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Abstract

A grid-free algorithm based on the multiple-level fast multipole algorithm and differen-
tial algebra (DA) has been developed to calculate the electrostatic field of an ensemble
of charged particles and its high-order derivatives. The efficiency of the algorithm scales
linearly with the number of particles for any arbitrary distribution. The algorithm is para-
llelized to further improve its efficiency. Simulation results on the photoemission pro-
cess using this algorithm are presented.
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1. INTRODUCTION

Collective effects have become more and more important with the

need for beams of higher and higher intensity. Numerical simulation is a

very useful tool for the study of collective effects, and it is inevitable when

the collective effect is strong and highly nonlinear. A new algorithm was

developed to calculate the electrostatic field between charged particles.

The algorithm combines the multiple level fast multipole algorithm

(MLFMA) with differential algebraic (DA) tools (Berz, 1999). TheMLFMA

has an efficiency ofO(n) for n charged particles. Furthermore, it is grid-free;

hence, any arbitrary charge distribution can be treated in a natural way.

Using DA, we considerably simplify the mathematics, represent the poten-

tial as Taylor expansions in the Cartesian coordinates, and calculate not only

the field but also its high-order derivatives.

1.1 The Strategy of the Multiple-Level Fast Multipole
Algorithm (MLFMA)

In order to evaluate the electrostatic field due to an arbitrary distribution of

charges, we divide the charges into groups and evaluate the interactions

between the groups far enough away by multipole expansions, and calculate
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the interactions between nearby particles directly. The domain containing

charged particles is divided into boxes of different sizes according to the

charge density in order to keep a roughly equal amount of particles inside

each box.

The relation between boxes can be represented as a hierarchical tree.

Small boxes generated by splitting a large box are called the child boxes of

the large box, and the large box is called the parent box of the small ones.

The boxes that have no child boxes are called childless boxes. If the distance

between box A and box B is larger than the side length of A, then we can

represent the contribution from the charges inside A to the potential in B by

a multipole expansion. Also, we can represent the contribution from the

charges inside B to the potential inside A by a local expansion.

For a childless box, the multipole expansion is calculated from the char-

ges inside, while for a parent box, the multipole expansion is calculated from

the multipole expansions of its child boxes. The local expansion can be cal-

culated from the charges inside a childless box that is far enough away, or

from the multipole expansion of a parent box that is far enough away. Child

boxes also inherit the local expansions from their parent boxes. The general

strategy is to calculate the multipole expansions for all the boxes from the

finest level to the coarsest level going upward, and then calculate the local

expansions for all the boxes from the coarsest level to the finest level going

downward. Once the expansions in all the boxes are calculated, the field on

each particle can be calculated separately by two parts. The part due to the

particles nearby is calculated using the Coulomb formula directly, while the

field due to the particles far away is calculated from the multipole expan-

sions, the local expansions, or both. A detailed description of the MLFMA

can be found in reference (Carrier et al., 1988).

1.2 Differential Algebras and COSY INFINITY
In the vector space of the infinitely differentiable functions C1(Rυ), we

define an equivalence relation “¼p” between two functions a, b 2 C1(Rυ)

via a¼ p b if a(0)¼b(0) and if all the partial derivatives of a and b at 0 agree up

to the order p. Note that the point 0 is selected for convenience, and any

other point could be chosen as well. The set of all b that satisfies b¼ p a is

called the equivalence class of a, which is denoted by [a]p. We denote all

the equivalence classes with respect to¼ p on C1 (Rυ) as pDυ. The addition,

scalar multiplication, multiplication, and the derivation operator @υ can be

defined on pDυ as
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a½ �p + b½ �p :¼ a+ b½ �p, c � a½ �p :¼ c � a½ �p,
a½ �p � b½ �p :¼ a � b½ �p, @v a½ �p :¼ @a=@xv½ �p�1,

where xυ is the υth variable of the function a, and the operator @υ satis-

fies @υ([a] � [b])¼ [a] � (@υ[b])+ (@υ[a]) � [b]. Hence pDυ is a differential

algebra (DA) (Berz, 1999). There are υ special classes dυ¼ [xυ], whose

elements are all infinitely small. If a function a in pDυ has all the deriva-

tives cJ1,⋯, Jv ¼ @J1 +⋯+ Jv a=@x
J1
1 �⋯ � @xJvv ; and then [a] can be written as

a½ � ¼
X

cJ1,…, Jv � d
J1
1 �⋯ � dJvv . Thus, d

J1
1 �⋯ � dJvv is a basis of the vector space

of pDυ.

COSY INFINITY (Berz & Makino, 2013) is a program developed for

high-performance modern scientific computing, which supports DA as an

advanced data type. By evaluating a function f in DA data type in COSY,

one can get its Taylor expansion fT, represented by a DA vector, up to an

arbitrary predetermined order p automatically. If we consider two functions

f, g 2 pDυ which can also be viewed as two maps Mf and Mg, the function

f( g)—i.e., the composition of the two maps Mf ∘ Mg—can be easily calcu-

lated by the command POLVAL in COSY (Berz & Makino, 2013). For

more details about DA, refer to Berz (1999).

2. EXPANSIONS IN THE DA FRAMEWORK

Here, we present a summary of the fast multipole method in the DA

framework. For full details, we refer to Zhang (2013) and Zhang and

Berz (2011).

2.1 The Far Multipole Expansion from the Charges

Suppose that n particles with charge qi located at r
!
i xi, yi, zið Þ, with ri<a,

then the electrostatic potential at a point r
!

x, y, zð Þ, with r>a expressed as

ϕ¼
Xn
i¼1

qi

r
!

i� r
!�� ��¼ d �ϕM, (1)

where

ϕM¼
Xn
i¼1

qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ r2i d

2 + 2 r
!

i

q
� d
!

8><>:
9>=>;, d

!
¼ r

!

r2
, d¼ d

!��� ���:
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If we choose dx, dy, and dz, the components of d
!
, as DA variables,ϕM can

be expressed as a DA vector, which can be considered as the Taylor expan-

sion of ϕM with respect to dx, dy, and dz at infinity. If we calculate the DA

vector up to order p, the error of approximating ϕ by its expansion can be

estimated as

Ej j �C � a

r

� �p+1

� 1

r� a
, with C¼

Xn
i¼1

qij j: (2)

2.2 The Translation of the Far Multipole Expansion

The potential ϕ at r
!

x, y, zð Þ of a far multipole expansion at the origin

O
!
(0, 0, 0) can be translated into another far multipole expansion at the point

r
!0
o x0o, y

0
o, z

0
o

� �
. The new DA variables can be chosen as

d
!0 ¼ r

!� r
!0
o

r 02
¼ r

!0

r 02
:

With some direct algebra, one can find the relation between the newDA

variables d
!0 and the old DA variables d

!
as

d
!
¼ d

!0 + d0
2 � r!0

o

� �
�R, (3)

with R¼ 1= 1+ r 02od
02 + 2 r

!0
o � d

!0
� �

. Eq. (3) can be considered the map

between the new DA variables and the old DA variables, which we refer

to as M1. If we translate ϕM in the old frame into eϕM in the new frame by

eϕM¼ϕM∘M1,

the potential in the new frame can be written as

ϕ0 ¼ eϕM � d0 �
ffiffiffiffi
R

p
¼ d0 �ϕ0

M, (4)

knowing that d in the old frame can be translated into the new frame as

d¼ d0 �
ffiffiffiffi
R

p
. The error of the DA expression for ϕ0 has the same expression

with Eq. (2) with r and a defined in the new frame.
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2.3 The Local Expansion from the Charges

Consider an observer point r
!

x, y, zð Þwithin a spherical region of the radius
b centered at r

!0
o x0o, y

0
o, z

0
o

� �
, then the electrostatic potential on the observer

from n particles outside the spherical region can be expressed as a local

expansion at r
!0
o x0o, y

0
o, z

0
o

� �
. We choose the DA variables as

d
!0 ¼ r

!� r
!0
o ¼ r

!0: (5)

Assuming the ith source particle has charge qi and located at ri
!

xi, yi, zið Þ,
the local expansion of the potential is

ϕL¼
Xn
i¼1

qi

r
!� r

!
i

�� ��¼Xn
i¼1

qi

r
!0
o� r

!
i + d

!0
��� ��� : (6)

The error of the DA expression of ϕL up to order p can be estimated as

Ej j �C � r 0

b

� 	p+1

� 1

b� r 0
with C¼

Xn
i¼1

qij j: (7)

2.4 The Conversion of the Far Multipole Expansion into a
Local Expansion

Given a far multipole expansion at the originO
!

0,0,0ð Þ, a local expansion at
r
!0
o x0o, y

0
o, z

0
o

� �
, which creates the same potential on the observers, can be

found. It is called local because r
!0
o x0o, y

0
o, z

0
o

� �
is close to the observer

r
!

x, y, zð Þ. So it is natural to choose the new DA variables as

d
!0 ¼ r

!� r
!0
o ¼ r

!0 (8)

where r
!0 x0, y0, z0ð Þ are the new coordinates of the observer r

!
x, y, zð Þ if we

shift the origin to r
!0
o x0o, y

0
o, z

0
o

� �
. The old and the new DA variables have the

relation

d
!
¼ r

!

r2
¼ r

!0
o + d

!0
� �

�R, (9)

where R¼ 1= r
!0
o + d

!0
��� ���2. We note Eq. (9) as M2. To convert the far multi-

pole expansion in Eq. (4) into a local expansion, we need to work on the two

parts separately. The ϕ0
M can be converted into eϕL in the new frame as
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eϕL ¼ϕ0
M∘M2,

and d0 can be converted into
ffiffiffiffi
R

p
in the new frame. Therefore, we have the

local expansion as

ϕL ¼ eϕM �
ffiffiffiffi
R

p
: (10)

Note that by now we obtained the expansion of the potential, not just a

component of it, as a DA vector. The error of a local expansion up to order p

converted from a far multipole expansion is

Ej j �C � a

r 0o

� 	p+1

� 1

r 0o� a
+C � r 0

b

� 	p+1

� 1

b� r 0
, (11)

where a, b, and C have the same meaning as in Eqs. (2) and (7).

2.5 The Translation of the Local Expansion

A local expansion at the originO
!
(0, 0, 0) can be translated to r

!0
o x0o, y

0
o, z

0
o

� �
,

assuming that both points are close to the observer r
!

x, y, zð Þ. Choosing the
new DA variable as the same as Eq. (5), the relation between the old and the

new DA variables is just a linear shift:

d
!
¼ r

!0
o + d

!0: (12)

We call Eq. (12) the map M3, and then the new local expansion can be

calculated by

ϕ0
L¼ϕL∘M3: (13)

This linear translation does not bring any additional error.

2.6 The Calculation of the Potential and the Field from the
Expansions

It is straightforward to calculate the potential from a local expansion or a

multipole expansion. Since we have the potential expressed as a pth order

polynomial, we only need to plug in the value of (dx, dy, dz) for each particle

to obtain the potential for it.

The local expansion of the potential is a polynomial of the observer’s

coordinates. Taking the derivative of the potential with respect to a coor-

dinate, one can obtain the (p�1)th-order polynomial for the field on the

respective direction.
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The DA variables in the multipole expansions are analytical functions of

the coordinates. To calculate the field by the multipole expansion, we take

the derivative with respect to the coordinates by the chain rule, and we

obtain the expression of the field as

Ex¼ � @ϕ

@dx
� d2�2d2x
� �

+2
@ϕ

@dy
� dxdy +2

@ϕ

@dz
� dxdz +ϕ � dx


 �
� d,

Ey¼ 2
@ϕ

@dx
� dydx�

@ϕ

@dy
� d2�2d2y

� �
+2

@ϕ

@dz
� dydz +ϕ � dy


 �
� d,

Ez¼ 2
@ϕ

@dx
� dzdx +2

@ϕ

@dy
� dzdy�

@ϕ

@dz
� d2�2d2z
� �

+ϕ � dz

 �

� d:

(14)

3. RESULTS OF NUMERICAL EXPERIMENTS

We now present some results of numerical experiments. In Figure 1,

we compare the DA-based MLFMA with direct calculation using the Cou-

lomb formula. The computational expense as a function of particles can be

fitted by a straight line in a logarithmic representation for both cases. The

slope for the direct Coulomb formula calculation is 2, reflecting the fact that

for n charged particles, the computation time is proportional to n2. The slope

of the DA-based MLFMA is 1.073, which is very close to linear scaling with

a slope of 1. Also, we can see that when n>1000, the DA-based MLFMA

outperforms the Coulomb formula in speed. Here, the DA-based MLFMA

is conducted with DA in the fifth-order, while having a relative error less

than 0.001.

Figure 1 Efficiency of the DA-based MLFMA versus the Coulomb formula.
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There are two ways to increase the accuracy. One is to increase the order

of the DA calculations. The other is to increase the distance between two

boxes whose interaction can be represented by expansions. As defined pre-

viously, expansions are used to represent the contribution of box A to the

field in box B, when their distance is equal to or larger than the side length

of A. To increase the accuracy, one can increase the distance to na times the

side length ofA, with na	1. As shown in Figure 2, when p, the order of DA,

increases, the error decreases. And for the same p, when na increases, the

error decreases. We also notice that for a larger na, the error decreases faster

(larger slope) with the increase of p. If one wants to calculate the field with a

very high precision, it is better to increase na as well rather than merely

increasing the DA order.

4. SPACE CHARGE SIMULATIONS OF PHOTOEMISSION
AND COMPARISON WITH EXPERIMENTAL
MEASUREMENTS

We have performed experiments to measure the ultrafast electron

pulse dynamics immediately following photoemission (Tao et al., 2012)

using a point projection imaging technique (Raman et al., 2009). A 50-fs

laser pulse is applied to the gold photo cathode surface with an incidence

of 45 deg to trigger the photoemission. The laser has a Gaussian profile with

an elliptical cross section having σx¼115 μm and σy¼81 μm, which would

generate a pancake-shaped electron bunch. A constant longitudinal

extracting field perpendicular to the cathode surface is also applied. In sim-

ulations, instead of assuming an initial distribution, we generate the electrons

Figure 2 Error decreases as p and na increase (Zhang, 2013).
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by groups following the three-step model (Jensen et al., 2010). The number

of electrons in each group is in proportion to the laser pulse strength at

the respective time slot. Once generated, the electrons move under the

influence of the extraction field, the space charge field and the field of

the image charge on the surface. The space charge field is calculated by

the DA-based MLFMA. Based on COSY’s MPI support, a parallel version

of the algorithm is developed that allows the use of millions of macroparticles

in our simulations.

The number of surviving electrons depends on the total amount of elec-

trons generated and the strength of the extracting field. In Figure 3, we plot

Figure 3 Longitudinal charge distribution of the electron bunch.
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the longitudinal distribution of surviving electrons at 60 ps and 100 ps. The

cathode surface is on the plane of z¼0, and the extracting field is in the

z-direction. Ignoring the experimental data close to the surface, the simu-

lation and the experiment agree well for the peak position and the bunch

shape. Figure 4 shows the charge density on the x-z plane at 60 ps and

100 ps, with x representing any transverse direction. These figures show

the microstructure of the bunch and help us to understand the micro-

dynamics of the space charge effect in the photoemission process. More sim-

ulations and discussions on our photoemission experiments can be found in

Portman et al. (2013, 2015).

5. CONCLUSION

We have developed the DA-based MLFMA, which allows the calcu-

lation of the electrostatic field of an ensemble of charged particles in any arbi-

trary distribution with an efficiency that scales linearly with the number of

particles. A parallel code for distributed structure cluster machines is also

developed. In practice, we can simulate millions of particles in a reasonable

time, and we have successfully applied this algorithm in the simulation of

the photoemission process. The simulation results agree well with the exper-

iments and reveal some information that is difficult to measure directly in

experiments.
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