 1–106
(b) For the COSY-GO optimizer, the linear and
quadratic parts of P are utilized to obtain a
potential cutoff update. In particular, if the
quadratic part of the polynomial is positive definite,
the minimizer of the quadratic polynomial is tested.
If the quadratic part is not positive definite, the

minimizer of the quadratic part in the direction of
the negative gradient is tested.
Table 1

Performance of various local optimizers for finding the minimum of the

Rosenbrock function in ½�1:5; 1:5�2 from the starting point ð�1:2; 1:0Þ

LMDIF Simplex Anneal

Number of steps 100; 000 225 100; 000
Error in f ðx; yÞ 1� 10�10 2� 10�13 3� 10�4

Error in ðx; yÞ 2� 10�5 4� 10�7 6� 10�3
3. Validated global optimization—illustrative examples

In the following, we study the performance of the
various versions of validated optimizers discussed above
for some illustrative examples. We also compare with the
performance of non-validated local optimization.

3.1. The Rosenbrock function

As a first example, we consider a relatively benign-
looking function of two variables that contains a single
local minimum; but the minimum occurs along a long and
very shallow parabolic valley. This function originally
proposed by Rosenbrock has the form

f Rðx; yÞ ¼ 100ðy� x2Þ
2
þ ð1� xÞ2

and it apparently assumes its minimum of 0 at
ðx; yÞ ¼ ð1; 1Þ.

We study the function over the domain ½�1:5; 1:5�2,
where its values range from the minimum 0 to more than
1400 near the point ð�1:5;�1:5Þ. Fig. 5 shows a three-
dimensional rendering of the function and the seemingly
innocent parabolic valley generated by the first term, as
well as a set of logarithmic contour lines for function values
0:1� 10i=2 for i ¼ 1; . . . ; 13, revealing the substructure of
the parabolic valley generated by the second term.

This function causes difficulties even for powerful
conventional local minimizers because as soon as the
optimizer is probing not exactly inside the valley, the
direction of steepest descent is nearly perpendicular to the
valley and hence in the almost completely wrong direction.
Table 1 shows the performance of various tried-and-true
optimizers in COSY [18,19], the LMDIF algorithm based
on steepest descent with various enhancements, the
-1.5 -1 -0.5 0 0.5 1 1.5x -1.5
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-0.5
0
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Fig. 5. The Rosenbrock function; three-dimensional rende
Simplex algorithm which is particularly powerful for non-
smooth problems, as well as the Anneal approach based on
stochastic search of the global minimum by simulated
annealing. The starting point was chosen at ð�1:2; 1:0Þ,
which is near the valley but on the opposite side of the true
minimum. For LMDIF and Simplex, an accuracy tolerance
of 10�12 and a maximum number of steps of 100; 000 was
specified, and Anneal was given a total number of 100; 000
annealing steps. Table 1 shows the performance of the
three non-validated optimizers. It can be seen that the
usually quite powerful LMDIF algorithm performs rather
poorly and is in this example significantly outperformed by
the Simplex algorithm.
Now we utilize various validated global optimization

tools to study the problem. In particular, we use the
common Moore–Skelboe algorithm and determine ranges
of the function by the mere interval evaluation method,
and also the usually more accurate centered form method.
From the perspective of interval methods, the function has
a rather benign form with little dependency, and the
squares that appear in the two terms can even be handled
exactly. We compare these methods with the COSY-GO
optimizer. Table 2 shows the performance of these three
methods. It is apparent that for COSY-GO, the number of
processing steps, i.e. the number of boxes considered,
compares very favorably even with the performance of the
best non-validated optimizer, aside from the fact that it of
course determines a rigorous global optimum. On the other
hand, the Interval and CF methods each require approxi-
mately one order of magnitude more steps, but still
compare rather favorably to LMDIF and Anneal. It is
also interesting to note that in a significant number of
cases, LDB could reduce the size of a box under
consideration without actually fully eliminating it.
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Table 2

Performance of various validated global optimizers for finding the

minimum of the Rosenbrock function in ½�1:5; 1:5�2

IN CF COSY-GO

Total box

processing steps

1325 1325 143

Max number of

active boxes

47 47 9

Retained small

boxes ðo10�6Þ

15 15 1

LDB domain

reduction steps

– – 43
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We now study in more detail the performance of the
validated global optimizers. To this end we show all boxes
that were studied in the process within the original domain
box. Fig. 6 shows these for both the interval- and COSY-GO
methods. Apparently, both methods successfully eliminate
relatively large boxes away from the minimizer, while the
boxes tend to get smaller and smaller as the minimizer is
approached; however, the size of the boxes rejected by
COSY-GO is significantly larger.
On the right of Fig. 6 we show the number of currently

active boxes, as well as the value of the current upper
bound of the minimum, the so-called cutoff value. For a
2 3
4
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e interval and the LDB/QFB optimizers. Left: subdomain boxes studied.
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Table 5

Performance of various validated global optimizers for finding the

minimum of the Beale function in ½�4:5; 4:5�2

IN CF COSY-GO

Total steps 3407 3285 353

Max boxes 236 234 52

Retained boxes 25 25 3

LDB reductions – – 108

Table 6

Performance of the validated global optimizer COSY-GO for a generic

normal form defect function

Dimension CPU time (s) Max list Total boxes

2 5.747 11 31

3 38.49 44 172

4 346.9 357 989

5 3970 2248 6641

6 57,842 17,241 49,821
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long time, the interval method maintains a nearly constant
number of around 35 active boxes, while COSY-GO never
require more than 10 active boxes, and soon keeps only one
or two.

3.2. The Beale function

The next example is the Beale function [20]

f Bðx1;x2Þ ¼ ð1:5� x1ð1� x2ÞÞ
2
þ ð2:25� x1ð1� x2

2ÞÞ
2

þ ð2:625� x1ð1� x3
2ÞÞ

2.

The problem is to find the minimum in the initial domain
½�4:5; 4:5� � ½�4:5; 4:5�; one easily verifies that the function
assumes the minimum 0 at ð3; 0:5Þ. Fig. 7 shows the
behavior of the function, exhibiting a nearly flat extended
valley containing the minimum. However, logarithmic
contour lines of levels 0:1� 10i=2 for i ¼ 1; . . . 13 show a
subtle substructure of the valley, having a trench-like shape
near the minimizer ð3; 0:5Þ, but another trench of small
function values in the upper left quadrant.

In particular this additional ‘‘trench’’ of small function
values makes optimization difficult. We begin the study by
using the three default optimizers in COSY, with an
accuracy tolerance of 10�12 and a maximum of 100; 000
iterations. Starting at ðx; yÞ ¼ ð4;�4Þ yields reasonable
convergence in under 1000 steps for both LMDIF and
Simplex, as shown in Table 3. On the other hand, the
situation changes drastically when using as a starting value
the point ðx; yÞ ¼ ð�4; 4Þ. In this case, the local optimizers
get caught by the wrong trench of the objective function,
and fail to get near the global minimum. The simulated
annealing tool still succeeds in finding a reasonable
approximation of the global minimum; the details of the
performance are summarized in Table 4.

On the other hand, all validated global optimizers have
no difficulty finding the global minimum accurately.
Table 3

Performance of various local optimizers for finding the minimum of the

Rosenbrock function from the starting point ð4;�4Þ in ½�4:5; 4:5�2

LMDIF Simplex Anneal

Number of steps 825 123 100; 000
Error in f ðx; yÞ 7� 10�13 3� 10�13 3� 10�2

Error in ðx; yÞ 2� 10�6 4� 10�7 8� 10�2

Table 4

Performance of various local optimizers for finding the minimum of the

Beale function from the starting point ð�4; 4Þ in ½�4:5; 4:5�2

LMDIF Simplex Anneal

Number of

steps

100; 000 100; 000 100; 000

Error in f ðx; yÞ 6� 10�1 4� 100 1� 10�4

Error in ðx; yÞ 2� 101 5� 100 3� 10�2
Significant differences exist, however, in the speed with
which this is achieved; the results are summarized in Fig. 8
and Table 5. Square expressions in f B are executed as
multiplications.
We observe no significant advantage in the CF optimizer

compared to the interval optimizer, both of which maintain
a list of about 60 active boxes for an extended time. On the
other hand, the COSY-GO optimizer significantly out-
performed both others because of more efficient box
rejection and LDB domain size reduction, and requires a
number of boxes comparable to the number of steps
needed for the local optimizers in the case of a favorable
initial condition.

4. Long-term stability of the Tevatron

We now return to the study of long-term stability of the
Tevatron storage ring at collision. We utilize the four-
dimensional map of lattice with parameters as described
and optimized by Snopok et al. [21]. To illustrate the
behavior of the normal form defect function, Fig. 9 shows
a two-dimensional projection in which the two normal
form radii are frozen at 5� 10�4, and the two normal form
angles moving from 0 to 2p. Already in these low-
dimensional projections it becomes apparent that the
functions have a large number of local minima and
maxima, which makes finding their global extrema difficult.
In order to assess the performance of the COSY-GO

global optimizer, we attempt a comparison with the
validated global optimizer GLOBSOL [7]. As it turned
out, the very high demands on the sharpness of the upper
bound of the maximum of the normal form defect function
did not allow the use of GLOBSOL for the specific
problem at hand. So for the purpose of comparison, we
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chose a different, less demanding normal form defect
bounding problem based on the polynomials available at
bt.pa.msu.edu. In Tables 6 and 7 we show some parameters
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Fig. 8. Minimum search for the Beale function in ½�4:5; 4:5�2 by the interval,

studied. Right: number of active boxes and cutoff value as a function of step

Table 7

Performance of the validated global optimizer GLOBSOL for a generic

normal form defect function

Dimension CPU time (s) Max list Total Boxes

2 18,810 4723

3 4562; 896 –
describing the performance of COSY-GO and GLOBSOL
for subspaces of different dimensionality. GLOBSOL
succeeds to complete only the two-dimensional case in a
reasonable time, while COSY-GO succeeds to complete
even the six-dimensional case in similar time. For the two-
dimensional case, COSY requires much less than 1% of the
CPU time of GLOBSOL. The maximum list length and
total number of boxes studied are rather manageable
(Table 8).
We next apply COSY-GO to the realistic Tevatron

problem. The one sigma emittance of the beam translates
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Table 8

Global bounds obtained for six regions in normal form space for the Tevatron. Also computed are the guaranteed minimum transversal iterations

Region Boxes studied CPU time (s) Bound Transversal iterations

½0:2; 0:4� � 10�4 82; 930 30; 603 0:859� 10�13 2:3283� 108

½0:4; 0:6� � 10�4 82; 626 30; 603 0:587� 10�12 3:4072� 107

½0:6; 0:9� � 10�4 64; 131 14; 441 0:616� 10�11 4:8701� 106

½0:9; 1:2� � 10�4 73; 701 13; 501 0:372� 10�10 8:0645� 105

½1:2; 1:5� � 10�4 106; 929 24; 304 0:144� 10�9 2:0833� 105

½1:5; 1:8� � 10�4 111; 391 26; 103 0:314� 10�9 0:95541� 105
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into a normal form radius of approximately 0:12� 10�4.
We study the magnitude of the normal form defect bound
for various different radius bands, and determine the ratio
of width of band to normal form defect bound, which gives
the minimum transversal iterations for the band. Fig. 9
shows the result of the calculations; it becomes apparent
that it requires more than 2:7� 108 revolutions for a
particle starting with a normal form radius below 0:2�
10�4 to be lost.
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