
Fields Institute Communications
Volume 00, 0000

Computer Assisted Proof of the Existence of
High Order Periodic Points

Alexander Wittig
Department of Physics and Astronomy

Michigan State University

East Lansing, MI 48824

Martin Berz

Sheldon Newhouse

Abstract. We describe an efficient method to rigorously prove the exis-
tence and attractiveness of high period periodic points through verified
numerical computations. The proof consists of two parts: first the ex-
istence and then the attractiveness. To prove the existence, we only
require a non-verified, numerical approximation of the derivative of the
map at the fixed point. In the second part of the proof we require
knowledge of the exact derivative. The use of Taylor Models in COSY
INFINITY to carry out the calculations very successfully controls the
dependency problem commonly encountered in verified numerics.

In comparison, we also implemented the same proof using tradi-
tional interval arithmetic. This approach is more complicated, as it
requires calculations to be carried out in higher precision than the stan-
dard double precision. Also, interval methods suffer significantly from
the dependency problem, which requires splitting of the domain into
smaller, more tractable pieces.

We then apply both algorithms to prove the existence of a period
15 point in a Hénon map very close to the standard parameters. Using
high precision intervals, we obtain a very tight enclosure of the periodic
point with a precision of up to 70 decimal digits. By examining the
Jacobian of the 15th iterate of the map, we lastly establish uniqueness
and attractiveness of this periodic point.

1 Introduction

Given a continuously differentiable map

M : Rn 7→ Rn,

1991 Mathematics Subject Classification. Primary 37C25; Secondary 70K50, 65P30.
The first author was supported in part by DOE Grant #XXXXXX..

c©0000 American Mathematical Society

1



2 Alexander Wittig, Martin Berz, and Sheldon Newhouse

we want to prove the existence of a periodic point ~x of order m of that map, i.e. a
point ~x ∈ Rn such that

Mm(~x) = ~x.

The direct proof, of course, would be to obtain the exact periodic point ~x, and
apply the map M m times. If the result is the same as the initial argument, ~x is a
periodic point. Unfortunately, this direct method is only possible for simple maps
where the periodic point can be calculated analytically. As soon as this becomes
impossible, that way of proving the existence of a periodic point cannot be employed
anymore.

Fortunately, there are many other methods available to prove the existence of
a periodic point of a given map M . In particular, we are interested in methods
that do not require exact knowledge of the periodic point, but rather allow us to
prove that a certain subset K ∈ Rn contains a periodic point. That way, if K is
small enough, one can obtain very good approximations to the position of a periodic
point, without having to calculate it exactly, which in general is intractable on a
computer.

The probably most common theorem of that type is the Banach fixed point
theorem[2]. It can be applied to prove the existence and uniqueness of an attractive
periodic point. We will use this method in section 4 to prove attractiveness and
uniqueness of the periodic point.

In our proof of existence, however, we want to use a weaker theorem for several
reasons. The Banach fixed point theorem requires knowledge of a Lipschitz constant
for the map. Often this is obtained through the derivatives of the map. It is not
always convenient to obtain an analytic expression of the derivative of a map. But
even if the derivative is known, evaluating the derivative of a high period iteration
of a map by the chain rule is computationally expensive.

Fortunately, to only prove the existence of one or more fixed points we can make
use of the following version of the well known Brouwer fixed point theorem[5]:

Theorem 1.1 (Brouwer Fixed Point Theorem) Let a continuous map M :
Rn 7→ Rn and a convex compact set K ⊂ Rn be given. If M(K) ⊂ K then K
contains at least one fixed point of M .

Note that this statement of the theorem uses the well known fact that any
convex compact set in Rn is homeomorphic to a closed unit ball of some dimension
k 6 n[7].

The conditions of Brouwer’s theorem are easily verified by rigorous computa-
tions, which makes this theorem very useful for our purposes. Furthermore, the
conditions for the Banach Fixed Point Theorem include the verification that a cer-
tain closed set is mapped into itself. Taking that set to be the interval box used in
Brouwer’s theorem, it is relatively simple to apply the Banach fixed point theorem
to prove uniqueness and attractiveness.

1.1 Proof of Existence of Periodic Point. Consider now the application of
Brouwer’s theorem to the problem at hand. Let M be a continuously differentiable
map. Without loss of generality, we assume the presumed periodic point of order
m is near the origin. If that was not the case, we simply consider the new map

Mnew(~x) = M(~x+ ~z)− ~z, (1.1)
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where ~z is an approximation of the presumed periodic point. This new map is still
continuously differentiable, and will have a presumed periodic point of the same
order m near the origin.

Furthermore, if Q is a regular n×n matrix, then instead of Mm, we can consider
the conjugated map

M̃(~x) = Q−1(Mm(Q(~x))). (1.2)

By continuity, if M̃ has a fixed point x0 near the origin, then M has the periodic
point Q(x0) of order m which is also near the origin.

Let K be a n-dimensional interval vector K = ([−ε, ε] , . . . , [−ε, ε]), where ε > 0
is small. Being a Cartesian product of closed intervals, K is certainly compact and
convex for any choice of ε.

We now want to show that M̃(K) ⊂ K. Once this has been proven, then
applying Brouwer’s theorem leads to the conclusion that there is a fixed point of

M̃ in K.
Note that, depending on the map M and the choice of ε, the proof may not

yield a conclusive result. If M̃(K)
⋂
K 6= ∅ but M̃(K) 6⊂ K, then no statement can

be made about the existence or non-existence of a periodic point.

1.2 Preconditioning. Assume now the Jacobian J of Mm at the origin is
known approximately through some non-verified, numerical computation. Assume,
furthermore, all eigenvalues of J have norm less than 1. There then is a linear
transformation Q, such that Q−1JQ contracts each face of the box K towards the
origin.

This preconditioning by Q transforms, to first order, the attractive region
around the origin to a rectangle, instead of a more general parallelogram. With
this preconditioning, the proof will succeed in more cases that would otherwise not
yield a result. Consider, for example, in dimension 2 the linear map Φ given by the
matrix

α ·
(
−1 2
0 1

)
with 0 < α < 1. The eigenvalues are ±α, and thus less than one in absolute value,
yet the point (−1, 1) is mapped to (3, 1). Thus no square centered at the origin with
sides parallel to the coordinate axes will be mapped into itself. This only occurs
after a change of coordinate such that the coordinate axes become eigenvectors.

2 Rigorous Computation

Standard floating point numbers available on computers only represent finite
approximations to real numbers and are therefore not adequate for rigorous com-
putations. For rigorous computations, typically interval arithmetic[12] is used. The
problem with intervals is that they suffer from significant overestimation due to the
dependency problem.

We will therefore use a more sophisticated method to perform rigorous numeri-
cal calculations. In this paper, remainder enhanced differential algebra expansions,
also known as Taylor Models, are used to keep the dependency problem under con-
trol. It is well known that in dynamical systems those Taylor Models provide a
very efficient way to control functional dependency[10].

Taylor Models are based on a differential algebra, which, combined with rig-
orous book keeping of all calculation errors and truncated orders, yields a Taylor
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expansion of a function up to arbitrary order valid on a given domain together with
a rigorous remainder bound. Using Taylor Models, it is then possible to obtain
rigorous enclosures of the range of a function over a given domain[3, 9].

2.1 Rigorous Coordinate Transformation. In the mathematical discus-
sion above, we reduced the proof of the existence of any attractive periodic point
to the proof for fixed points at the origin. In the proof, we used a preconditioning
matrix Q such that the eigenvectors of the Jacobian of Mm at that point coincide
with the coordinate axes. To reduce the map to that case, it generally is neces-
sary to perform a translation and an affine transformation. While this is easy to
do mathematically, some care has to be taken when this is done in rigorous com-
puter arithmetic. The translation is simple, as the calculation of the inverse is
just the negation of the periodic point coordinates, which is exact in floating point
arithmetic.

The more complicated part is the linear transformation into eigencoordinates,
if applicable. To obtain this transformation, the approximate eigenvectors of the
map at the periodic point have to be determined first. Here it is not necessary to
be rigorous, as the proof above clearly is correct with any regular linear transfor-
mation. To obtain the expansion of the map to first order, we use non-verified,
automatic differentiation through the DA data type in COSY INFINITY. Once
we have obtained the matrix representation of the linear part of the map, any of
the well known numerical methods to calculate eigenvalues and eigenvectors can be
applied. This allows us to construct the matrix to transform eigencoordinates into
Cartesian coordinates.

To complete the coordinate transformation, this matrix has to be inverted.
This inversion has to be done rigorously to ensure that the resulting matrix really
represents the inverse. In the example given below, the Hénon map is only two
dimensional and thus the inversion of the matrix is easy. Instead of performing
the calculations in floating point arithmetic, we use either interval or Taylor Model
arithmetic. That way, we obtain a matrix of intervals or Taylor Models, which can
be used to rigorously transform from Cartesian coordinates into eigencoordinates.
For higher dimensions, more elaborate algorithms have to be used to obtain a
rigorous inverse.

Once this is done, a rigorous representation of M̃ can be constructed. In all
further considerations, we will only use that map instead of the original map M .

2.2 Proof using Intervals. Following the discussion above, using intervals
in principle is a fairly straightforward procedure. First one picks a small interval

box K, as described above. Then the box is mapped by M̃ and the result M̃(K)
is verified to lie within K. With intervals, this test can easily be performed. All
that has to be done is to compare the boundaries of the resulting intervals for each
coordinate with the corresponding coordinates boundaries of the initial interval box
K.

However, due to the overestimation in interval arithmetic, the initial box as a
whole will most likely not be mapped into itself right away. In particular, if the map

M̃ is of high order, there will be significant dependency introduced in the interval

arithmetic, and the result of M̃(K) will be several orders of magnitude larger than
the smallest enclosure of the mathematically correct result. Nonetheless, as long as
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there is some overlap between M̃(K) and K, there is a chance that the boxes may
actually map into each other.

To overcome this problem, it is necessary to split the starting box K into
smaller boxes and map those. As the error in interval arithmetic decreases linearly
with the box size, we can expect that, after a sufficient number of splits, the small
boxes will eventually map into the original box K. Clearly, all of K is mapped into
itself iff every small piece is mapped entirely into the original box.

For the actual implementation, there are a few considerations to be made.
Certainly, one does not want to split the box into small pieces of a fixed, predefined
size. We do not know the best box size, and, in fact, the optimal size of the
boxes varies depending on the position within the starting box K. Pieces close
to the center can be larger than pieces right at the boundary of K. Instead, an
algorithm that automatically determines the optimal box size for the region under
consideration is preferable. To implement this efficiently, it is best to use a stack
based approach. Whenever a box fails to map fully into K, we split it and continue
the process with the newly created boxes until all boxes were successfully mapped
into K.

The complete algorithm for the verification procedure with automatic box size
control is as follows:

1. Start with initial box K on the stack
2. Take the top box S off of the stack and evaluate M(S)
3. Compare M(S) and K

• If M(S) ⊂ K, discard S as it has been successfully mapped into K.
• Otherwise, if M(S)

⋂
K 6= ∅, split S along each coordinate axis once,

and push the resulting four pieces onto the stack.
• If neither of the above is true, we have M(S)

⋂
K = ∅. In this case,

declare failure and stop, as we just mapped a piece of K completely
outside of K.

4. Continue with 2 until there are no more boxes on the stack.

While this looks trivial, there is a pitfall hidden in the implementation of this
algorithm. For the interval algorithm to work, we require relatively small boxes.
In all but the most simple cases, the split boxes have to be so small, that double
precision intervals are not precise enough to carry out the operations anymore. In
Equation 1.1 we need to calculate ~x+~z, where ~z is the presumptive periodic point,
and ~x is one of the small boxes.

In typical maps (see section 3), the coordinates of the periodic point ~z will be
of order one, whereas the box size is of order 10−15. It is evident, that this addition
cannot be carried out precisely in double precision. As a result, as we keep splitting
the search space into ”smaller” pieces, we will quickly exhaust the available memory.
The small pieces, however, are then effectively lost due to the limited precision in
the coordinate transformation. That is the reason why an interval package with
higher precision is required to carry out these calculations.

2.3 Proof using Taylor Models. The proof using Taylor models differs sig-
nificantly from the interval version of the proof. Taylor Models significantly reduce
the overestimation, that caused the intervals to grow rapidly. This is due to the
drastic reduction of the dependency problem intrinsic to Taylor Model arithmetic.
Thus, instead of mapping a very small box by successively splitting it, we will
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map just one single box of much larger size. With Taylor Models, this is already
sufficient to map the box into itself and thus to conclude the proof.

To set up the calculation, we first generate the map M̃ with an inverse Taylor
Model matrix as described in subsection 2.1. Next, we create two Taylor Models xi
and yi with only a linear coefficient of size 10−6 in the first and second independent
variable, respectively. The image of the domain of these two Taylor Models then
represents an initial box of width 10−6 centered around the origin. Last, we map

these Taylor Models by M̃ , and verify that the image of the resulting Taylor Models
xf and yf lies within that of xi and yi.

COSY INFINITY provides intrinsic functions to calculate an outer interval
enclosure of the range of a Taylor Model, so we can easily obtain intervals containing
the images of xf and yf . To verify that these two intervals actually lie within the
range of the initial Taylor Models is a little more complicated. To test for enclosure,
it first is necessary to obtain an inner interval enclosure of the image of the initial
Taylor Models xi and yi. In this case, those enclosures can be obtained easily, since
the initial Taylor Models are constructed to have a simple structure.

The initial Taylor Models only consist of one linear coefficient and a remainder
bound. To obtain an inner enclosure one can simply take the remainder bound
and add, in interval arithmetic, the linear coefficient extracted from the Taylor
Model. Thus one obtains an enclosure of the upper bound of the image of the
Taylor Model. Taking the lower bound of that interval yields an upper bound of
the inner enclosure. Applying the same technique, but this time subtracting the
linear coefficient from the remainder bound, and taking the upper bound of the
resulting interval one obtains a lower bound for the inner enclosure (see Figure 1).

With the inner enclosure of the initial Taylor Models known, one compares those
two inner interval bounds of the image of xi and yi to the outer interval enclosure
of the image of xf and yf . If the outer range enclosures of the final coordinates
are fully contained within the inner range enclosures of the initial coordinates, the
initial box was mapped into itself.

!
"

!
"

!
#

!
#

Figure 1 The image of a Taylor Model box (solid black), the interval bounds
Ix and Iy , and the rigorous inner enclosure (hatched).
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3 Application to Near Standard Hénon Map

We now apply the methods developed above to an example. In the following,
we consider one of the simplest maps exposing chaotic behaviour, the Hénon map[8]

H :

{
R2 → R2

(x, y) 7→ (1 + y −Ax2, Bx).

In the original map studied by Hénon himself, and many others after him, the
parameters were chosen to be A = 1.4 and B = 0.3. We consider a slightly different
value A = 1.422 while keeping B = 0.3.

In this map, the existence of an attracting period 15 point was suggested by
non-verified numerical experiments. The coordinates of this suggested periodic
point are approximately

x ≈ −0.0869282203452939,

y ≈ 0.2391536750716747.

As this point seems to be attractive, simple iteration of the Hénon map, starting
with those coordinates, improves the approximate coordinates until the change
between iterations is of the size of floating point errors. In standard double precision
calculations this will yield about 15 valid decimal digits.

Using non-verified floating point calculations, we want to gain some insight
into the general behavior of this periodic point. Simply iterating the coordinates
given above by the map H15 a few times in double precision yields the following
noteworthy results.

H15 : x = −0.0869282203454442 y = 0.2391536750716964

H30 : x = −0.0869282203452939 y = 0.2391536750716747

H45 : x = −0.0869282203454442 y = 0.2391536750716964

H60 : x = −0.0869282203452939 y = 0.2391536750716747

Note how the last few underlined digits alternate between two different points.
Looking at this result naively, one may suspect that the periodic point is actually
of period 30, instead of period 15. It will turn out, however, that these oscillations
are caused by floating point roundoff errors, and have no mathematical significance.
We just happened to find an orbit for which this effect appears.

3.1 Proof of Existence. Using the environment for rigorous numerical cal-
culations provided by COSY INFINITY[11], we implemented the algorithm for an
automated proof using Taylor Models as described in subsection 2.3. The imple-
mentation is straightforward, since our example only has two dimensions we can
perform the calculation of eigenvectors and eigenvalues, as well as the matrix in-
version, analytically. To make sure the inversion is rigorous, we carry out those
calculations using Taylor Models with only a constant part instead of floating point
numbers. The result is a matrix of Taylor Models entries.

In the following, we will denote an interval of the form [1.2345678, 1.2346789]
by 1.23467895678 to conserve space and make the width of the interval more clearly
visible.
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Theorem 3.1 (Existence of Period 15 Point in Hénon Map) Given the Hénon
map with parameters A = 1.422 and B = 0.3, there exists at least one periodic point
of period 15 within the interval

X = 1.19578072155759658008577504,

Y = 0.0505219496341450949328335698421,

Proof By repeated iteration of the origin by the map H in double precision
arithmetic, until the change between to iterates is less than 10−12, we obtain a
candidate for the presumptive periodic point. Mathematically it is clear, that
there is no preference for any particular point in the orbit of the periodic point
candidate. Numerically, however, it is favorable to choose a point that has a well
conditioned eigenvector matrix. If that is the case, the inversion can be carried out
nicely, and will not produce much overestimation. We heuristically determined the
eigenvectors at each point in the orbit and based on that information choose the
following periodic point candidate

x ≈ 1.195769365067588,

y ≈ 0.05050761649554453.

For the following calculation, we initialized the DA engine of COSY INFIN-
ITY to carry out operations up to order ten in two independent variables. Using
automatic differentiation, we calculated the linearization of H15 and derived the
following approximation of the eigenvector matrix(

0.8852161763463854 0.2504328280425341
−0.4651798804061557 0.9681339776284161

)
,

which is then rigorously inverted, using Cramer’s rule on Taylor Models with only
constant coefficients.

The x and y coordinates, in eigencoordinates, of the initial box are chosen
to be Taylor Models with only a linear coefficient of 10−5 in the first and sec-
ond independent variable respectively. This initial box is then transformed from
eigencoordinates into Cartesian coordinates to yield the periodic point enclosure in
Cartesian coordinates. This Taylor Model enclosure is then bounded, yielding the
interval representation given in the statement of Theorem 3.1.

To conclude the proof, the initial box in Cartesian coordinates is mapped 15
times by H, converted back to eigencoordinates, and then tested for inclusion in
the initial box according to the method presented in subsection 2.3.

Note that, while strange at first glance, using an initial box as big as 10−5

currently is necessary to successfully carry out the proof. In fact, due to the specific
structure of Taylor Models, the verification process fails if the initial box is chosen
significantly smaller. At the moment, Taylor Models in COSY INFINITY are
implemented based on double precision floating point numbers. One of the great
features of Taylor Models is, that the coefficients scale with width of the initial
box raised to the order of the coefficient. That is, if the initial Taylor Model has
linear coefficients of order 10−10 the resulting Taylor Model will have second order
coefficients of order 10−20. But since the constant part of the resulting Taylor
Model will be of order 1, any contribution by the second order coefficients is lost,
as the constant part only carries about 15 significant digits.
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Thus, if the initial box is chosen too small, this effectively reduces the calcula-
tion order to just the linear case. While normally in verified numerics it is desirable
to operate on large boxes without much overestimation, in this case the strength
of Taylor Models in that field limits our ability to precisely pinpoint the periodic
point. A solution to this is to store the coefficients of the lower orders of the Taylor
Model with a higher precision. Then also higher order coefficients will contribute
to the Taylor Model. We are currently implementing such high precision Taylor
Models, which will allow us to overcome the constraints posed by double precision
floating point numbers. Once this effort is completed, it will be possible to use
much smaller initial Taylor Models in this process, and thus obtain much smaller
enclosures of the periodic point.

It is also worth noting that the computational time required for this proof was
negligible. The whole initial box is mapped at once, requiring only 15 consecutive
evaluations of the map H and a few simple operations afterwards to verify the
enclosure.

3.2 High Precision Enclosure. To obtain a more precise rigorous enclosure
of the periodic point, we also implemented an interval version of the proof. As
described in subsection 2.2, it is necessary to use a high precision interval package
to successfully carry out this proof using intervals. While there are many different
implementations of rigorous interval packages available, most of those rely on the
underlying floating point numbers provided by the processor. On modern com-
puters, this usually means floating point numbers according to the IEEE 754[1]
standard, so that the precision of those packages is limited to about 15 decimal
digits.

As stated before, this is insufficient for this proof. To mitigate the situation,
we implemented our own rigorous high precision intervals in COSY INFINITY[14].
For outputting these high precision numbers as decimal fractions, we currently rely
on the high precision interval package MPFI[13]. With these intervals it is possible
to implement, and carry out, the proof of the following theorem.

Theorem 3.2 (High Precision Enclosure of Period 15 Point in Hénon Map)
Given the Hénon map with parameters A = 1.422 and B = 0.3, there exists exactly
one periodic point of period 15 within the interval

x = 1.1957693650675503360411009839655489

352337235594806801053003707350839683285310139,

y = 0.0505076164955646488882884801756161

0168414268082837062814105551657822943979601531331.

Before proving this theorem, we will make an estimate of the computational
complexity of the proof. Mapping a single interval box around the presumptive
periodic point from eigencoordinates into Cartesian coordinates, then through H15,
and back to eigencoordinates, results a blowup in the size of the box by a factor
of about 1300 in x, and 1100 in y. In interval arithmetic this is not uncommon,
and is to be expected with this type of map. The reason is the high period of the
periodic point.

Mathematically H15 is a polynomial of order 215 = 32768. We, however, do not
operate with the full expansion of H15, but instead let H act on the argument 15
times. While this reduces the total number of operations carried out significantly,
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in interval arithmetic this still results in a significant amount of overestimation
because of dependency.

With these heuristics it is possible to estimate the minimum number of boxes
necessary to map the complete initial box into itself. Since the splitting always
happens in both x and y, the maximal length of the split boxes is about 1/1300 of
the initial size. Thus 13002, or about 1.7 million, is a lower bound for the number
of boxes required.

Proof The calculations for this proof were carried out with intervals set to a
precision of about 75 significant decimal digits. In the first step, we again obtained
a high precision approximation of the presumptive periodic point by repeatedly
iterating the origin by the map H, until the change between two iterates became less
than 10−74. Then, by manually iterating H until the same point as in Theorem 3.1
was reached, we obtained the following periodic point candidate

x ≈ 1.195769365067550336041100983965548935

23372355948068010530037073508396821495,

y ≈ 0.0505076164955646488882884801756161016

841426808283706281410555165782292964645.

Using a double precision approximation of this point, we again employed au-
tomatic differentiation to calculate the linearization of H15 around this point. We
obtained the following approximate eigenvector matrix(

0.8852161763463209 0.2504328280405625
−0.4651798804062782 0.9681339776289262

)
.

This step is still done in double precision, because the underlying data type for
DA vectors in COSY INFINITY is currently only available in double precision. This
restriction, however, does not pose any problem, as the transformation only needs
to approximate the eigenvectors. The eigenvector matrix is then rigorously inverted
using Cramer’s rule on high precision intervals. The resulting inverse matrix has
very tight high precision intervals as coefficients, which is essential for the proof to
succeed.

The initial box in eigencoordinates is chosen to be the interval [−10−70, 10−70],
both in x and y. This initial box is then transformed from eigencoordinates to
Cartesian coordinates to yield the actual periodic point enclosure given in the state-
ment of Theorem 3.2.

To conclude the proof, the splitting-mapping-cycle described in subsection 2.2
is initiated with the initial box and iterated until all boxes on the stack have been
successfully mapped into the initial box.

Note that, unlike the Taylor Model version of the proof, this process requires
about 12 to 13 splits of the initial box in each direction in order to compensate
the effects of overestimation in the interval arithmetic. This is consistent with the
estimate done earlier, as it results in a box size of about 1/212 ≈ 1/4000. The proof
takes about 130 minutes on a 2 GHz MacBook with 2 GB of RAM to complete.
In that time, about 70 million boxes are successfully mapped into the initial box,
while about 24 million boxes failed to map correctly and had to be split.



Computer Assisted Proof of the Existence of High Order Periodic Points 11

4 Uniqueness and Attractiveness

As stated before, the Brouwer fixed point theorem only establishes the existence
of at least one periodic point within the intervals given in the above theorems. In
order to prove the uniqueness and attractiveness of the point, some more work is
necessary. We will use the Banach fixed point theorem[7] to prove uniqueness and
attractiveness.

Theorem 4.1 (Banach Fixed Point Theorem) Let a continuous map M : Rn 7→
Rn and a compact set K ⊂ Rn be given. If M(K) ⊂ K and M is a contraction on
K, then K contains exactly one unique, attractive fixed point of M .

Note that the Banach fixed point theorem can be viewed as a natural extension
of the Brouwer fixed point theorem in this context. If the set K in the Banach
theorem is chosen to be the convex compact set used in the above theorems, the first
condition of the Banach fixed point theorem, M(K) ⊂ K, is already established.
The only additional condition that has to be shown is the contraction map property.

In order to show that M is indeed a contraction map on this convex compact
set K, it is sufficient to bound the operator norm of the Jacobian of M on K. If it
is less than one, then M is a contraction on K[6, p. 38].

To calculate a bound of the operator norm of the Jacobian matrix J(M) of the
map M on a box K, we make use of the following identity for real valued square
matrices A = J(M):

||A|| =
√
λmax (ATA),

where λmax indicates the largest eigenvalue[4, p. 269]. The eigenvalues of the 2× 2
matrix ATA can be computed using the analytic expression for the roots of the
characteristic polynomial

λ2 − tr(ATA)λ+ det(ATA) = 0

Theorem 4.2 (Uniqueness and Attractiveness of Periodic Point) The enclo-
sure of the period 15 point given in Theorem 3.2 contains exactly one periodic point
of order 15. Furthermore, this periodic point is unique and attractive in the enclo-
sure given in Theorem 3.1.

Proof Using the method described above, the Jacobian matrix of H15 on the
same box K used in the Taylor Model proof of the existence of a fixed point, given in
Theorem 3.1, is computed. For simplicity, the calculation is preformed in Cartesian
coordinates.

The rigorous calculation of the Jacobian is performed using a Taylor Model
matrix. Taylor Models are the natural choice for this problem, since they allow for
calculations to be performed over large volumes without significant overestimation.

The Jacobian of the Hénon map H is given explicitly by

JH(x, y) =

(
−2Ax 1
B 0

)
To evaluate the Jacobian of the fifteenth iterate, J(H15)(x, y), the chain rule is
applied repeatedly, yielding:

J(H15)(x, y) = J(H14)(H(x, y)) · JH(x, y)

= JH(H14(x, y)) · JH(H13(x, y)) · · · JH(H(x, y)) · JH(x, y)
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By performing all operations in this calculation in Taylor Model arithmetic,
the resulting Taylor Model matrix represents a rigorous enclosure of the correct
Jacobian of H15 over the entire box K. From there it is trivial to compute the
matrix product

A = J
(
H15

)T
J
(
H15

)
.

The eigenvalues of the resulting two dimensional matrix A are then calculated
directly as Taylor Models and bounded by intervals. The resulting enclosures of
the two eigenvalues e1 and e2 over the box given in Theorem 3.1 are:

e1 = [−0.8210105861696513 · 10−9, 0.8210017711776557 · 10−9]

e2 = [0.9002450764758135, 0.9809161063129307]

Since both are bounded from above by a value less than 1, so is ||J(H15)||, and
the map indeed represents a contraction in the box K. Together with the previously
proven self mapping property from Theorem 3.1, this establishes all requirements
for the Banach fixed point theorem, thus concluding the proof.

Conclusion

From the computation time for the proof of existence of the periodic point it
is clear that Taylor Models perform significantly better than intervals. The depen-
dency problem is virtually eliminated compared to traditional interval methods.
The only advantage of intervals at this point is the availability of high precision
interval implementations. This allows for a much more precise enclosure of the pe-
riodic point than the Taylor Models. However, this advantage will become obsolete
with the advent of the high precision Taylor Models we are developing right now.

In the proof of uniqueness and attractiveness of the fixed point, the ability
of Taylor Models to function properly over large volumes turns into a desirable
feature. Taylor Models allow for fast bounding of the eigenvalues of the Jacobian
over a relatively large area. Thus it is possible to establish an inner bound of the
attractive basin of the fixed point.
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