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Abstract In this paper a differential algebra version of the gravity assist space pruning
algorithm is presented. The use of differential algebraic techniques is proposed to overcome
the two main drawbacks of the existing algorithm, i.e., the steep increase of the number of
function evaluations with the number of planets involved in the transfer, and the use of a
bounding procedure that relies on Lipschitzian tolerances. Differential algebra allows us to
process boxes in place of grid points, and to substitute pointwise evaluations of the constraint
functions with their Taylor expansions. Thanks to the particular instance of multi-gravity
assist problems dealt with, all the planet-to-planet legs can be treated independently, and
forward and backward constraining can be applied. The proposed method is applied to pre-
process the search space of sample interplanetary transfers and it also serves as a stepping
stone towards a fully rigorous treatment of the pruning process based on Taylor models.
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2 R. Armellin et al.

1 Introduction

Multi-gravity assist (MGA) transfers are usually made up by a sequence of planet-to-planet
transfers in which the spacecraft exploits each planet encounter to achieve a velocity change
by a gravity assist maneuver. A class of these trajectories can be preliminary designed in
the frame of patched-conics approximation. In this context, different conic arcs are linked
together to define the whole transfer trajectory. This paper focuses on a particular instance of
patched-conics trajectories. More specifically, each planet-to-planet leg in the whole transfer
is modeled as a conic arc, which is obtained as solution of a Lambert’s problem (Battin
1987). Subsequent arcs are then linked together at the intermediate planet by means of a
powered gravity assist maneuver (Labunsky et al. 1998). For the sake of brevity, this instance
of interplanetary transfers is referred to as multi-gravity assist transfer in the remainder. Con-
structing MGA space trajectories is a well-known procedure in astrodynamics that has been
used to reach both inner and outer planets.

The first MGA trajectories were designed using “ad hoc” methods developed for a specific
mission. Approaching MGA problems from a global optimization standpoint has been pro-
posed more recently. If the minimization of the propellant mass is concerned, MGA problems
show an objective function with a large number of clustered minima (Di Lizia and Radice
2004; Vasile and De Pascale 2006), which are prevalently associated to the relative motion
of the planets involved in the transfer. This causes classical local optimization methods to
converge to one of these local minima (Betts 2001). Hence, despite their efficiency, local
methods have to be avoided when looking for the global minimum of an MGA problem,
at least in the first stage of the search process. Consequently, effective global optimization
algorithms should be developed and used to find the best solution of an MGA problem.

Extensive work has been devoted to address the global optimization of MGA transfers,
which was mainly based on global optimizers used as “black-box” tools. More specifically,
an extensive test campaign was run, where stochastic (Yao 1997; Ingberg 1993; Sentinella
and Casalino 2009), branch and bound (Jones et al. 1993), meta-model based (Jones 2001),
and even combined (Vasile et al. 2005) methods were applied to the design of interplanetary
transfers. Although some of them showed good performances in identifying the known best
solutions for the test problems, a key point for the development of effective and more efficient
algorithms was identified as the definition of global optimization strategies that are built to
exploit the structure of the search space and the nature of the MGA problem (Di Lizia and
Radice 2004).

It has recently been shown that the search space of MGA problems can be effectively
pruned. This observation was successfully coded in the gravity assist space pruning (GASP)
algorithm (Myatt et al. 2004). With GASP, the search space is pruned by exploiting imposed
constraints. These are physical and technological constraints typical of an interplanetary tra-
jectory (i.e., the minimum pericenter radius of fly-by hyperbolae and the maximum magnitude
of impulse burns). Thanks to the particular class of interplanetary transfers dealt with, all
planet-to-planet legs making up the whole transfer can be treated independently, and forward
and backward constraining can be applied. In this way, the search space is pre-processed and
global optimization algorithms are employed in the reduced domain. This procedure showed
better performances if compared with the standard implementation of some stochastic global
optimization solvers over the entire search space.

The classical implementation of GASP is based on a systematic evaluation of the objective
and constraint functions on a grid of points distributed over the search space. This intrin-
sically involves a steep increase of the number of function evaluations with the number of
planets involved in the transfer. Indeed, the grid must be kept sufficiently fine to avoid loosing
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Gravity assist space pruning based on differential algebra 3

accuracy on the description of the shape of the constraint functions over the search space.
Moreover, the pruning process relies on a bounding procedure that makes use of Lipschitz-
ian tolerances, which must be either estimated or guessed in some way. It is worth noting
that inaccurate estimations of this tolerance may lead to prune away feasible portions of the
search space, and therefore to get rid of potential zones where the global minimum could lie.
Thus, proper heuristics must be used to obtain good estimates, in order for the Lipschitzian
tolerance to have only minor influence on the results.

In this paper we propose the use of differential algebraic (DA) techniques as a viable option
to improve the GASP algorithm. DA techniques serve the purpose of automatic differentia-
tion, i.e., the accurate computation of the derivatives of functions in a computer environment
(Berz 1999b). More specifically, the classical implementation of the real algebra is substi-
tuted with the proper implementation of a new algebra based on Taylor polynomials. Given
a generic function f of v variables, the Taylor expansion of f up to any desired order n with
respect to all v variables can be easily obtained from a computer algorithm.

In the DA version of GASP the search space is split into boxes, processed in place of
grid points, and the pointwise evaluation of the constraint functions is substituted by the
computation of their Taylor expansion over the sampling boxes. In addition, a suitable de-
vised polynomial bounder is used to estimate the ranges of the functions within each box.
In this way guessing the Lipschitzian tolerance typical of the GASP method is avoided.
Furthermore, the order of the Taylor expansion can be used to tune the accuracy of the
approximation and the size of the grid boxes. This might result in the possibility of enlarging
the grid for the domain discretization with a consequent reduction of the computational
burden.

We point out that this paper is not aimed at formulating a novel global optimization strat-
egy, but rather it addresses the pruning of the search space for a particular class of MGA
transfers. In this context, a modification of classic GASP is presented, and the features of its
DA version are discussed. The goals of the paper are:

1. to state the classic GASP algorithm into the perspective of DA formalism;
2. to derive a DA version of GASP requiring a fewer number of function evaluations and

less computational effort than classic GASP;
3. to avoid the use of a Lipschitzian constant in the approximation of the constraint functions

over the search space.

The paper is organized as follows. A short description of the method underlying GASP is
given in Sect. 2. A brief introduction to differential algebra is given in Sect. 3. More specif-
ically, being at the base of the algorithms presented in this work, the solution of parametric
implicit equations using DA techniques is illustrated in Sect. 3.1. The algorithm for the Tay-
lor expansion of the constraint functions typical of MGA transfers is described in Sect. 4.
The main problems encountered introducing DA techniques into GASP are illustrated in
Sect. 5, together with the adopted solutions. Finally, the assessment of the performances
of the resulting algorithm is addresses in Sect. 6, based on MGA transfers of increasing
complexity.

2 Gravity assist space pruning

GASP was originally introduced by Myatt et al. (2004) as a pruning strategy to design MGA
transfers. As stated in Sect. 1, an MGA transfer is modeled as a sequence of conic arcs, each
one patched to the subsequent one by a powered gravity assist maneuver. Consequently,
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Fig. 1 Reduction of the MGA
transfer to a cascade of
two-dimensional subproblems

an MGA transfer involving n planets is an n-dimensional problem, as n variables are needed
to identify the position of the planets at each gravity assist and, consequently, the conic arcs
that define the trajectory. Referring to Fig. 1, the main idea behind GASP is splitting the
whole trajectory in its elementary arcs. More importantly, if the epochs Ti of all the planet
encounters are selected as design variables, each arc can be dealt with separately as a 2D
problem defined by the two epochs necessary to compute the position of the departing and
arrival planets.

For each two-dimensional subproblem, a set of constraints is usually available. These
constraints can be gathered into three main groups:

– maximum allowed �V at departure (first arc) and arrival (last arc);
– maximum allowed corrective �V at each gravity assist;
– minimum allowed pericenter radius at each gravity assist.

The previous constraints can be profitably used to prune the search space. Consider, as an
example, the first two arcs of an MGA transfer, which are fully characterized in the (T1, T2)-
and (T2, T3)-plane, respectively (see Fig. 2). A uniform grid of points is built on each plane to
sample the associated search space. For each point in the (T1, T2)-plane, the related constraint
functions are evaluated. If any constraint is violated, the point is pruned away, together with
all its subsequent combinations. In particular, if an entire row corresponding to an epoch
T2 = T̄2 is pruned away based on this analysis, then the entire column corresponding to
T2 = T̄2 in the (T2, T3)-plane can be pruned away as well, since T̄2 turns out to be an unfea-
sible value for T2. Similar statements hold for the subsequent arcs. Consequently, thanks to
the previous mechanism, constraints can be propagated forward and backward in the MGA
transfer. The final result is a reduced search space, made up by feasible regions, where optimi-
zation tools are run. The reduced dimension of the search space improves the performances
of the algorithms in this optimization phase.

As already pointed out in Sect. 1, the pruning process is performed on a grid of points
distributed over the search space. Consequently, the grid must be kept sufficiently fine
to accurately describe the constraint functions. Moreover, an estimate of the Lipschitz-
ian constant is used to loosen the constraints, in order to compensate for the effects of
the grid sampling of the search space. In particular, as a grid point is representative of
its neighborhood on the search space, the Lipschitzian tolerance value must be estimated
in accordance with grid spacing and functions properties to avoid the pruning of feasible
regions.
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Fig. 2 Constraint propagation mechanism in GASP

3 Differential algebra

DA techniques find their origin in the attempt to solve analytical problems by an algebraic
approach (Berz 1999b). Historically, the treatment of functions in numerics has been based
on the treatment of numbers, and the classical numerical algorithms are based on the mere
evaluation of functions at specific points. DA techniques are based on the observation that it is
possible to extract more information on a function rather than its mere values. The basic idea
is to bring the treatment of functions and the operations on them to the computer environment
in a similar way as the treatment of real numbers. Suppose two sufficiently regular functions
f and g are given. In the framework of differential algebra, the computer operates on them
using their Taylor series expansions, F and G respectively. Therefore, the transformation of
real numbers in their floating point representation is now substituted by the extraction of the
Taylor expansions of f and g. For each operation in the function space, an adjoint operation
in the space of Taylor polynomials is defined, such that extracting the Taylor expansions of
f and g and operating on them in the space of Taylor polynomials returns the same result as
operating on f and g in the original space and then extracting the Taylor expansion of the
resulting function.

The straightforward implementation of differential algebra allows to compute the Taylor
coefficients of a function up to a specified order n, along with the function evaluation, with a
fixed amount of effort. The Taylor coefficients of order n for sums and product of functions,
as well as scalar products with reals, can be computed from those of summands and fac-
tors; therefore, the set of equivalence classes of functions can be endowed with well-defined
operations, leading to an algebra, the so-called truncated power series algebra (Berz 1986,
1987). Similarly to the algorithms for floating point arithmetic, the algorithm for functions
followed, including methods to perform composition of functions, to invert them, to solve
nonlinear systems explicitly, and to treat common elementary functions (Berz 1991, 1999a).
In addition to these algebraic operations, also the operations of differentiation and integration
are introduced, which are invaluable for developing solvers for ODE and DAE. An operator
satisfying the common sum and product rules of differentiation is called a derivation; and
an algebra that also has a derivation is called a differential algebra. The differential algebra
sketched in this section was implemented by M. Berz and K. Makino in the software COSY
INFINITY (Berz and Makino 2006). We conclude the discussion by pointing out that the DA
methods can be extended to include a rigorous treatment about remainder bounds (Makino
1998), which in the future may be used to make the arguments of this paper fully rigorous.
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6 R. Armellin et al.

3.1 Solution of parametric implicit equations

As will be highlighted in Sect. 4, the evaluation of the constraint functions typical of MGA
transfers involves the solution of implicit equations. These equations become parametric in
case the Taylor expansion of the functions is of interest rather than their pointwise evalua-
tion. DA techniques can be effectively used to identify the solution of parametric implicit
equations in terms of Taylor polynomials, as described in Berz (1999b); Hoefkens (2001);
Di Lizia et al. (2008), and here summarized for the sake of completeness.

Well-established numerical techniques (e.g., Newton’s method) exist, which can effec-
tively identify the solution of a classical implicit equation

f (x) = 0. (1)

Suppose an explicit dependence on a parameter p can be highlighted in the previous function
f , which leads to the parametric implicit equation

f (x, p) = 0. (2)

Suppose the previous equation is to be solved, whose solution is represented by the function
x(p) returning the value of x solving (2) for any value of the parameter p. Thus, the depen-
dence of the solution of the implicit equation on the parameter p is of interest. DA techniques
can effectively handle the previous problem by identifying the function x(p) in terms of its
Taylor expansion with respect to the parameter p. The DA-based algorithm is presented in
the followings for the solution of the scalar parametric implicit Eq. (2); the generalization to
a system of parametric implicit equations is straightforward.

The solution of (2) is sought, where sufficient regularity is assumed to characterize the
function f ; i.e., f ∈ Cn+1. This means that x(p) satisfying

f (x(p), p) = 0 (3)

is to be identified. The first step is to consider a reference value p0 of the parameter p and to
compute the value of the solution x0 of the corresponding implicit equation by means of a
classical numerical method; e.g., Newton’s method. The variable x and the parameter p are
then initialized as n-th order DA variables, i.e.,

[x] = x0 + δx

[p] = p0 + δp.
(4)

A DA-based evaluation of the function f in (2) delivers the n-th order expansion of f with
respect to x and p:

δ f = M f (δx, δp), (5)

where M f denotes the Taylor map for f . Note that the map (5) is origin-preserving as x0

is the solution of the implicit equation for the nominal value of the parameter p0; thus, δ f
represents the deviation of f from its reference value f 0 = 0, resulting from deviations of x
and p from x0 and p0, respectively. The map (5) is then augmented by introducing the map
corresponding to the identity function on p (i.e., δp = Ip(δp)) ending up with

(
δ f
δp

)
=

(M f

Ip

) (
δx
δp

)
. (6)
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The n-th order map (6) is inverted using COSY INFINITY built-in tools, obtaining
(

δx
δp

)
=

(M f

Ip

)−1 (
δ f
δp

)
. (7)

As the goal is to compute the n-th order Taylor expansion of the solution manifold x(p) of
(2), the map (7) is evaluated for δ f = 0

(
δx
δp

)
=

(M f

Ip

)−1 (
0
δp

)
. (8)

The first row of map (8), which will be indicated as

δx = Mδ f =0(δp), (9)

is the n-th order Taylor expansion of the solution manifold. For every value of p, the approx-
imate solution of f (x, p) = 0 can be easily computed by evaluating the Taylor polynomial
(9) at δp = p − p0. Apparently, the solution obtained by means of the map (9) is a Taylor
approximation of the exact solution of Eq. (2). The accuracy of the approximation depends
on both the order of the Taylor expansion and the displacement δp from the reference value
p0. The performances of the previous algorithm will be assessed in Sect. 4 referring to the
implicit equations involved in the evaluation of the constraint functions for MGA transfers.

4 Taylor expansion of the objective and constraint functions

The idea behind the introduction of DA techniques into GASP is substituting the pointwise
evaluation of the constraint functions with a DA–based evaluation. However, expanding the
constraint functions that typically characterize an MGA transfer is not trivial: a major issue
can be identified, which is mainly related to the solution of implicit equations.

Three implicit equations appear in the evaluation process of the constraint and objective
functions for the MGA transfers at hand. Two of them can be identified by analyzing sim-
ple planet-to-planet transfers. For the sake of clarity, consider the problem of transferring a
spacecraft from Earth to Mars by means of two impulsive maneuvers (see Fig. 3). The typical
objective function for this problem is the overall �V that can be evaluated by means of two
design variables. A common choice is selecting the departure epoch from Earth, TE , and the
time of flight from Earth to Mars, tE M , as design variables. Given TE and tE M , the arrival
epoch at Mars, TM , can be easily computed, and the position and velocity of Earth and Mars
at both ends of the transfer are obtained through the evaluation of the planetary ephemerides.
Then, given the initial and final positions, and the time of flight, the corresponding Lam-
bert’s problem is solved to compute the heliocentric initial velocity, v1, the spacecraft must
be supplied with at Earth to reach Mars in the given time of flight, as well as the resulting
heliocentric velocity at Mars, v2. The initial relative velocity of the spacecraft with respect to
Earth, �V 1, and the final relative velocity with respect to Mars, �V 2, are readily computed.
The optimization problem consists in minimizing

�V = ‖�V 1‖ + ‖�V 2‖ = �V1 + �V2, (10)

subject to the constraints

�V1 ≤ �V1,max

�V2 ≤ �V2,max .
(11)
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8 R. Armellin et al.

Fig. 3 A two-impulse
Earth–Mars transfer

The evaluation of planetary ephemerides is required to compute the objective function (10)
and the constraint functions (11). An analytical ephemeris model is used, which is based
on fitting the orbital elements of the planets delivered by JPL ephemeris evaluations (Giorgini
et al. 1998). A third order interpolation is selected to limit the interpolation error to the order
of a few thousand km for the position and m/s for velocities over the time windows of interest,
an accuracy compatible with the preliminary optimization problems at hand. In particular,
the analytical model is able to supply the eccentricity of the planet orbit, e, and the mean
anomaly of the planet, M , as a function of the input epoch. Then, the Kepler equation

f (E) = E − e sin E − M = 0 (12)

must be solved for the eccentric anomaly, E , which is necessary to evaluate the planet position
and velocity.

Moreover, given the positions of Earth and Mars, and the time of flight between the two
planets, the Lambert problem must be solved to obtain the initial and final heliocentric veloc-
ities of the spacecraft. In particular, it is necessary to find the solution of the Lagrange’s
equation for the time of flight, that concisely reads (see Battin 1987 for details)

f (x) = A(x) − t = 0, (13)

where x is related to the semi–major axis of the resulting transfer orbit, A is a function depend-
ing on both x and some geometrical properties of the conic arc, and t is the transfer time.
The solution is found via a secant method applied to the logarithm of Eq. (13) to improve
the convergence rate of the numerical scheme. Once the solution is found, the initial and
final heliocentric velocities of the spacecraft are computed via algebraic and transcendental
functions.

The third implicit equation occurs only when a powered gravity assist appears. Within
this model, the spacecraft can provide a tangential impulse at the pericenter of the incoming
hyperbola (see Fig. 4), thus the planetocentric trajectory is made up by two arcs of hyperbola
patched together. The angle α, usually referred to as bending angle, between the incoming
and the outgoing asymptotic velocities, vin∞ and vout∞ respectively, is related to the pericenter
radius via (Izzo et al. 2006)

f (rp) = arcsin
a−

a− + rp
+ arcsin

a+

a+ + rp
− α = 0, (14)

where a− = 1/(vin∞ · vin∞) and a+ = 1/(vout∞ · vout∞ ). Given the two heliocentric arcs to
be connected by the powered gravity assist maneuver, the angle α can be easily computed
through geometrical relations. The solution of the third implicit Eq. (14) delivers the peri-
center radius of the planetocentric trajectory. The planetocentric velocities vin

p and vout
p at

the pericenter, corresponding to the incoming and outgoing hyperbolic arcs respectively, are
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Gravity assist space pruning based on differential algebra 9

Fig. 4 Powered gravity assist

computed using r p , vin∞, and vout∞ . Then, the required impulsive maneuver at the pericenter,
�v p , is the mere difference between vout

p and vin
p .

If a pointwise evaluation of the objective and constraint functions is of interest, as in the
standard implementation of GASP, a classical numerical method for the solution of implicit
equations can be used. This is not possible when the Taylor expansion of the objective and
constraint functions with respect to the optimization variables is of interest. Consider the
evaluation of planetary ephemerides for explanation purposes. When dealing with the Tay-
lor expansion of the ephemerides, the Kepler Eq. 12 cannot be solved for real values of the
eccentric anomaly, but for its Taylor expansion with respect to the epoch. More specifically,
suppose the expansion of the ephemerides of a planet about a reference epoch T 0 is sought.
Once the epoch is initialized as DA variable (i.e., [T ] = T 0 + δT ) the evaluation of the
analytical ephemeris model delivers the eccentricity e and the mean anomaly M as Taylor
expansions with respect to the epoch,

e(δT ) = Me(δT )

M(δT ) = MM (δT ).
(15)

The next step is solving the Kepler equation to obtain the Taylor expansion of the solution
E with respect to the parameter T . Indeed, the explicit dependence of e and M on T must
be kept and Kepler’s equation reads

f (E, δT ) = E − e(δT ) sin E − M(δT ) = 0. (16)

The solution of this parametric implicit equation is attained in terms of the Taylor expansion
E(δT ) = ME (δT ) using the techniques illustrated in Sect. 3.1. Once ME (δT ) is available,
the Taylor expansions of the planet position and velocity are readily obtained by carrying out
the remaining algebra in the DA framework.

Clearly, the accuracy of the expansions depends both on the DA order and on the distance
from the reference epoch; i.e., on the value of δT . Figures 5 and 6 display the accuracy refer-
ring to Mars’ ephemerides. In particular, the reference epoch 1456 MJD2000 is selected.
The Taylor expansions of Mars’ position and velocity around the reference epoch are com-
puted using differential algebra. The resulting polynomial maps are reported in Appendix,
considering an interval of 40 days around the reference epoch. For each δT , the position and
velocity of Mars are evaluated using both the Taylor expansions and the pointwise evalua-
tions. Figures 5 and 6 report the error of the Taylor expansions with respect to the pointwise
evaluations, in terms of the maximum norm of the difference vectors between the correspond-
ing positions and velocities, respectively. The figures clearly show that, although the accuracy
of the Taylor expansion decreases moving away from the reference date, it can be effectively
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10 R. Armellin et al.

Fig. 5 Accuracy of the Taylor
expansion of Mars position
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Fig. 6 Accuracy of the Taylor
expansion of Mars velocity
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kept to a suitable level by varying the expansion order. Note that, although the ephemerides
are already expressed as polynomials, their DA evaluation is necessary to compute the Taylor
expansion of the position and the velocity starting from orbital parameters.

5 Introduction of DA techniques into GASP

The complete extension of GASP algorithm is now possible. Two main difficulties arise
when the attempt to introduce DA techniques into GASP is made. These difficulties will be
referred to as discontinuity and dependency problems in the following subsections.
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5.1 Discontinuity problem

The extension of GASP would be straightforward in the case of regular constraint and objec-
tive functions. Nevertheless, significant discontinuities characterize these functions in opti-
mization problems involving MGA transfers, which are mainly related to geometrical consid-
erations. To introduce the discontinuity problem, consider the following typical GASP-based
pruning algorithm for the representative Earth-Mars transfer of Fig. 3:

1. Subdivide the search space into boxes and put them in a list L
2. While L �= ∅:

a. take out a box [X] = {[TE ], [tE M ]} from L
b. initialize TE and tE M as DA variables and compute the Taylor expansion of �V1 on

[X]
c. bound the polynomial expansion of �V1 on [X]; i.e., estimate its minimum �V1 and

maximum �V1 on [X]
d. if �V1 > �V1,max ⇒ discard the current box [X] and go to step a.

e. compute the Taylor expansion of �V2 on [X]
f. bound the polynomial expansion of �V2 on [X]; i.e., estimate its minimum �V2 and

maximum �V2 on [X]
g. if �V2 > �V2,max ⇒ discard the current box [X] and go to step a.

h. keep [X] in a list of feasible boxes

It is worth mentioning that bounding the Taylor expansions, as required in steps 2.c. and 2.f.
of the previous algorithm, is not a trivial task. Although a quadratic estimation process is
used in the current version of the DA-based GASP (see Sect. 6.1), the basic tool used for the
example reported here is the linear dominated bounder described in Makino (1998).

The previous algorithm is implemented in COSY INFINITY. In particular, a search space
of 5000 days on the departure epoch (TE ∈ [1000, 6000] MJD2000) and 500 days on the
transfer time (tE M ∈ [100, 600]) is selected. Figure 7 illustrates the �V landscape over
the defined search space. Quasi-periodicities related to the synodic period of the Earth–
Mars system (about 2.14 years) can be identified (see Di Lizia and Radice 2004 for details).
Figure 8 reports instead the search space remaining after imposing the fulfillment of two
pruning constraints

�V1 ≤ 5 km/s

�V2 ≤ 5 km/s.
(17)

The DA-based pruning algorithm illustrated above is now applied to this relatively simple
problem. In particular, the search space is uniformly subdivided in boxes of size 50 days
on each design variable. The pruning process is then performed using the constraints (17).
The boxes remaining after pruning are reported in Fig. 9 on the pruned search space of
Fig. 8, which is aimed to be enclosed by the algorithm. Figure 9 clearly shows that the accu-
racy of the attained enclosure is not satisfactory. Specifically, even if the remaining boxes
enclose the desired portion of the search space, some undesired boxes remain after pruning,
which should have been pruned away. To better understand this behavior, compare Fig. 9 with
Fig. 7. As can be clearly recognized, these unsought remaining boxes tend to lie on lines over
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12 R. Armellin et al.

Fig. 7 �V landscape and
discontinuities for the
Earth–Mars transfer
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Fig. 8 �V landscape for the
Earth–Mars transfer after pruning
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Fig. 9 Enclosure of the pruned
search space for the Earth–Mars
transfer
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Gravity assist space pruning based on differential algebra 13

the search space, which can be related to discontinuities of this problem. Such discontinuities
correspond to the so-called transitions from the “short–way” to the “long–way” solutions of
the Lambert’s problem (and vice versa) when crossing regions of the search space where the
transfer occur on an orbital plane that is perpendicular to the ecliptic. This regions are actually
lines over the design space (see Fig. 7). Consequently, they differ from the well-know singu-
larities of the same problem corresponding to both a 180◦ and a 360◦ transfer, which are due
to the ambiguity in the selection of the transfer plane. More specifically, as better detailed by
Kemble (2006); Bernelli-Zazzera et al. (2006), the solution of the Lambert’s problem asks
for transfer planes of higher and higher inclination as one gets close to these lines in the
design space. In the framework of a planet-to-planet transfer, given the low inclination of the
planetary orbits, this entails a steep increase of the �V . This process continues until a transfer
plane perpendicular to the ecliptic is achieved. Here, northerly transfers switch to southerly
transfers (and vice versa) to keep dealing with prograde orbits. Switching from northerly
transfers to southerly transfers implies switching from short–way to long–way solutions or
from long–way to short–way solutions. Corresponding to these transitions, a jump on the
�V occurs. This jump is very small in general (especially referring to transitions from the
short–way to the long–way solution) due to the low inclination of the planetary orbits.

It is well known that Taylor polynomial expansions fail when discontinuities on the pro-
cessed function occur. This can be deemed as the cause of the presence of undesired boxes
after pruning: Taylor expansions within boxes lying on the discontinuity do not accurately
approximate the constraint functions; consequently bounds of the corresponding ranges are
wrongly estimated, and the boxes tend to be kept in the list of admissible boxes.

Extensive work has been devoted to overcome the discontinuity problem, and to improve
the accuracy of the enclosure of the pruned search space (see Bernelli-Zazzera et al. 2006 for
details). The idea for the adopted solution came from the observation that the unfavorable
discontinuity lines (i.e., the lines close to good local minima) correspond to the transition
from the short–way to the long–way solution of the Lambert’s problem. These discontinuity
lines vanish if a planar planetary model is used instead of the actual three-dimensional model
associated to the ephemeris evaluator: the orbital plane of the connecting Lambert’s arc is
uniquely determined as coinciding with the ecliptic, and the transition from the short–way
to the long–way solution is continuous.

A major observation can be stated, which is the main driver for the following decisions.
A systematic analysis of the difference between the �V in the three-dimensional, �V3D ,
and the planar, �V2D , planetary models over the entire search space was performed. It turns
out that �V3D ≥ �V2D on the whole search space. Consequently, if the pruning process
is performed in the planar planetary model, no branches of the feasible domain in the real
three-dimensional model are lost. In other words, the boxes remaining after the pruning pro-
cess performed on the planar model include the feasible domain of the real three-dimensional
model.

Given the previous considerations, a planar planetary model is adopted in the DA-based
GASP algorithm to perform the pruning process. No mathematical proof is supplied about
the validity of this conservative hypothesis for a general transfer. The low inclination of
all planetary orbits, and geometrical considerations, lead to the decision of conjecturing its
validity for interplanetary transfers in the solar system. Although more rigorous mathematical
considerations should be sought in future works, the fairness of the hypothesis is confirmed
by an extensive test campaign (Bernelli-Zazzera et al. 2006).

It is worth stressing that the use of the planar model is not strictly made to approximate
the real three-dimensional model, but rather to “filter” the three-dimensional model in such
a way that
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Fig. 10 Enclosure of the pruned
search space for the Earth–Mars
transfer using the planar model
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– the unsought boxes remaining after the pruning process on the discontinuity lines are
eliminated;

– no branches of the feasible domain of the real three-dimensional model are lost.

We anticipate that the previous approximation is used within the pruning process only,
whereas the subsequent optimization processes in the remaining boxes are performed within
the actual three-dimensional planetary model.

As a further proof of the validity of the approximation, the performances of the resulting
pruning algorithm on the Earth–Mars transfer problem are analyzed in Fig. 10. The boxes
remaining after the pruning process carried out in the planar model sharply enclose the pruned
search space of the three-dimensional model. A plain improvement in enclosure accuracy
can be detected by comparing Fig. 10 with Fig. 9.

5.2 Dependency problem

The considerations reported in Sect. 5.1 are based on analyses performed within the frame-
work of a planet-to-planet transfer, where the departure epoch and the transfer time are
selected as design variables. However, an alternative problem formulation is preferable. In
particular, substituting the arrival epoch in place of the transfer time in the set of design
variables has already shown important advantages from a computational point of view (Izzo
et al. 2006), as it significantly reduces the number of ephemeris evaluations required by the
pruning algorithm. Together with the particular mathematical model adopted for the design
of MGA transfers, this allows the whole process to gain a polynomial complexity. Further
reasons of selecting this second formulation can be outlined, which are important alike for
the DA-based GASP, especially if actual MGA transfers are studied.

Consider the scheme of an Earth–Mars–Jupiter transfer, reported in Fig. 11. The set of
design variables usually selected for this MGA transfer is composed of the departure epoch
from Earth, TE , the transfer time from Earth to Mars, tE M , and the transfer time from Mars
to Jupiter, tM J . For the sake of clarity, this formulation is referred to as “relative times
formulation” in the followings.

The evaluation of the overall �V starts in general from the analysis of the first arc con-
necting Earth to Mars. Suppose the relative times formulation is being used. Thus, referring
to Fig. 12, the quantities related to the first arc are characterized in the (TE , tE M )-plane. As
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Gravity assist space pruning based on differential algebra 15

Fig. 11 Scheme of an
Earth–Mars–Jupiter transfer

Fig. 12 Design space for the first
arc of the Earth–Mars–Jupiter
transfer

both TE and tE M are design variables, in the framework of the DA-based GASP, a box is
readily identified by the DA representation of both variables, and the computation goes on
as depicted in the previous sections. Suppose now the first arc has been processed, and the
second arc from Mars to Jupiter is of interest. The quantities associated to the second arc are
characterized in the (TM , tM J )-plane, where TM is the arrival epoch at Mars. However, TM is
not a design variable in the relative times formulation, and it is computed as TM = TE + tE M .
Even if tM J is a design variable, the size of the corresponding interval on TM is the sum of the
box size on TE and tE M in the DA-based GASP. The previous considerations can be easily
extended to MGA transfers involving more than three planets: the box size on the departure
epoch from each planet increases along the transfer. This effect is strongly related to the
dependencies associated to the relative times formulation.

The problem dependencies are highlighted in Fig. 11. Focusing on the dependence of the
planetary ephemerides on the design variables, the position of Earth, r E , depends only on
the departure epoch TE . The position of Mars, r M , is evaluated using the epoch at Mars TM .
Consequently, r M will depend on the two variables TE and tE M . Similarly, the dependence
of the position of Jupiter on the three variables TE , tE M , and tE J is highlighted. Thus, in an
MGA transfer involving n planets, the position of the i-th planet will depend on the departure
epoch from Earth, and all the transfer times associated to the prior i − 1 connecting arcs.
Therefore, the dimensionality of the dependency increases along the transfer, reaching its
maximum corresponding to the last connecting arc, where quantities will depend on all n
variables. Similar arguments hold for the associated �V , on which inequality constraints are
usually set.

The previous dependency problems can be overcome using the alternative strategy of
Myatt et al. (2004). In particular, the departure epoch from Earth is kept within the set of
design variables, whereas the transfer times are replaced by the epoch at each remaining
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Fig. 13 Design space for the
second arc of the
Earth–Mars–Jupiter transfer

planet of the MGA sequence. Referring again to the Earth–Mars–Jupiter transfer, the new
set of variables will include the epochs at Earth, TE , Mars, TM , and Jupiter, TJ . In contrast
to the relative times formulation, the new formulation is referred to as the “absolute times
formulation” in the followings.

A review of the previous analyses will be of help to gain a valuable insight on the advan-
tages of the new formulation. Consider again Figs. 12 and 13. Using the absolute times
formulation allows both arcs to be characterized within planes that are directly defined by
design variables. Thus, no increase in box size occurs along the transfer. Referring instead
to Fig. 11, the planetary ephemerides will depend on the epoch of the planet, which is now
included in the set of design variables. If the �V associated to the whole transfer are of
interest (which is the case in the pruning process of GASP), it can be easily shown that the
maximum dimensionality of the dependency corresponds to the �V of the powered gravity
assist maneuvers, which will depend on three design variables. The outcome of the previ-
ous analysis led to the decision of adopting the absolute times formulation as the baseline
approach in the DA-based GASP.

6 Test cases

In this section, relevant test cases are addressed to assess the performances of the DA-based
GASP algorithm. After the pruning, an optimization process must occur within the remaining
boxes to serve the purpose of optimizing the overall �V and identifying optimal transfer
solutions. Consequently, before illustrating the results of the test phase, Sect. 6.1 describes
the philosophy adopted for this optimization process. The performances of the algorithm on
several test cases are then reported, ordered by increasing complexity.

For each test, the problem is first defined. The search space is identified by indicating
lower and upper bounds on each variable. Referring to the box-wise approach of the DA-
based GASP, the size of the sampling boxes corresponding to each variable is reported. The
cutoff values for the departure and arrival �V , as well as for the corrective �V at each
powered gravity assist, are indicated. Concerning the minimum allowed pericenter radii for
the gravity assist maneuvers, a common rule has been adopted for all the planets: given the
mean radius of a planet P , RP , the corresponding minimum allowed pericenter radius is set
to 1.05 RP .

Then, the results of the pruning process are reported in terms of the total number of boxes,
the number of feasible boxes remaining after pruning, and the CPU time required by the prun-
ing process. It is worth observing that the total number of boxes is meant to give an idea on
the dimension of the search space, and it is different from the number of the boxes processed,
thanks to the forward and backward constraint propagation (see Sect. 2). The computational
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time is relative to a PC, 1.9 GHz CPU, 512 Mb RAM. As far as the optimization process is
concerned, the best solution identified and the associated �V are reported.

6.1 Optimization process

The outcome of the pruning process carried out by the DA-based GASP is a list of boxes,
all fulfilling the requirement that at least a portion of them satisfies the feasibility conditions
related to the constraining �V values and the minimum allowed pericenter values. An opti-
mization process is then necessary to locate the minimum of the objective function, which is
the purpose of the original optimization problem.

Before describing the details of the optimization process, some notes are given about the
polynomial bounders adopted in the pruning process. In all the previous examples, the linear
dominated bounder (LDB) algorithm is used to estimate the range of the constraint functions
over each box. The LDB algorithm is introduced in the framework of Taylor models (Makino
1998; Makino and Berz 2005; Berz et al. 2006) and it is based on the observation that the
dominating part of the total bounds of a polynomial are expected to come from the linear
part. This algorithm is capable of producing validated bounds for polynomials of any order.
Unfortunately, range overestimation problems appear when LDB is used for complex MGA
transfers, which led to the decision of implementing a non-validated quadratic bounder in
the current version of the DA-based GASP (Bernelli-Zazzera et al. 2006). The non–validated
bounder makes use of the quadratic part of the Taylor expansion to get estimates of the min-
imum of a function over each box. More specifically, if the resulting quadratic polynomial
is positive definite, its minimum is easily estimated by locating the zero–gradient point, and
checking its inclusion within the box. Only linear information is used instead in the case of
lack of positive definition properties. An evident drawback is that, in contrast to the validated
LDB, the non-validated quadratic bounder could underestimate the exact enclosure. How-
ever, an extensive test campaign confirmed the validity of the introduced approximations
(Bernelli-Zazzera et al. 2006). Moreover, thanks to the second order information, besides the
minimum of the function within each box, estimates for its location are returned.

It is worth pointing out that, if the non-validated quadratic bounder is used, there are
no advantages and reasons to use expansion orders greater than two. Consequently, second
order expansions are used in all the test cases for the DA-based pruning process. This choice
necessarily constrains the size of the boxes, which must be selected in such a way to prevent
excessive accuracy loss. Furthermore, even in the case of smooth and regular functions, clus-
tered minima may occur, which further affects the maximum allowed box size. Therefore,
a test campaign was carried out to support the proper selection of the box size. More spe-
cifically, the DA–based GASP algorithm was applied to test cases available in the literature
using second order expansions. Estimates for the maximum box size to be used in order
to avoid losing the identification of the known best solutions were obtained. The resulting
estimates turned out to assure in any case a reduced computational effort with respect to the
classical implementation of GASP. The results of this analysis supplied the heuristics for the
selection of the box size in other applications.

It is now possible to detail the philosophy adopted for the optimization process, which
mainly relies on multiple runs of a local optimizer, based on the following steps:

1. the aforementioned non-validated bounding process is used to estimate the minimum
value of the objective function of the planar model, as well as its location, within each
box;
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2. the boxes are sorted based on the minimum objective function values estimated in step 1;
3. a number of these boxes are properly selected;
4. starting from the estimated location of the minimum, a local optimization process is run

within each selected box by minimizing the overall �V associated to the actual three-
dimensional transfer problem.

The previous optimization philosophy deserves some comments. Different models for the
constraint and objective functions evaluation are implemented in the two main phases of the
previous algorithm; i.e., search space pruning and total �V optimization. In particular, the
planar planetary model is used within the search space pruning phase only. This decision
relies on the conservative hypothesis pertaining the planetary model depicted in Sect. 5.1.
This approximation is abandoned in the subsequent optimization process of step 4, where
the actual three-dimensional planetary model, and the iterative Newton method are used to
evaluate the planetary ephemerides and to compute the solutions of the implicit equations.

Moreover, the box selection phase (step 3) is based on the following heuristics. Suppose
the overall objective function range is available, which is computed on all the minima iden-
tified within each box in step 1. Only the boxes with an estimated function value within the
lowest 5 percentile of all the registered function values are selected. The 5% value is purely
based on the experience gained during extensive test campaigns. The parameter is anyway
kept settable by the user.

The local optimization runs involved in step 4 are carried out within each box. This means
that the identified local minima are interior to the feasible boxes, as well as the finally esti-
mated global minimum. Moreover, the objective function used in the optimization phase is
the overall �V associated to the actual three-dimensional transfer problem. Consequently,
based on the conjecture in Sect. 5.1, local minima of the three-dimensional transfer problem
are identified, as the boxes remaining after the pruning process performed on the planar
planetary model enclose the feasible domain of the real three-dimensional planetary model.

The local optimization runs are carried out using sequential quadratic programming and
they require a first guess solution. Instead of using random first guesses, the information
available from the planar model adopted in the pruning process are used to identify good first
guesses for the local optimization runs, based on the heuristics that the planar model is an
acceptable approximation of the three-dimensional model for this purpose. More specifically,
within each box, the estimated location of the minimum of the objective function obtained in
the planar planetary model is used as first guess solution. It is worth observing that, based on
this procedure, only one local minimum is identified within each box. Consequently, good
local minima are likely to be lost if more than one local minimum is enclosed within a box.
This constrains the size of the boxes to be used in the pruning process.

6.2 Earth-Mars transfer

The first test case is the Earth–Mars transfer. The search space is defined in Table 1. It is
worth observing that bounds on the departure epoch from Earth, TE , and on the transfer time
from Earth to Mars, tE M , are given. Consequently, the search space definition is made within
the relative times formulation. However, as stated in Sect. 5.2, pruning is carried out in the
absolute times formulation. This observation holds for all the following test cases. The box
size along each epoch is indicated in the fifth column. The cutoff values for the maximum
allowed departure and arrival �V are reported in the sixth column. A further constraint is
imposed on the maximum allowed overall �V , which is reported within round brackets on
the head row in the same column.
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Table 1 Search space and best solution identified for the EM transfer

Planet Variable Lower bound Upper bound Size Cutoff (10) Solution
(days) (days) (days) ( km/s) (days)

E TE 1000 6000 50 5 3573.188
M tE M 100 600 50 5 324.047

The main results pertaining the performances of the DA-based GASP are:

– Total number of boxes: 1000
– Feasible boxes: 64 (6.4%)
– CPU time: 0.220 s
– Best identified �V : 5.6673 km/s

The reported value of the best �V refers to the results of the optimization process described
in Sect. 6.1, which follows the DA-based pruning process. The last column of Table 1 lists
the values of the design variables corresponding to the best solution identified.

6.3 Earth–Venus–Mars transfer

One planet is added to the sequence of planets involved in the transfer, where a powered grav-
ity assist maneuver is performed. In particular, an Earth–Venus–Mars transfer is investigated.
The search space is defined in Table 2. The cutoff values at Earth and Mars are still related
to the departure and arrival �V , whereas the cutoff value of 2 km/s at Venus now refers
to the maximum allowed corrective �V at the pericenter of the corresponding hyperbolic
trajectory, as provided by the powered gravity assist model.

The main performance parameters are:

– Total number of boxes: 14400
– Feasible boxes: 165 (1.1%)
– CPU time: 1.8321 s
– Best identified �V : 8.5226 km/s

The last column of Table 2 reports the optimal solution identified at the end of the optimi-
zation processes. A two-dimensional plot of the corresponding trajectory can be found in
Fig. 14.

6.4 Cassini-like transfer

This section is devoted to an MGA transfer problem which has already been analyzed in the
past (Izzo et al. 2006; Di Lizia and Radice 2004). Saturn is set as the target planet, which is

Table 2 Search space and best identified solution for the EVM transfer

Planet Variable Lower bound Upper bound Size Cutoff (12) Solution
(days) (days) (days) ( km/s) (days)

E TE 1000 6000 50 5 5611.480
V tEV 100 500 50 2 157.603
M tV M 100 1000 50 5 255.596
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Fig. 14 Trajectory of the best
EVM transfer
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reached after four gravity assists. Thus, the overall transfer involves six planets, so leading
to a six-dimensional optimization problem. The sequence is fixed to Earth–Venus–Venus–
Earth–Jupiter–Saturn (EVVEJS), which can be evidently recognized to be the sequence of
the Cassini mission (Peralta and Smith 1993), except no deep space maneuvers are allowed.

Before presenting the results for this test case, some notes must be reported about a
further necessary expedient which has to be added in the case of MGA transfers where res-
onances might play an important role in the optimization, as in the EVVEJS transfer case.
The discontinuity problem is solved by adopting a planar planetary model. Nevertheless, this
strategy is not able to solve the same problem for the transition from the long–way to the
short–way solution. The occurrence of this discontinuity is particularly undesirable in arcs
where resonance conditions are known to improve the overall transfer performances, such
as the Venus–Venus arc in the EVVEJS sequence. An expedient is introduced to overcome
the previous difficulty, which is based on the observation that, in a planet-to-planet transfer
involving only one planet, the discontinuity disappears if multi-revolution solutions for the
Lambert’s problem are used (Di Lizia 2008). In particular, given a box to be processed, if
the enclosed transfer times include resonance conditions, the multi–revolution solution is
allowed. In this manner, the EVVEJS test case can be effectively managed by the DA-based
GASP, as illustrated in the followings.

The search space for the optimization problem is set as defined in Table 3. A maximum
value of 12 km/s is used for the overall �V . The main results pertaining the performances of
the algorithm are listed below:

– Total number of boxes: 32768000
– Feasible boxes: 1085 (0.003%)
– CPU time: 1.93 s
– Best identified �V : 4.9307 km/s

Note that the best identified �V refers to the final insertion of the spacecraft into an orbit
around Saturn of eccentricity 0.98 and periapsis 108950 km, as considered in Izzo et al.
(2006). For the sake of clarity, it is worth observing again that the total number of boxes
is different from the number of boxes that must be processed during pruning. Thanks to
the forward and backward constraint propagation, the latter is significantly lower then the
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Table 3 Search space and best solution for the EVVEJS transfer

Planet Variable Lower bound Upper bound Size Cutoff (12) Solution
(days) (days) (days) ( km/s) (days)

E TE −1000 0 50 4 −790.2077
V tEV 10 410 25 2 158.0403
V tV V 100 500 25 2 449.3858
E tV E 10 410 25 2 55.1819
J tE J 400 2000 200 2 1019.7660
S tJ S 1000 6000 200 6 4543.5110

Fig. 15 Trajectory of the best
EVVEJS transfer
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former. Specifically for the problem at hand, the actual number of boxes processed turns out
to be 4065.

Figure 15 reports a two-dimensional plot of the trajectory corresponding to the best iden-
tified solution, whose solution vector is listed in Table 3. The occurrence of a resonance at
Venus can be verified in Fig. 16, which gives a detail of the whole transfer. The identified
objective function value agrees with the known best one (http://www.esa.int/gsp/ACT/inf/
op/globopt/evvejs.htm accessed on 7/7/2009).

7 Conclusions

This work investigated the benefits that DA techniques can bring to the pruning of the search
space of a specific class of MGA transfers. More specifically, differential algebra was intro-
duced to substitute the pointwise evaluation of objective function and constraints used in
GASP with their Taylor expansions over sampling boxes. A 2D version of the MGA transfer
modeling used in GASP was adopted. Significant work was devoted to address the discon-
tinuity and dependency problems. The solution to the discontinuity problem was the use of
a planar planetary model for the solar system, which was conjectured to be a conservative
hypothesis for the analyzed transfers. The validity of this approach, limited to planetary
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Fig. 16 EVVEJS transfer: detail
of Fig. 15
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transfers, was shown by the optimal solutions found running a sequential quadratic program-
ming algorithm on the feasible domain.

The resulting DA-based GASP can handle wide sampling grids, ranging from 50 up to
200 days. Thus, as the computational effort for a second order DA evaluation is on average
20% greater than for its pointwise counterpart, a more computationally efficient pruning
algorithm is obtained. Furthermore, the additional nuisance of estimating the Lipshitzian
tolerance is avoided at the price of selecting a box size compatible with the expansion order.
The test cases showed that

1. the pruning process is fast;
2. regions containing known optimal solutions are kept in the feasible domain;
3. a second order Taylor expansion is appropriate for both estimating the range of the objec-

tive function and constraints, and for obtaining good first guess solutions for the subsequent
optimization process;

thus proving the effectiveness and the efficiency of the DA-based GASP.
The favorable results obtained also suggest to study the use of verified Taylor model based

methods, which in addition to the polynomial approximations obtained with DA also pro-
vide rigorous bounds for the accuracy with which the polynomials represent the function
over the local domain of interest. This may represent a viable approach towards the eventual
development of fully rigorous optimization tools eventually for the pruning and optimization
problem.
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Appendix

The polynomial maps resulting from the application of the algorithm for the Taylor expansion
of the solution of parametric implicit equations to the evaluation of planetary ephemerides
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Fig. 17 10th order expansion of Mars position: polynomial maps corresponding to each component of the
position vector

are reported here. More specifically, the Taylor expansions of Mars’ ephemerides analyzed
in Fig. 5 are presented. The epoch is first initialized as a DA variable: [T ] = T 0 + δT , where
T 0 is the reference epoch for the expansions. An analytical ephemeris model is then used to
evaluate the eccentricity e and the mean anomaly M as Taylor expansions with respect to the
epoch; i.e., e(δT ) = Me(δT ), and M(δT ) = MM (δT ). The Kepler equation is then solved
in parametric form to attain the resulting Taylor expansion of the eccentric anomaly with
respect to the epoch; i.e., E(δT ) = ME (δT ). The identification of ME (δT ) relies on the
use of the algorithm for the expansion of the solution of parametric implicit equations pre-
sented in Sect. 3.1. Once ME (δT ) is available, the Taylor expansions of the planet position
and velocity with respect to the epoch,

r(δT ) = Mr(δT )

v(δT ) = Mv(δT ),
(18)

are readily obtained by means of mere algebraic manipulations.
Referring to the analysis performed in Fig. 5, the resulting 10-th order Taylor polynomials

for each component of Mars’ position are reported in Fig. 17. For each polynomial, the first
column lists the coefficients of the Taylor expansions, whereas the second column shows the
corresponding order. As the polynomials are monovariate expansions, the order coincides
with the associated exponent for the expansion variable T . The polynomials reported in the
figure refer to the maps

r(δT̃ ) = Mr(δT̃ )

v(δT̃ ) = Mv(δT̃ ),
(19)

with T̃ = T/(w/2), where w is the amplitude of the interval of epochs analyzed in Fig. 5;
i.e., w = 40 days. The variable T̃ is introduced to suitably rescale the resulting polynomials,
so avoiding possible numerical problems associated to the representation of the coefficients
in the computer environment.
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