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with Deep Space Maneuvers Using Differential

Algebra
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Abstract In this chapter, differential algebra is used to globally optimize multi-

gravity assist interplanetary trajectories with deep space maneuvers. A search space

pruning procedure is adopted, and the trajectory design is decomposed into a

sequence of sub-problems. As far as differential algebra is used, the objective

function and the constraints are represented by Taylor series of the design variables

over boxes in which the search space is divided. Thanks to the polynomial repre-

sentation of the function and the constraints, a coarse grid can be used, and an

efficient design space pruning is performed. The manipulation of the polynomials

eases the subsequent local optimization process, so avoiding the use of stochastic

optimizers. These aspects, along with the efficient management of the list of boxes,

make differential algebra a powerful tool to design multi-gravity assist transfers

including deep-space maneuvers.
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List of Acronyms

DA Differential algebra

DSM Deep space maneuver

FP Floating point

GASP Gravity assist space pruning

MGA Multi-gravity assist

8.1 Introduction

The preliminary design of impulsive interplanetary transfers is usually carried out

in the frame of the patched-conics approximation. Within this context, different

conic arcs are linked together to define the whole transfer trajectory. The patched-

conics method allows the designer to define multiple gravity assist (MGA)

transfers. MGA trajectories are usually made up of a sequence of planet-to-planet

transfers in which the spacecraft exploits each planet encounter to achieve a

velocity change. This method is well established in astrodynamics, and several

past missions have used MGA trajectories to reach both inner and outer planets.

In the last two decades, mission designers have exploited the benefits of

approaching complex MGA problems from a global optimization standpoint.

Nowadays, the aim of the trajectory design is not only to find a solution, but also

to find the best solution in terms of propellant consumption, while still achieving the

mission goals. In the formalism of global optimization, this means that the problem

consists in looking for the optimal solution in those regions of the search space that

satisfy the problem constraints. Unfortunately, the MGA problems are characterized

by an objective function with a large number of clustered minima, which are

prevalently associated to the complex relative motion of the planets and to the

nonlinearities governing the simple Kepler problem. This causes local optimization

methods to converge to local minima. Hence, despite their efficiency, they should be

avoided when looking for the global minimum of a MGA problem, at least in the first

stage of the search process.

Extensive work has been devoted to address the global optimization of MGA

transfers with impulsive maneuvers. This is mainly done by applying stochastic

[1, 2, 3], branch and bound [4], meta-model-based [5], and combined [6] methods.

Although some of them showed good performances, they tend to be computation-

ally inefficient if not tailored on the MGA problem and on the structure of its

search space.

The gravity assist space pruning (GASP) is a global optimization method that

addresses this issue. GASP relies on a systematic evaluation of the objective and

constraint functions on a grid of points distributed over the search space. The

constraints are used to efficiently prune the search space [7]. Thanks to the

particular class of interplanetary transfers solved by GASP, the planet-to-planet

arcs making up the whole transfer are treated independently, and forward and
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backward constraining is applied. This way, the search space is preprocessed, and

global optimization algorithms are employed in the reduced domain [8].

The class of MGA transfers formulated above does not cover all possible

trajectories for a chemical-propelled spacecraft. An important option to take into

account is the introduction of deep-space maneuvers (DSM). DSM are impulsive

maneuvers, usually carried out between two planet encounters to improve the

performances of a trajectory. When DSM are included into a MGA transfer, the

resulting trajectory is usually referred to as MGA-DSM.

Unfortunately, pruning the solution space of MGA-DSM transfers is not trivial.

First of all, the increased number of variables and the larger search space inhibits

the use of a systematic approach to the pruning process. Moreover, local minima

tend to proliferate, which makes difficult the detection of big prunable regions.

Thus, it is necessary to rethink the whole pruning process implemented in GASP,

and to reformulate it when DSM are included.

Differential algebra (DA) is proposed in this chapter as a valuable tool to address

this task. Differential algebra serves the purpose of automatic differentiation, i.e.,

the accurate computation of the derivatives of functions in a computer environment.

This goal is actually achieved by replacing the classical implementation of the real

algebra with the proper implementation of a new algebra based on Taylor

polynomials. Given a generic function f of v variables, the Taylor expansion of f
up to any desired order k can be easily obtained from a computer algorithm that

implements its evaluation.

The main idea behind the introduction of DA techniques into the pruning process

is the substitution of the pointwise evaluation of the constraints, typical of GASP,

with the computation of their Taylor expansions with respect to the design

variables. The Taylor expansions are used to approximate the functions over

boxes of the search space, and polynomial bounders are then exploited to estimate

their ranges within each box. Consequently, the pointwise approach proposed in

GASP can be substituted by a sampling process relying on box samples. This results

in the possibility of enlarging the grid for the domain discretization, and reducing

considerably the computational burden.

The chapter is organized as follows. A short description of the method underly-

ing GASP is given in Sect. 8.2. Then, the implementation of a DA-based GASP

algorithm is presented in Sect. 8.3. The introduction of DSM is addressed in Sect.

8.4. The performances of the resulting algorithm are assessed in Sect. 8.5, and some

final remarks conclude the chapter.

8.2 Gravity Assist Space Pruning

An MGA transfer is modeled in GASP as a sequence of conic arcs, each patched to

the subsequent one by a powered gravity assist maneuver. Consequently, a transfer

involving n planets is a n-dimensional problem, as n epochs are needed to identify

the position of the planets at each encounter. The main idea behind GASP is to split
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the whole trajectory in its elementary arcs. With reference to Fig. 8.1, if Pi and Ti,
i ¼ 1; . . . ; n, are used to denote the planets and the epochs of the corresponding

encounters, respectively, the arc connecting Pi to Pi + 1 can be treated as a two-

dimensional subproblem with variables Ti and Ti + 1.

For each subproblem, three constraints are imposed:

• Maximum DV at departure (first arc only) and arrival (last arc only).

• Maximum DV at gravity assist.

• Minimum pericenter radius at gravity assist.

These constraints can be profitably used to prune the search space. Consider, as

an example, the first two arcs of an MGA transfer. These are characterized in the

(T1, T2) and (T2, T3) spaces, respectively (see Fig. 8.2). A uniform grid of points is

built to sample each of the search spaces. For each point in (T1, T2), the constraints
of the P1–P2 transfer are evaluated. If any constraint is violated, the point is pruned

Fig. 8.1 Reduction of the MGA transfer to a cascade of two-dimensional subproblems

Fig. 8.2 Constraint propagation mechanism in GASP
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away, together with all its subsequent combinations with the remaining epochs.

In particular, if an entire row corresponding toT2 ¼ T2 yields unfeasible constraints

in (T1, T2), the entire column corresponding to T2 ¼ T2 in (T2, T3) is pruned away.

Similar statements hold for the subsequent arcs. This process is called forward

constraint propagation. Analogously, a backward constraint propagation can be

implemented. The final result is a reduced search space including only feasible

regions, where optimization tools are run. The reduced dimension of the search

space improves the performances of the optimization algorithms (the reader may

refer to [7, 8] for details).

8.3 Gravity Assist Space Pruning with Differential Algebra

The use of differential algebra has been proposed in [9] to improve the

performances of GASP. In the DA-based implementation of GASP, the search

space is split into boxes, which are processed in place of grid points. More

specifically, the point-wise evaluation of the constraint functions is substituted by

the computation of their Taylor expansion over the sampling boxes. A polynomial

bounder is then used to estimate the ranges of the functions within each box and to

prune away unfeasible boxes. The formulation of the algorithm GASP into the DA

framework is briefly described in this section. The reader may refer to [9] for

additional details.

8.3.1 Notes on Differential Algebra

Differential algebra finds its origin in the attempt to solve analytical problems by an

algebraic approach [10]. Historically, the treatment of functions in numerics has

been based on the treatment of numbers, and the classical numerical algorithms are

based on the mere evaluation of functions at specific points. DA techniques rely on

the observation that it is possible to extract more information on a function than its

mere values. The basic idea is to bring the treatment of functions and the operations

on them to the computer environment in a similar way as the treatment of real

numbers. Referring to Fig. 8.3, consider two real numbers a and b. Their transfor-
mation into the floating-point representation, a and b, respectively, is performed to

operate on them in a computer environment. Then, given any operation∗ in the set

of real numbers, an adjoint operation ⊛ is defined in the set of floating-point (FP)

numbers so that the diagram in Fig. 8.3 commutes (The diagram commutes

approximately in practice due to truncation errors.). Consequently, transforming

the real numbers a and b into their FP representation and operating on them in the

set of FP numbers returns the same result as carrying out the operation in the set of

real numbers and then transforming the achieved result in its FP representation.
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In a similar way, let us suppose two k-differentiable functions f and g in v
variables are given. In the framework of differential algebra, the computer operates

on them using their k-th order Taylor expansions, F and G, respectively. Therefore,
the transformation of real numbers in their FP representation is now substituted by

the extraction of the kth order Taylor expansions of f and g. For each operation in

the space of k-differentiable functions, an adjoint operation in the space of Taylor

polynomials is defined so that the corresponding diagram commutes, i.e., extracting

the Taylor expansions of f and g and operating on them in the space of Taylor

polynomials returns the same result as operating on f and g in the original space and
then extracting the Taylor expansion of the resulting function.

The straightforward implementation of differential algebra in a computer allows

to compute the Taylor coefficients of a function up to a specified order k, along with
the function evaluation, with a fixed amount of effort. The Taylor coefficients of

order k for sums and product of functions, as well as scalar products with reals, can

be computed from those of summands and factors; therefore, the set of equivalence

classes of functions can be endowed with well-defined operations, leading to the

so-called truncated power series algebra [11, 12]. Similarly to the algorithms for

floating-point arithmetic, the algorithms for functions follow, including methods to

perform composition of functions, to invert them, to solve nonlinear systems

explicitly, and to treat common elementary functions [10, 13]. In addition to

these algebraic operations, the DA framework is endowed with differentiation

and integration operators, therefore finalizing the definition of the DA structure.

The differential algebra sketched in this section is implemented in the software

COSY-Infinity [14].

For the sake of a more comprehensive illustration of the DA basics, the next

section introduces the simplest nontrivial differential algebra for the first-order

expansion of univariate functions. The reader can refer to [10] for its extension to

the arbitrary order expansion of multivariate functions.

∗

T

T
f ∗ g

∗

P

P

a, b ∈ R f, ga, b ∈ FP

a ∗ b a  ∗  b F  ∗  G

F, G

Fig. 8.3 Analogy between the floating-point representation of real numbers in a computer

environment (left figure) and the introduction of the algebra of Taylor polynomials in the

differential algebraic framework (right figure)
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8.3.1.1 The Minimal Differential Algebra

Consider all ordered pairs (q0, q1), with q0 and q1 real numbers. Define addition,

scalar multiplication, and vector multiplication as follows:

ðq0; q1Þ þ ðr0; r1Þ ¼ ðq0 þ r0; q1 þ r1Þ;
t � ðq0; q1Þ ¼ ðt � q0; t � q1Þ;

ðq0; q1Þ � ðr0; r1Þ ¼ ðq0 � r0; q0 � r1 þ q1 � r0Þ:
(8.1)

The ordered pairs with the above arithmetic are called 1D1. The multiplication of

vectors is seen to have (1, 0) as the unity element. The multiplication is commuta-

tive, associative, and distributive with respect to addition. Together, the three

operations defined in Eq. (8.1) form an algebra. Furthermore, they form an exten-

sion of real numbers, as ðr; 0Þ þ ðs; 0Þ ¼ ðr þ s; 0Þ and (r, 0) �(s, 0) ¼ (r �s, 0), so
that the reals are included.

The multiplicative inverse of the pair (q0, q1) in 1D1 is

ðq0; q1Þ�1 ¼ 1

�q0
;� q1

q20

� �
; (8.2)

which is defined for any q0 6¼0.

One important property of this algebra is that it has an order compatible with its

algebraic operations. Given two elements (q0, q1) and (r0, r1) in 1D1, it is defined

ðq0; q1Þ< ðr0; r1Þ if q0 < r0 or ðq0 ¼ r0 and q1<r1Þ;
ðq0; q1Þ> ðr0; r1Þ if ðr0; r1Þ < ðq0; q1Þ;
ðq0; q1Þ¼ ðr0; r1Þ if q0 ¼ r0 and q1 ¼ r1:

(8.3)

As for any two elements (q0, q1) and (r0, r1) only one of the three relation holds, 1D1

is said totally ordered. The order is compatible with the addition and multiplication;

for all (q0, q1), (r0, r1), (s0, s1) ∈ 1D1, it follows (q0, q1) < (r0, r1) ) ðq0; q1Þ
þðs0; s1Þ<ðr0; r1Þ þ ðs0; s1Þ , and (s0, s1) > (0, 0) ¼ 0 ) (q0, q1) �(s0, s1) <
(r0, r1) �(s0, s1).

The number d ¼ (0, 1) has the interesting property of being positive but smaller

than any positive real number; indeed (0, 0)< (0, 1)< (r, 0)¼ r. For this reason d is
called an infinitesimal or a differential. In fact, d is so small that its square vanishes.

Since for any (q0, q1) ∈1D1

ðq0; q1Þ ¼ ðq0; 0Þ þ ð0; q1Þ ¼ q0 þ d � q1; (8.4)

the first component is called the real part and the second component the differential

part.
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The algebra in 1D1 becomes a differential algebra by introducing a map ∂ from

1D1 to itself, and proving that the map is a derivation. Define ∂ : 1D1 ! 1D1 by

@ðq0; q1Þ ¼ ð0; q1Þ: (8.5)

Note that

@fðq0; q1Þ þ ðr0; r1Þg ¼ @ðq0 þ r0; q1 þ r1Þ ¼ ð0; q1 þ r1Þ
¼ ð0; q1Þ þ ð0; r1Þ ¼ @ðq0; q1Þ þ @ðr0; r1Þ

(8.6)

and

@fðq0; q1Þ � ðr0; r1Þg ¼ @ðq0 � r0; q0 � r1 þ r0 � q1Þ ¼ ð0; q0 � r1 þ r0 � q1Þ
¼ ð0; q1Þ � ðr0; r1Þ þ ð0; r1Þ � ðq0; q1Þ
¼ @fðq0; q1Þg � ðr0; r1Þ þ ðq0; q1Þ � @fðr0; r1Þ:g

(8.7)

This holds for all (q0, q1), (r0, r1)∈ 1D1. Therefore, ∂ is a derivation and (1D1, ∂) is
a differential algebra.

The most important aspect of 1D1 is that it allows the automatic computation of

derivatives. Assume to have two functions f and g and to put their values and their
derivatives at the origin in the form (f(0), f 0(0)) and (g(0), g0(0)) as two vectors in

1D1. If the derivative of the product f �g is of interest, it has just to be looked at the
second component of the product (f(0), f 0(0)) �(g(0), g0(0)), whereas the first

component gives the value of the product of the functions. Therefore, if two

vectors contain the values and the derivatives of two functions, their product

contains the values and the derivatives of the product function. Defining the

operator [ ] from the space of differential functions to 1D1 via

½ f � ¼ ðf ð0Þ; f 0ð0ÞÞ; (8.8)

it holds

½ f þ g� ¼ ½ f � þ ½g�;
f � g½ � ¼ ½ f � � ½g� (8.9)

and

1=g½ � ¼ ½1�=½g� ¼ 1=½g� (8.10)

by using (8.2). This observation can be used to compute derivatives of many kinds

of functions algebraically by merely applying arithmetic rules on 1D1, beginning

from the value and the derivative of the identity function ½x� ¼ ðx; 1Þ ¼ xþ dx .
Consider the example
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f ðxÞ ¼ 1

xþ ð1=xÞ (8.11)

and its derivative

f 0ðxÞ ¼ ð1=x2Þ � 1

ðxþ ð1=xÞÞ2 : (8.12)

The function value and its derivative at the point x ¼ 3 are

f ð3Þ ¼ 3

10
; f 0ð3Þ ¼ � 2

25
: (8.13)

Evaluating the function (8.11) in the DA framework at ð3; 1Þ ¼ 3þ dx yields

f ðð3; 1ÞÞ ¼ 1

ð3; 1Þ þ 1=ð3; 1Þ ¼
1

ð3; 1Þ þ ð1=3;�1=9Þ
¼ 1

ð10=3; 8=9Þ ¼
3

10
; � 8

9
=
100

9

� �
¼ 3

10
;� 2

25

� �
:

(8.14)

Thus, the real part of the result is the value of the function at x ¼ 3, whereas the

differential part is the value of the derivative of the function at x¼ 3. This is simply

justified by applying the relations (8.9) and (8.10).

½ f ðxÞ� ¼ 1

xþ 1=x

� �
¼ 1

½xþ 1=x�
¼ 1

½x� þ ½1=x� ¼
1

½x� þ 1=½x�
¼ f ð½x�Þ:

(8.15)

The method can be generalized to treat common intrinsic functions.

8.3.2 Representation of Objective and Constraint Functions

The evaluation of the objective and constraint functions in MGA transfers involves

solving implicit equations, which become parametric when their Taylor expansion

in the design variables is of interest. Three implicit equations have to be solved in

the model adopted. Two of them already appear in simple planet-to-planet transfers.

These are illustrated with a practical example in the following. Let us consider the

transfer from planet P1 to planet P2 sketched in Fig. 8.4.

The objective function for this problem is the overall DV; this can be evaluated

by using two design variables. A common choice is selecting the departure epoch
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from P1, T1, and the time of flight, t12. The arrival epoch at P2 is T2 ¼ T1 þ t12, and
the position and velocity of P1 and P2 at both ends of the transfer (r1, v1 and r2, v2,

respectively) are obtained through their planetary ephemerides. Given r1, r2, and

t12, the corresponding Lambert’s problem is solved to compute the heliocentric

initial and final velocities, V1 and V2, respectively. The two velocity impulses

required to accomplish the transfer are DVi ¼ Vi � vi, i ¼ 1, 2.

Problem Statement. Let x¼ {T1, t12}, optimal two-impulse transfers from P1 to P2

are found by solving

min
x

DVðxÞ subject to DV1ðxÞ � DVmax
1

DV2ðxÞ � DVmax
2 ;

(8.16)

whereDV ¼ DV1 þ DV2 ¼ kDV1k þ kDV2k and DV1
max and DV2

max are maximum

allowed values for DV1 and DV2, respectively.

The evaluation of planetary ephemerides is required to compute ri and vi, for

i¼ 1, 2. An analytical ephemeris model is used, which is based on interpolating the

planetary orbital elements delivered by JPL’s Horizons system [15] with cubic

splines. The analytical model supplies the eccentricity of the planet orbit, e, and the
mean anomaly of the planet, M, at the evaluation epoch. Then, the Kepler equation

f ðEÞ ¼ E� e sinE�M ¼ 0 ; (8.17)

must be solved for the eccentric anomaly, E, which is necessary to evaluate the

planet position and velocity.

The second implicit equation appears in the solution of the Lambert problem for

V1 and V2. In Lambert’s problem, the initial position, final position, and the time of

flight between the two positions are given. Solving Lambert’s problem defines the

Keplerian orbit that connects the two position vectors in the given time, allowing

the calculation of the velocities at the initial and final positions. Lambert’s theorem

states that the time of flightDt ¼ t2 � t1 depends only on the semi-major axis a, the

V2

ΔV2

ΔV1

V1u2

u1

r2

r1

P2

P1

Fig. 8.4 A two-impulse planet-to-planet transfer
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sum of the two radii r1 + r2, and the distance between the initial and final positions,
i.e., the chord length c ¼ jjr2 � r1jj [16]. The time required for the transfer can be

written as

Dt ¼
ffiffiffiffiffi
a3

m

s
ð2kpþ ðE2 � e sinE2Þ � ðE1 � e sinE1ÞÞ; (8.18)

where E1 and E2 are the eccentric anomalies of the initial and final positions

respectively, measured on the connecting arc. The problem, now is to find the

correct values of a, E1, E2, and e that give the desired time of flight. As Lambert

stated, however, the transfer time depends only on the three quantities mentioned

earlier. The two radii and the chord length are already known from the problem

definition. The semi-major axis is the only unknown parameter. Thus, it is possible

to write the transfer time as a function of the semi-major axis only, or some other

parameters such as p or DE. In our approach, based on Battin’s algorithm [16], the

nonlinear equation to be solved is

AðxÞ � Dt ¼ 0; (8.19)

in which

AðxÞ ¼ gðxÞ3=2ðaðxÞ � sin aðxÞ � bðxÞ þ sinbðxÞÞ: (8.20)

The functions a(x) and b(x) are related to x via the relations

sin2
1

2
aðxÞ ¼ s

2gðxÞ sin
2 1

2
bðxÞ ¼ s� c

2gðxÞ ; (8.21)

with

gðxÞ ¼ s

2ð1� x2Þ ; (8.22)

and the semi-perimeter

s ¼ ðr1 þ r2 þ cÞ=2: (8.23)

Note that the relation between a and x is simply given by

a ¼ s

2ð1� x2Þ : (8.24)

Once Eq. (8.19) is solved, the initial and final heliocentric velocities of the

spacecraft are computed via algebraic and transcendental functions.
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The third implicit equation occurs when transfers with powered gravity assists

are considered. In a powered gravity assist, the spacecraft provides a tangential

impulse at the pericenter of the incoming hyperbola. Therefore, the planeto-centric

trajectory is made up of two arcs of hyperbola patched together (see Fig. 8.5).

The angle a, usually referred to as bending angle, between the incoming and the

outgoing asymptotic velocities, v1
in and v1

out, respectively, is related to the

pericenter radius via [8]

f ðrpÞ ¼ arcsin
a�

a� þ rp
þ arcsin

aþ

aþ þ rp
� a ¼ 0 ; (8.25)

where a� ¼ 1=ðvin1 � vin1Þ and aþ ¼ 1=ðvout1 � vout1 Þ . The angle a can be easily

computed from the two heliocentric arcs connected at the gravity assist. The

solution of the implicit equation (8.25) delivers the pericenter radius of the

planetocentric trajectory. The planetocentric velocities vp
in and vp

out at the

pericenter, corresponding to the incoming and outgoing hyperbolic arcs, respec-

tively, are computed using rp, v1
in, and v1

out. Thus, the magnitude of the impulsive

maneuver at the pericenter is simply Dvp ¼ kvoutp � vinp k.
A classical numerical method for the solution of implicit equations can be used

to solve Eqs. (8.17)–(8.25) for a point-wise evaluation of the objective and con-

straint functions. This is not true when the Taylor expansion of the objective and

constraint functions is of interest, as the implicit equations become parametric in

the design variables. This is briefly illustrated for Eq. (8.17) in the following.

Similar arguments hold for Eqs. (8.19) and (8.25).

Let us consider the evaluation of planetary ephemerides. In the DA framework,

we are interested in the Taylor expansion of planet’s position and velocity with

respect to the evaluation epoch. Thus, Kepler’s equation (8.17) is not solved for real

values of the eccentric anomaly, but rather for its Taylor expansion with respect to

the epoch. More specifically, the epoch is initialized as a DA variable, ½T� ¼ T0

α

planetocentric hyperbola

impulse
vin

∞

vout
∞

vout
p

vin
p

Δvp
rp

Fig. 8.5 Powered gravity assist
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þdT, where dT is the displacement of the epoch from the reference value T0. Then,
the simple evaluation of the analytical ephemeris model in the DA framework

delivers the Taylor expansion of the eccentricity e and the mean anomaly M with

respect to the epoch,

½e� ¼ meðdTÞ;
½M� ¼ mMðdTÞ;

(8.26)

whereℳe andℳM denote the resulting Taylor polynomials for e andM. Thus, the

explicit dependence of e and M on dT appears in Kepler’s equation, which now

reads

f ðE; dTÞ ¼ E� ½e� sinE� ½M� ¼ E�meðdTÞ sinE�mMðdTÞ ¼ 0: (8.27)

The parametric implicit equation (8.27) must be solved for the Taylor expansion of

E with respect to the parameter dT, [E] ¼ ℳE(dT). Dedicated techniques have

been developed in past works to address the previous task [9]. Once ℳE(dT) is
available, the Taylor expansions of the planet position and velocity are readily

obtained by carrying out the remaining algebra in the DA framework.

8.3.3 Implementation of GASP-DA

The use of differential algebra is now introduced in GASP, with the primary goal of

expanding the objective function with respect to the optimization variables in

subdomains of the original search space. The resulting algorithm, referred to as

GASP–DA, is summarized in the following for the P1–P2 transfer problem (8.16):

1. Subdivide the search space x ¼ { T1, t12} into boxes and put them in a list ℒ .

2. While ℒ 6¼f,

i. Take out a box X from ℒ.

ii. Initialize T1 and t12 as DA variables and compute the Taylor expansion of

DV1 on X.

iii. Bound the polynomial expansion of DV1 on X, i.e., estimate its minimum

DV1 and maximum DV1 on X.

iv. If DV1>DVmax
1 ) discard the current box X and go to step i.

v. Compute the Taylor expansion of DV2 on X.

vi. Bound the polynomial expansion of DV2 on X, i.e., estimate its minimum

DV2 and maximum DV2 on X.

vii. If DV2>DVmax
2 ) discard the current box X and go to step i.

viii. Put X in a list of feasible boxes x.
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It is worth mentioning that bounding the Taylor expansions, as required in steps

2.iii and 2.vi of the previous algorithm, is not a trivial task. This is done with a non-

validated quadratic bounder [17]. The bounder makes use of the quadratic part of

the Taylor expansion to get estimates of the minimum of a function over each box.

To assess the performances of GASP-DA, its application to an Earth–Mars

transfer is analyzed. A search space of 5,000 days on the departure epoch (T1 ∈
[1000, 6000] MJD2000) and 500 days on the transfer time (t12 ∈ [100, 600]) is

selected. Figure 8.6a is obtained with classical pointwise techniques, and reports the

search space remaining after imposing the two constraints:

DV1 � 5 km=s;

DV2 � 5 km=s:
(8.28)

In the DA implementation of problem (8.16), the search space is uniformly

subdivided in boxes of size 50 days on each variable, and the pruning is then

performed using the constraints (8.28). The boxes remaining after pruning

(Fig. 8.6b) sharply enclose the feasible space in Fig. 8.6a. A comprehensive

assessment of the performances of GASP-DA can be found in [9].

8.4 Introduction of Deep Space Maneuvers in GASP-DA

The GASP-DA algorithm is extended in this section to manage DSM. These

maneuvers are usually carried out to improve the performances of the transfer

trajectories in terms of total cost. From the trajectory optimization standpoint, the

introduction of DSM increases the chances of reducing the overall transfer cost

associated to pure MGA transfers. On the other hand, each DSM involves addi-

tional degrees of freedom that widen the search space and affect convergence to the

global minimum.
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The mathematical formulation of this new problem is not unique, and the

performances of the optimization process strongly depend upon problem transcrip-

tion, especially in the DA frame. Different formulations have been investigated by

the authors in [17]. After some preliminary considerations on the introduction of

DSM in MGA transfers, this section describes the strategy that better fits the DA

implementation of GASP. The performances of the resulting GASP–DSM–DA

algorithm are then assessed on practical cases.

8.4.1 Preliminary Considerations

The solution of several Lambert’s problems is yet at the basis of the objective

function evaluation in an MGA-DSM problem. However, unlike MGA problems,

Lambert’s arcs connect either two consecutive planets, or a planet to a maneuver

point (and vice versa). The location of the maneuver points has to be specified by

adding new variables to the decision vector. It can be easily shown that, for each

DSM introduced, a minimum set of four variables must be added for a three-

dimensional transfer problem (three variables in the planar case). Based on

rationales in [9, 17] the search space pruning of MGA-DSM transfers is carried

out in a planar model. The optimal, spatial trajectory is then caught by the

subsequent optimization in the three-dimensional environment. This implies that,

letting nP and nD be the number of planets and maneuvers, respectively, the decision

vector for search space pruning includes nP + 3nD variables.

Similarly to the MGA case, the pruning process of MGA-DSM problems

consists in (1) expanding the objective function and constraints in Taylor series

of the decision variables over subsets of the search space, (2) bounding the resulting

polynomials and (3) pruning away unfeasible boxes from the search space. Unlike a

point-wise approach, the performance of the whole procedure depends on the

availability of accurate range bounds of the constraint functions over each box.

Thus, working with smooth functions of the least number of variables is desirable to

efficiently prune the search space. Different strategies for the introduction of DSM

show different dependencies on the decision variables, which is the key aspect in a

DA framework.

An additional consideration concerns the increased computational burden when

moving from the MGA to the MGA-DSM problem. This pertains not only the

increased dimension of the search space (from nP to nP + 3nD), but rather it is an
intrinsic consequence of representing a function with its Taylor expansion. The

number of monomials needed to represent a function of v variables up to the order n
is NM ¼ ðk þ vÞ!=ðk!v!Þ. Thus, at fixed k, the number of monomials for a MGA-

DSM problem increases with factorial law with respect to a simple MGA problem,

together with the number of required operations.

Based on the previous observations, the complexity of MGA problems increases

when DSM are introduced. Nevertheless, the associated issues can be prevented and

limited by carefully selecting the strategy for DSM introduction. It is anyway
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important to preserve the idea of the GASP algorithm: subdivide the problem into a

cascade of subproblems and exploit the cut-off values to prune away unfeasible

zones.

8.4.2 Formulation of GASP–DSM–DA

The strategy to introduce DSM into GASP-DA is addressed in the following. The

main idea is to identify the problem formulation that most verges the objective

function evaluation to the solution of multiple Lambert’s problems by breaking the

whole transfer trajectory into subsequent Lambert’s arcs. The strategy is first

illustrated on a simple planet-to-planet transfer. Then, the extension to general

MGA transfers is addressed.

8.4.2.1 Planet-to-Planet Case

Let us consider a planar planet-to-planet transfer as defined in Sect. 8.3.2, and let us

introduce one intermediate maneuver (D). With reference to Fig. 8.7, three

variables are added to the design vector:

• rD—maneuver radius is the distance between D and the Sun

• tD—partial tof is the time of flight associated to the P1–D arc

• y—incremental anomaly is the anomaly of D relative to P1

θ

D

tD

rD

ΔvD

Δv1

Δv2

P1(T1)

P2(T2)

Fig. 8.7 Planet-to-planet

transfer with one DSM

202 P. Di Lizia et al.



Clearly, tD � T2 � T1. The ephemeris model gives the position of P1 at T1, r1,
and P2 at T2, r2. Thus, the position of D, rD, is uniquely determined by the angle y
and rD. Within this strategy, the following dependency holds

rD ¼ rDðT1; rD; yÞ:

The overall transfer can be characterized by solving two Lambert’s problems: one

from r1 to rD with time of flight tD and one from rD to r2 with time of flight T2

�T1 � tD. Thus, the decision vector is x ¼ [T1, T2, rD, y, tD].
The search space pruning problem consists now in finding x such that

9 x� 2 x j Dv1ðx�Þ � Dvmax1 ; DvDðx�Þ � DvmaxD ; Dv2ðx�Þ � Dvmax2 ; (8.29)

where DvD is the cost of the DSM and DvD
max is its maximum allowed value. The

dependencies of the three functions in Eq. (8.29) are

Dv1 ¼ Dv1ðT1; rD; y; tDÞ;
DvD ¼ DvDðT1; T2; rD; y; tDÞ;
Dv2 ¼ Dv2ðT1; T2; rD; y; tDÞ:

(8.30)

Thus, all constraint functions depend on five variables at most.

8.4.2.2 MGA Case

The MGA transfer case is now addressed. Referring to Fig. 8.8, we first consider a

MGA case with three planets (P1, P2, P3) and two DSM (D1 and D2). The search

space is defined by the decision vector
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Fig. 8.8 MGA transfer

with two DSM
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x ¼ ½T1; T2; T3; rD1
; y1; tD1

; rD2
; y2; tD2

�;
where the last three variables are introduced to identify the position of the second

DSM, rD2
, and the transfer time between planet P2 and D2, tD2

. The inequality tD1

� T2 � T1 still holds, whereas tD2
is subject to tD2

� T3 � T2 . Thus, the overall

transfer can be characterized by solving four Lambert’s problems. The pruning

problem consists in finding x such that 9 x� 2 x that yields

Dv1ðx�Þ � Dvmax1 ;DvD1
ðx�Þ � DvmaxD1

;Dv2ðx�Þ � Dvmax2 ;

rpðx�Þ � rmin
p ;DvD2

ðx�Þ � DvmaxD2
;Dv3ðx�Þ � Dvmax3 ;

(8.31)

where rp
min is the minimum allowed pericenter radius for the gravity assist at P2.

Analogously to the previous case, we are interested in assessing the dependence

of the position of D1 and D2, rD1
and rD2

, on the problem variables. The main

advantage of the approach proposed is that rD2
is identified on the basis of the

position of P2, and therefore

rD1
¼ rD1

ðT1; rD1
; y1Þ;

rD2
¼ rD2

ðT2; rD2
; y2Þ:

Consequently, after the solution of the Lambert problems, the constraint functions

show the dependencies

Dv1 ¼ Dv1ðT1; rD1
; y1; tD1

Þ;
DvD1

¼ DvD1
ðT1; T2; rD1

; y1; tD1
Þ;

Dv2 ¼ Dv2ðT1; T2; rD1
; y1; tD1

; rD2
; y2; tD2

Þ;
rp ¼ rpðT1; T2; rD1

; y1; tD1
; rD2

; y2; tD2
Þ;

DvD2
¼ DvD2

ðT2; T3; rD2
; y2; tD2

Þ;
Dv3 ¼ Dv3ðT2; T3; rD2

; y2; tD2
Þ:

(8.32)

As can be seen, the critical functions in terms of dependencies are Dv2 and rp, which
depend on eight variables. These are the constraint functions associated to the

gravity assist at P2, which is located between D1 and D2.

From simple reasoning, this result can be extended to a general MGA transfer

problem with at most one DSM within each planet-to-planet arc. More specifically,

let us consider a MGA transfer with n planets P1; . . . ;Pi; . . . ;Pn and n � 1

maneuvers D1; . . . ;Di; . . . ;Dn�1 , where Di is performed between Pi and Pi + 1.

The dependency of constraint functions is

Dv1 ¼ Dv1ðT1; rD1
; y1; tD1

Þ;
DvDi�1

¼ DvDi�1
ðTi�1; Ti; rDi�1

; yi�1; tDi�1
Þ;

Dvi ¼ DviðTi�1; Ti; rDi�1
; yi�1; tDi�1

; rDi
; yi; tDi

Þ;
rpi ¼ rpiðTi�1; Ti; rDi�1

; yi�1; tDi�1
; rDi

; yi; tDi
Þ;

Dvn ¼ DvnðTn�1; Tn; rDn�1
; yn�1; tDn�1

Þ:

(8.33)
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for i ¼ 2; . . . ; n� 1, where rpi is the pericenter radius of the gravity assist at Pi. As

can be seen, the proposed strategy limits the maximum dependency to eight

variables, regardless of the number of planets and maneuvers.

8.5 Test Cases

A number of application cases are dealt with in this section to assess the

performances of the algorithm. More specifically, the classic Earth–Mars transfer,

with an intermediate DSM, is first discussed (Sect. 8.5.2). After this simple case,

four transfer options for a mission to Jupiter are taken into account

(Sects. 8.5.3–8.5.6). These cases differ in the transfer strategy, although they all

include only one DSM. The last two cases are devoted to Cassini-like transfers with

one and two DSM (Sects. 8.5.7 and 8.5.8, respectively). For each case, the global

optimum achieved is compared with the results of GASP-DA, where pure MGA

transfers are treated [9].

The outcome of the pruning process is a list of boxes that enclose feasible

regions of the search space. A local optimization is then carried out within the

remaining boxes to locate the minimum of the objective function, which is the

purpose of the original optimization problem. This choice speeds-up the local

optimization as the optimizer runs over small domains. Thus, the whole pruning

and optimization sequence is implemented in a deterministic way, and the repeat-

ability of the results is preserved. The computational time is relative to a PC with

2.01 Ghz CPU and 512 Mb RAM.

8.5.1 Search Space Definition

The search space bounds and the size of the boxes in which it is subdivided are

chosen depending on the problem to solve. This is valid for both the nP epochs

and the 3nD auxiliary variables that identify the DSM. The bounds and box-size

for the nP epochs are given in dedicated tables. Specific arguments must be

provided for the selection of bounds and box-sizes for the 3nD auxiliary

variables. These values, reported in Table 8.1, have been selected heuristically,

based on the results of an extensive test campaign. They represent a good trade-

off between the accuracy of the Taylor representation on the resulting boxes and

a limited computational time. The table shows the lower and upper bounds for

these variables. These bounds are relative to a maneuver located in the transfer

arc between Pi and Pi+1 (Fig. 8.7). The bounds for y are trivial. The terms ri
and ri+1, ri+1 > ri, stand for the mean radii of Pi and Pi+1 orbits, respectively.

8 Global Optimization of Interplanetary Transfers with Deep Space Maneuvers. . . 205



Thus, the maneuver is constrained to lie into an annular region enclosing the

planets orbits (If ri > ri + 1, then rD ∈ [ri + 1, ri]). When the maneuver is located

between two encounters of the same planet, i.e., Pi ¼ Piþ1, we set rD ∈ [0. 9ri,
1. 1a1: 2], where a1: 2 is the semimajor axis of an orbit in 1:2 resonance with the

orbit of Pi. We let the partial time of flight, tD, to vary within ½0; Tiþ1 � Ti�,
where Ti and Ti + 1 are the epochs at the Pi and Pi + 1 encounter, respectively.

8.5.2 EdM

The first test case is an Earth–Mars transfer with one DSM (indicated with d in the

planets sequence). The search space is defined in Table 8.2 in terms of bounds on

the departure epoch TE and the transfer time tEM. However, as stated in the previous
sections, the pruning is carried out on the search space defined by the epochs of each

planet encounter, i.e., TE and TM in this case. This observation holds for all test

cases. The search space definition is completed by the bounds for the three

additional variables in Table 8.1. The last two rows of Table 8.2 report the box-

size along each epoch and the optimal solution found, respectively. The

GASP–DSM–DA algorithm solves this problem in 253.2 s. Wesummarize below

some features of the problem settings and the resultsachieved.

• Problem constraints:DvE� 3 km/s,Dvd� 3 km/s,DvM� 3 km/s,Dvtot� 7{km/s}

• Total number of boxes ¼ 388,800

• Boxes remaining after pruning ¼ 1,603 (0.41%)

• Optimal objective function value ¼ 5.632 km/s

• Optimal objective function value without DSM (GASP-DA result)¼ 5.667 km/s

Table 8.1 Bounds and box-

sizes for the 3nD auxiliary

variables

Variable Lower bound Upper bound Box-size

rD 0. 9ri 1. 1ri + 1 0.1 AU

y 0 2p 10 deg

tD 0 Tiþ1 � Ti 50 day

Table 8.2 Search space

bounds, box-sizes, and

optimal solution found

for the EdM transfer

TE tEM

MJD 2000 days

Lb 1,000 200

Ub 2,000 650

D 50 50

Sol. 1,243.2 606.2
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8.5.3 EMdJ

One planet is added to the transfer. In particular, an Earth–Mars–Jupiter transfer is

investigated, with one DSM between Mars and Jupiter. Table 8.3 states the bounds

and the box-sizes on the departure epoch and the transfer times, together with the

optimal solution found. A purely ballistic Mars gravity assist is imposed by setting

the cutoff value for DvM to zero in the powered gravity assist model. As in the

previous problem, the introduction of a DSM improves the objective function found

by GASP-DA. The CPU time is 451 s. The optimal transfer is shown in Fig. 8.9.

• Constraints: DvE � 5 km/s, DvM � 0 km/s, Dvd � 5 km/s, DvJ � 5 km/s, Dvtot �
15 km/s

• Total number of boxes ¼ 8.52e7

• Boxes remaining after pruning ¼ 323 (3.79e-4%)

• Optimal objective function value ¼ 12.481 km/s

• Optimal objective function value without DSM (GASP-DA result)

¼13.416 km/s

Table 8.3 Search space

bounds, box-sizes, and

optimal solution found

for the EMdJ transfer

TE tEM tMJ

MJD 2000 days days

Lb 1,000 300 1,000

Ub 3,000 700 2,000

D 50 50 100

Sol. 2,804.7 321.9 1,161.9
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Fig. 8.9 Optimal EMdJ transfer
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8.5.4 EMdMJ

An alternative transfer strategy to Jupiter is investigated. The time domain for the

EMdMJ problem is stated in Table 8.4. In this case the maneuver radius is search

within rD ∈ [0. 9rM, 1. 1a1: 2], where rM is the mean radius of Mars’ orbit whereas

a1: 2 is the semimajor axis of a 1:2 resonant orbit with Mars’ orbit. This problem is

solved in 144.2 s. The result obtained by GASP-DA for the pure MGA transfer

without DSM is once again improved. Figure 8.10 illustrates the resulting optimal

transfer.

• Constraints: DvE � 4 km/s, DvM,1 � 0 km/s, Dvd � 3 km/s, DvM,2 � 0 km/s, DvJ
� 7 km/s, Dvtot � 12 km/s

• Total number of boxes ¼ 9.19e7

• Boxes remaining after pruning ¼ 717 (7.8e-3%)

• Optimal objective function value ¼ 10.843 km/s

• Optimal objective function value without DSM (GASP-DA result)¼ 12.864 km/s

Table 8.4 Search space

bounds, box-sizes, and

optimal solution found

for the EMdMJ transfer

TE tEM tMM tMJ

MJD 2000 days days days

Lb 3,650 30 330 600

Ub 7,300 430 830 2,000

D 50 100 100 200

Sol. 4,353.8 371.1 915.8 1,129.5
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8.5.5 EVdVEJ

The MGA transfer EVdVEJ to Jupiter is now analyzed. One DSM maneuver is

performed between the two consecutive Venus encounters. The five-dimensional

domain for the departure epoch and the transfer times is defined in Table 8.5. The

domain for DSM characterization is added based on Table 8.1. The resulting search

space is relatively large, and 1.85e10 boxes are necessary to run GASP–DSM–DA.

Thanks to constraint propagation, this problem is solved in 2,770 s.

• Constraints:DvE,dep� 4. 5 km/s,DvV,1� 0 km/s,Dvd� 0. 5 km/s,DvV,2� 0 km/s,

DvE � 0 km/s, DvJ � 7 km/s, Dvtot � 12 km/s

• Total number of boxes ¼ 1.85e10

• Boxes remaining after pruning ¼ 3.80e4 (2.06e � 4%)

• Optimal objective function value ¼ 9.304 km/s

• Optimal objective function value without DSM (reference solution [18]) ¼
10.503 km/s

8.5.6 EVEdEJ

The last transfer strategy to Jupiter is now studied. An EVEdEJ transfer problem is

solved using the search space bounds and the box-sizes reported in Table 8.6.

Similarly to the previous problem, the search space is relatively large, and a

systematic analysis based on a grid sampling would be impossible without an

efficient constraint propagation. Thanks to the pruning strategy and the possibility

of expanding the constraint functions over subdomains of the search space,

GASP–DSM–DA solves this problem in 2,392 s. The main results are listed

below, and a plot of the optimal transfer is reported in Fig. 8.11.

Table 8.5 Search space

bounds, box-sizes, and

optimal solution found

for the EVdVEJ transfer

TE tEV tVV tVE tEJ

MJD 2000 days days days days

Lb 3,650 80 80 80 600

Ub 7,300 430 830 830 2,000

D 50 25 25 50 200

Sol. 3,859.5 119.2 429.6 564.8 1,244.3

Table 8.6 Search space

bounds, box-sizes, and

optimal solution found

for the EVEdEJ transfer

TE tEV tVE tEE tEJ

MJD 2000 days days days days

Lb 3,650 80 80 80 600

Ub 7,300 430 830 830 2,000

D 50 25 50 50 200

Sol. 3,863.4 128.8 288.4 713.3 1,068.2
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• Constraints: DvE,dep � 4 km/s, DvV � 0 km/s, DvE,1 � 0 km/s, Dvd � 3 km/s,

DvE,2 � 0 km/s, DvJ � 7 km/s, Dvtot � 12 km/s

• Total number of boxes ¼ 9.25e9

• Boxes remaining after pruning ¼ 4.84e4 (5.23e � 4%)

• Optimal objective function value ¼ 8.670 km/s

• Optimal objective function value without DSM (GASP-DA result)

¼ 10.09 km/s; reference solution [18] ¼ 8.680 km/s

8.5.7 EVdVEJS

This section is devoted to a Cassini-like transfer with a DSM between the two

Venus gravity assists. Saturn is the target planet, which is reached after four gravity

assists. Thus, the overall transfer involves six planet encounters and one DSM,

leading to a nine-dimensional optimization problem. The search space and the box-

sizes are stated in Table 8.7. The computational time required by the DA-based
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Fig. 8.11 Optimal EVEdEJ transfer

Table 8.7 Search space

bounds, box-sizes, and

optimal solution found

for the EVdVEJS transfer

TE tEV tVV tVE tEJ tJS

MJD 2000 days days days days days

Lb � 1,000 80 200 30 400 800

Ub 0 430 500 180 1,600 2,200

D 50 25 25 50 200 200

Sol. � 787.0 165.8 427.7 57.7 596.1 2,200
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pruning and optimization algorithm is 210 s. Figure 8.12a illustrates the optimal

transfer, whereas a detail on the EVdVE portion is reported in Fig. 8.12b.

• Constraints: DvE,dep � 4 km/s, DvV,1 � 1 km/s, Dvd � 1 km/s, DvV,2 � 0 km/s,

DvE � 0 km/s, DvJ � 0 km/s, DvS � 5 km/s

• Total number of boxes ¼ 3.92e8

• Boxes remaining after pruning ¼ 2,281 (1e � 3%)

• Optimal objective function value ¼ 8.299 km/s

• Optimal objective function value without DSM (GASP-DA result)¼ 8.619 km/s

8.5.8 EVdVEJdS

An additional DSM is now introduced in the Jupiter–Saturn arc of the Cassini-like

transfer of Sect. 8.5.7. The search space is analogous to that reported in Table 8.7,

except for tJS, which ranges from 1,600 to 3,000 days. The GASP–DSM–DA

algorithm prunes efficiently the twelve-dimensional search space to 1e � 6% of

the initial size. The CPU time is 2,000 s. The main results of this problem are listed

below.

• Constraints: DvE,dep � 4 km/s, DvV,1 � 1 km/s, Dvd, 1 � 1 km/s, DvV,2 � 0 km/s,

DvE � 0 km/s, DvJ � 0 km/s, Dvd, 2 � 1 km/s, DvS � 5 km/s

• Total number of boxes ¼ 1.41e12

• Boxes remaining after pruning ¼ 2.23e4 (1.6e � 6%)

• Optimal objective function value ¼ 8.276 km/s

• Optimal objective function value without DSM (GASP-DA result)¼ 8.619 km/s
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8.6 Final Remarks

This chapter described how DSM can be inserted in the search space pruning

process of the algorithm GASP. The proposed algorithm takes advantage of differ-

ential algebra, which is used to expand the constraint functions in Taylor series of

the design variables. The adopted problem formulation limits the maximum func-

tional dependency to eight variables, which is important to accurately bound the

constraint functions. The resulting GASP–DSM–DA algorithm has been tested to

solve relevant interplanetary transfer problems.

The introduction of the DSM into an MGA transfer deserves a final comment.

Figure 8.13 compares the optimal objective function values for a mission to Jupiter,

obtained with different transfer strategies. More specifically, GASP-DA and

GASP–DSM–DA are used to compute the optimal solutions for pure MGA and

MGA transfers with one DSM, respectively. Evidently, different transfer strategies

have different costs. It is worth noting that, for the cases presented in Fig. 8.13, and

generally for the MGA-DSM transfers, the introduction of DSM improves the

optimal solutions in terms of transfer cost. On the other hand, MGA-DSM transfers

involve longer overall transfer time.
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Fig. 8.13 Options for a transfer to Jupiter. Both the optimal MGA (squares) and MGA-DSM

(circles) solutions are shown
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