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A method is presented that allows the computation of space charge effects of arbitrary and large

distributions of particles in an efficient and accurate way based on a variant of the Fast Multipole

Method (FMM). It relies on an automatic multigrid-based decomposition of charges in near and far

regions and the use of high-order differential algebra methods to obtain decompositions of far fields

that lead to an error that scales with a high power of the order. Given an ensemble of N particles, the

method allows the computation of the self-fields of all particles on each other with a computational

expense that scales as O(N). Using remainder-enhanced DA methods, it is also possible to obtain

rigorous estimates of the errors of the methods. Furthermore, the method allows the computation of all

high-order multipoles of the space charge fields that are necessary for the computation of high-order

transfer maps and all resulting aberrations.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Coulomb interaction between the particles inside a bunch
is one of the most important collective effects in the study of
beam dynamics. This effect becomes more significant when the
particle beam has lower energy such as in contemplated time
resolved electric microscopes, or has higher density such as in
modern high brilliance particle accelerators or free electron laser
devices [1,2]. Numerical simulation is usually necessary to study
this effect. If the Coulomb interaction is calculated directly via
pairwise interaction, the computational time scales with the
square of the particle number N, which makes it practically
difficult to simulate a large number of particles. More efficient
methods, such as the particle–particle interaction (PPI) method,
the particle in cell (PIC) method, the tree code and the fast
multipole method (FMM), have been put forward and widely
used in many simulation codes. The PPI method uses macropar-
ticles, each of which represents a group of real particles. The field
on each macroparticle is calculated according to the charge
distribution of the whole bunch. The macroparticle representa-
tion entails an inevitable modeling error. Furthermore, a specific
distribution is assumed, for example an elliptical Gaussian dis-
tribution [3], since otherwise one has to use some complicated
algorithm to fit the real charge distribution; see for example [4–6].
On the other hand, the PIC method reassigns the charge density
onto a previously chosen mesh, solves the Poisson equation to
calculate the field on the mesh points, from which the field on

each particle is calculated by the interpolation; see for exam-
ple [7–9]. The PIC method naturally suffers from computational
error due to statistics, and it is very difficult to calculate the
derivatives of the field by this method, which are required in
the computation of high-order maps by differential algebraic
methods.

However, significant breakthroughs have happened outside
the beam physics regarding the efficiency of the direct field
computation via Coulomb’s law. The year 1986 brought the
publication of the tree code algorithm, in which the potentials
of particles far away from the observer are represented by
multipole expansions in powers of 1/r, covering larger and larger
boxes further and further away from the point of interest. It could
be shown that the cost of the method scales with O(N log N)
[10,11]. In 1987, the FMM was published, in which the multipole
expansions are converted into the local expansions in the near
region of the observer, and the efficiency is further increased to
O(N) [12,13]. In the original FMM, the three dimensional potential
of a point charge is usually expanded in terms of spherical
harmonic functions or exponential functions in spherical coordi-
nates around suitable nearby expansion points [14]. In 2006, an
accelerated Cartesian expansions FMM algorithm for any poten-
tial of the form r�v with positive v were presented [15].

In the following we will present a formulation of the FMM
algorithm in the differential algebra (DA) framework. We also use
the Cartesian expansions, and we will see that the DA formalism
considerably simplifies the necessary algorithms, also for poten-
tials differing from 1/r, and in particular those associated with
common macroparticle approaches for the avoidance of collisions.
Furthermore, the method allows the computation of all deriva-
tives of the potential in a natural way up to a predetermined
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order, and thus allows the computation of high-order transfer
maps and aberrations.

2. The algorithm of the FMM

The key idea of the FMM is to represent the potential of
suitable groups of source particles that are far away from the
observer in terms of expansions involving powers of 1/r, which
we refer to as a far multipole expansion, and utilize that far
enough away, higher powers of 1/r are less and less significant.
This makes it possible to compute the action of source particles
on observer particles in a more efficient manner. Furthermore, far
multipole expansions corresponding to certain groups can be
translated and combined. And finally, far multipoles can also be
locally expanded involving powers of r, which we call a local
expansion. This local expansion thus allows the treatment of
groups of nearby observer particles in a combined manner.

In practice, one first encloses all the particles in a group of
cube boxes, the zero level boxes. Then each of these cube boxes is
cut into eight equal small cube boxes, which we call the first level
boxes. Then each first level box is cut in the same way into eight
smaller boxes, leading to the second level boxes. This process is
continued until a pre-specified level is reached. In practice, the
number of levels is determined such that the average number of
particles in the finest boxes is near a pre-specified value, the size
of which will affect the efficiency of the method.

We call boxes of the same level neighbors if they touch. For a
given box A, we denote the region made of all same level
neighbors and A itself as the near region of A, and everything
else as the far region A. For a box A, a next higher level box B
containing A is called a parent box of A, and A is called one of the
child boxes of B. Apparently each child box has only one parent
box, and each parent box has eight child boxes.

A 2D example about how to cut the boxes is shown in Fig. 1. In
the first level, the square box is cut into four square boxes, and in
the second level, 16 boxes are cut out, and so on. Furthermore,
boxes 2 through 9 are all neighbors of box 1, and together they
describe the near region of 1. All the unnumbered boxes are in the
far region of the box 1. There is no difference between the 2D case
and the 3D case in principle, except that each box is cut into four
child boxes in the 2D case rather than eight in the 3D case.

The FMM algorithm consists of two parts, the first of which we
now describe:

1. Cut the box of interest into the desired levels.
2. In each box of the finest level, calculate the far multipole

expansion of the particles inside that box around the center of
the box.

3. From the finest level to the second finest level, translate the
multipole expansions from the center of the children boxes
into the center of their parent box, and then add them up to
get the far multipole expansion of the parent box,
as Fig. 2 shows.

4. Repeat this at all levels.

After this part is completed, we now have a far multipole
expansion for each box in each level.

We now proceed to the second part of the FMM. First, for any
box A having a parent B, we define the interaction list to be the
collection of those boxes of the same level that belong to the far
region of A, but to the near region of its parent B. These boxes of
‘‘medium distance’’ to A will be important in the subsequent
algorithm because they require special treatment. To illustrate
the concept of the interaction list, consider Fig. 3, which shows a
box of interest in black, its near region in white, and its interac-
tion list in light gray, for three different levels.

The second part of the FMM algorithm now begins at the first
level at which boxes have interaction lists.

1. For each box with an interaction list, compute a local expan-
sion around its center point from the far expansions of the
boxes making up the interaction list.

2. At the next finer level, again compute a local expansion around
the center of each box from the far expansion of the boxes
making up the interaction list. To this, add the local expansion

Fig. 1. Sequential cutting of an original box.

Fig. 2. The propagation of the far multipole expansions.

Fig. 3. The behavior of the interaction list of boxes at three levels.
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of the parent’s interaction list by re-expanding the parent’s
local expansion to its own center, as shown in Fig. 4.

3. Proceed until the lowest level is reached.

After the completion of the second step, each box at the finest
level now possesses a local expansion of all contributions to the
potential from outside its near region. The gradient of this local
expansion consequently represents the field contributions from
everything in the far region.

The third step of the method now consists of determining the
field on each particle of interest.

1. For each particle, determine the finest level box to which the
particle belongs, and evaluate the local expansion of the field
of that box at the particle’s coordinates. This results in an
approximation of the field at the particle due to all other
particles outside the near region of the box in which the
particle lies.

2. To the far field, explicitly add the Coulomb field of all other
particles in the near region.

We note that the accuracy of this approximation depends on the
orders used for the far expansions and the local expansions that
occur, and in principle can be made as high as desired.

In the remainder of the paper we will discuss how to perform
all the relevant far and local expansions using the differential
algebraic methods.

3. A brief review of DA and COSY

Before we continue to present our work on the FMM in the DA
framework, we want to give a brief introduction of the DA
method. The basic concepts and the deductions will be presented
directly without proof, please refer to Ref. [16] for details.

Consider the vector space of the infinitely differentiable func-
tions C1ðRvÞ, in which we can define an equivalence relation ‘‘¼n’’
between two functions a,bAC1ðRvÞ via a¼nb if a(0)¼b(0) and if
all the partial derivatives of a and b at 0 agree up to the order n.
Note that the point 0 is selected for convenience, and any other
point could be chosen as well. The set of all b that satisfies b¼na is
called the equivalence class of a, which is denoted by [a]n. We
denote all the equivalence classes with respect to ¼n on C1ðRvÞ as

nDv. The addition, scalar multiplication and multiplication on nDv

can be defined as Eq. (1).

½a�nþ½b�n :¼ ½aþb�n

c � ½a�n :¼ ½c � a�n

½a�n � ½b�n :¼ ½a � b�n ð1Þ

where a,bAnDv and c is a scalar, so that nDv is an algebra. We can
also define the derivation operator @v as Eq. (2)

@v½a�n :¼
@

@xv
a

� �
n�1

ð2Þ

where xv is the vth variable of the function a. The operator @v

satisfies

@vð½a� � ½b�Þ ¼ ½a� � ð@v½b�Þþð@v½a�Þ � ½b�: ð3Þ

An algebra with a derivation is called a differential algebra. There
are v special classes dv¼[xv], whose elements are all infinitely
small. According to the fixed point theorem [16], the inverse and
the roots of any element that is not infinitely small in nDv exist
and can be calculated easily. Further more, all real power series
can be extend to the DA within their radius of convergence. If a
function a in nDv has all the derivatives cJ1 ,...,Jv

¼ @J1þ���þ Jv a=

@xJ1

1 � . . . � @xJv
v , then [a] can be written as

½a� ¼
X

cJ1 ,...,Jv
� dJ1

1 � . . . � d
Jv
v : ð4Þ

Thus dJ1

1 � . . . � d
Jv
v is a basis of the vector space of nDv. The Eq. (4)

reminds us of the Taylor expansion of a function. Actually if we
have a function f in C1ðRvÞ and fT is its Taylor expansion up to
order n, obviously we have f¼nfT in nDv. In practice this means we
can express f by its Taylor expansion up to an arbitrary order n as
an element in nDv, and we can calculate the derivative classes of f

and any other function that can be derived by applying the
elemental operations, divisions, roots, and power series on f [17].

A beam optical system can be described in terms of the
transfer map method, which relates the final positions and
velocities of the particles to the initial conditions, so that it makes
the tracking more efficient than solving the dynamic equations
element by element. The power of the DA make it possible to
calculate the map up to any arbitrary order [18].

COSY Infinity’s a program developed for high performance
modern scientific computing, which is used in beam optical
system design. COSY supports various advanced data types, such
as DA, TM and VE [19]. In our following work on the FMM, we will
use the DA data type. By evaluating a function f in DA data type in
COSY, one can get its Taylor expansion fT up to an arbitrary
predetermined order n automatically, because a DA vector carries
all its coefficients cJ1 ,...,Jv

, which are exactly the coefficients of fT. If
we consider two functions f ,gAnDv which can also be viewed as
two maps Mf and Mg, the function g(f) or the composition of the
two maps Mf 3Mg can be easily calculated by the command
POLVAL in COSY. If f is a linear function or a linear map, a more
efficient command DATRN can be used [19]. Furthermore, the TM
data type can be used for the rigorous calculation. In the future
we will use the TM in our algorithm to get rigorous error
bounds [20]. COSY also supports parallel calculation. Our current
code can be easily revised for the parallel calculation and run in a
cluster machine.

4. FMM in the DA framework

4.1. The far multipole expansion

Given a unit point charge located at position ~ri , its potential at
the location ~r of an observer is given by

f¼
1

j~r�~ri j
: ð5Þ

The key idea of the FFM method lies in grouping together particles
that are sufficiently near and treat them with a combined
expansion. As it turns out, it is not immediately obvious what
the best choice of variables is to achieve this end. It is known that
using spherical coordinates, f can be expressed as series of the
spherical harmonic functions, which are composed of products of
cos y, eic and 1/r [14]. The desire to operate directly in Cartesian
coordinates ultimately leads to the inspiration of expanding the
function with respect to 1/r, x/r2, y/r2, and z/r2. As it turns out this

Fig. 4. The translation of the local expansions.
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is one variable more than necessary and contains redundancy
because (x,y,z) already determine r. But the use of four variables
leads to a particularly transparent algorithm.

Back to the FMM, we consider a cube box centered at the
origin, whose side length is a, and there are n particles inside the
box whose coordinates are (xi,yi,zi). At any point (x,y,z), whose
distance to the origin rba, the potential can be expressed as

f¼
Xn

i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xÞ2þðyi�yÞ2þðzi�zÞ2

q

¼
Xn

i

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

x2
i þy2

i þz2
i

x2þy2þz2
�

2xix

x2þy2þz2
�

2yiy

x2þy2þz2
�

2ziz

x2þy2þz2

s

¼
Xn

i

d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx2

i þy2
i þz2

i Þd
2
1�2xid2�2yid3�2zid4

q ð6Þ

with

d1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þz2
p ¼

1

r
, d2 ¼

x

x2þy2þz2
¼

x

r2

d3 ¼
y

x2þy2þz2
¼

y

r2
, d4 ¼

z

x2þy2þz2
¼

z

r2
:

If we consider points (x,y,z) whose distance to the origin rba, the
expression above can apparently expanded in powers of the
quantities d1, d2, d3 and d4. Since these quantities to go zero as r

becomes larger and larger, the resulting expansion mathemati-
cally represent a Laurent series, and in common physical termi-
nology a multipole expansion. To avoid confusion with the
common definition of multipole expansions in particle optics,
we call this expansion the far multipole expansion if it is not clear
from the context.

Using the variables d1, d2, d3 and d4 as the expansion variables
in the DA algorithm, COSY can now readily compute the far
multipole expansions to any order automatically. Furthermore,
quite importantly, the same method can be applied to other types
of the potential, for example the Coulomb potential in other
dimensions, the common van der Waals potentials, or the
potentials of certain macroparticle charge distributions, and in
the DA formalism, without much additional difficulty far multi-
pole expansions can be calculated by mere evaluation in DA
arithmetic.

We now use the formula to calculate the multipole expansions
in the finest level boxes. To assess the performance of the method,
we performed some test calculations of the far multipole expan-
sion. One group of results are presented in Table 1. We put 50
electrons into each of the two cube boxes, whose centers are
(0,0,0) and (4,0,0) and whose side length are both 2. In terms of
the terminology introduced above, this means the second box lies
in the far region of the first and is hence subject to the far
multipole expansion; but it represents the closes such box, where
thus the convergence of the method is particularly difficult to
achieve.

The potential on the electrons in the second box is calculated
and repeated for 1000 times with different random numbers, so
that we have 50,000 data points together. The relative error is

calculated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1ðDf=fÞ
2

q
with n¼50,000. We can see that as

the DA order increases, the relative error decreases, which shows
the convergence of this multipole expansion.

4.2. Translation of a multipole expansion

If we have a multipole expansion in the cube box centered at
the origin (0,0,0), we can translate it into another frame whose
origin is at ðxuo,yuo,zuoÞ. The distance from the observer to the origin
of the new frame should be much larger than the side length of
the box centered at ðxuo,yuo,zuoÞ, which assures that the new DA
variables du1 . . . du4 in Eq. (7) are small enough to still have
convergence. Specifically, we have

du1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�xuoÞ
2
þðy�yuoÞ

2
þðz�zuoÞ

2
q ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xu2þyu2þzu2

p ¼
1

ru

du2 ¼
x�xuo

ru2
¼

xu

ru2

du3 ¼
y�yuo

ru2
¼

yu

ru2

du4 ¼
z�zuo

ru2
¼

zu

ru2
ð7Þ

In Eq. (7), ðxu,yu,zuÞ is the position of the observer in the new frame
of ðxuo,yuozuoÞ, and ru is the distance from the observer to the new
origin ðxuo,yuo,zuoÞ. The new DA variables and the old DA variables
in Eq. (6) are related via

d1 ¼
1

r
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xuoþxuoÞ

2
þðy�yuoþyuoÞ

2
þðz�zuoþzuoÞ

2
q

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�xuoÞ
2
þðy�yuoÞ

2
þðz�zoÞ

2
þxou

2
þyou

2
þzou

2

þ2ðx�xuoÞxuoþ2ðy�yuoÞyuoþ2ðz�zuoÞzuo

vuut
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=d1u

2
þxou

2
þyou

2
þzou

2
þ2xuodu2=d1u

2
þ2yuodu3=d1u

2
þ2zuodu4=d1u

2
q
¼

du1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðxou

2
þyou

2
þzou

2
Þd1u2 þ2xuodu2þ2yuodu3þ2zuodu4

q
¼ du1 �

ffiffiffi
R
p

, ð8Þ

d2 ¼ xd2
1 ¼ ðx�xuoþxuoÞd

2
1 ¼ ðdu2þxuod1u2 Þ � R

d3 ¼ yd2
1 ¼ ðy�yuoþyuoÞd

2
1 ¼ ðdu3þyuod1u2 Þ � R

d4 ¼ zd2
1 ¼ ðz�zuoþzuoÞd

2
1 ¼ ðdu4þzuod1u2 Þ � R

with

R¼
1

1þðxou
2 þyou

2 þzou
2 Þd1u

2 þ2xuodu2þ2yuodu3þ2zuodu4
:

If we substitute Eq. (8) into Eq. (6), we obtain the multipole
expansion in the new frame. If one considers Eq. (6) as a map
Mc2m(d1,d2,d3,d4) and Eq. (8) as a map M1ðdu1,du2,du3,du4Þ, the
substitution is actually merely the composition of the two maps:

Mm2m ¼Mc2m3M1 ð9Þ

which is a common operation in DA methods, and which here
yields the expression of f in the new frame with the new DA
variables. With Eqs. (8) and (9), to calculate the multipole
expansion in a box not in the finest level, we can translate all

Table 1
The relative errors of the potential.

DA order Error

1 2.088�10�2

2 3.816�10�3

3 1.524�10�3

4 9.681�10�4

5 1.381�10�4

6 5.758�10�5
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the multipole expansions of all its children boxes to its center,
then take the summation.

4.3. Conversion of a far multipole expansion into a local expansion

The potential of a far multipole expansion at the frame at
(0,0,0) on an observer (x,y,z) can be converted into a local
expansion in the near region of the observer. Since the new frame
has its origin ðxuo,yuo,zuoÞ close to the observer, it is natural to
choose the coordinates of the observer ðxu,yu,zuÞ in the new frame
as the new DA variables, as Eq. (12) shows:

du1 ¼ xu

du2 ¼ yu

du3 ¼ zu: ð10Þ

So, in contrast to the far multipole expansion, which corresponds
to a Laurent expansion, the local expansion corresponds to a
conventional Taylor expansion. The old DA variables in Eq. (6) and
the new DA variables in Eq. (12) have the relation as shown in
Eq. (11):

d1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þz2
p ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxuoþdu1Þ

2
þðyuoþdu2Þ

2
þðzuoþdu3Þ

2
q ¼

ffiffiffi
R
p

d2 ¼
x

x2þy2þz2
¼

xuoþdu1

ðxuoþdu1Þ
2
þðyuoþdu2Þ

2
þðzuoþdu3Þ

2
¼ ðxuoþdu1Þ � R

d3 ¼
y

x2þy2þz2
¼

yuoþdu2

ðxuoþdu1Þ
2
þðyuoþdu2Þ

2
þðzuoþdu3Þ

2
¼ ðyuoþdu2Þ � R

d4 ¼
z

x2þy2þz2
¼

zuoþdu3

ðxuoþdu1Þ
2
þðyuoþdu2Þ

2
þðzuoþdu3Þ

2
¼ ðzuoþdu3Þ � R:

ð11Þ

with

R¼
1

ðxuoþdu1Þ
2
þðyuoþdu2Þ

2
þðzuoþdu3Þ

2
:

If we call Eq. (11) the map M2ðdu1,du2,du3Þ, the local expansion can
again be written as a composition of Mc2m and M2 as

Mm2l ¼Mc2m3M2: ð12Þ

Having Eqs. (11) and (12), we can convert the multipoles in the
interaction list of each box into the local expansion inside the box
itself. The result of a test calculation to show the convergence of
the local expansion is presented in Table 2. The set up of the
boxes and electrons, the number of the data points, and the
definition the relative error are the same with those of Table 1.
We can see that the relative error decreases as we increase the
DA order.

4.4. Translation of a local expansion

Consider two local frames whose origins are both close to the
observer. If we know the local expansion of the frame at (0,0,0) is

as Eq. (12) shows, we can translate it into the other local frame at
ðxuo,yuo,zuoÞ. Since the new frame’s origin is also close to the
observer, we can still choose the coordinates of the observer in
the new frame as the new DA variables du1, du2, and du3. Obviously
the old DA variables d1, d2, and d3, which are the coordinates of
the observer in the local frame at (0,0,0), have the simple relation
shown in Eq. (13) with the new DA variables:

d1 ¼ xuoþdu1

d2 ¼ yuoþdu2

d3 ¼ zuoþdu3: ð13Þ

We call Eq. (13) the map M3, then the new local expansion can be
calculated by composing Mm2l with M3 as

Ml2l ¼Mm2l3M3: ð14Þ

We can translate the local expansion of a box into its children
boxes using Eqs. (13) and (14).

4.5. Representation of potential and the field as polynomials

In order to calculate the high-order transfer map of a beam
optical system, one needs not only the field on the reference orbit
but also the derivatives of the field [18]. If we have the field of the
Coulomb interaction and its derivatives, we can include the
Coulomb interaction into the map. Eq. (14) provides the expan-
sion of the potential f with respect to the position of the observer
up to the order n. This expansion converges inside the corre-
sponding finest box. The constant part of the expansion is the
value of the potential at the center of the box, and the coefficient
of each monomial is the value of the corresponding partial
derivative of the potential.

Table 3 shows an example of the local expansion. In a large
cube box, we put 10,000 electrons. The cube box is cut into the
third level. And the third level box size is 2, which means if we
put a frame at the center of one finest box, we have x,y,zA ½�1,1�.
The local expansion of each third level box is calculated up to the
10th order, and the coefficients till the third order of one third
level box are presented in Table 3. The forth column and the
eighth column show the exponents of each DA variables in each
monomial. For example, the index triple 2 1 0 denotes the
monomial x2y1z0

¼x2y. The second and sixth columns show the
coefficient of each monomial. From the table, we observe the
decreasing trend of the coefficients according to the increase of
the order. To obtain sufficiently meaningful statistics, we repeat
the above process for 40 times with different groups of electrons.
Each time we find the maximum absolute value of the coefficients
for each order and calculate the average absolute value for the
coefficients for each order. Then we take the average over the 40
processes and present the result in Fig. 5. The green dots show the
maximum value of the coefficients, and the red dots show the
average value of the coefficients. It is clear that the coefficients
decrease as the order increase, which suggests the convergence of
the local expansion.

If we want to calculate the expansion of the Coulomb interac-
tion field on a reference point, we only need to determine which
finest box the point belongs to, then by Eqs. (13) and (14) we can
translate the local expansion of the potential from the center of
the finest box to the reference point. Taking the derivative of the
position (x,y,z), we get the expansion of the field (Ex,Ey,Ez) up to
the order n�1. The expansion of the field only includes the
contribution of the electrons in the far region. As to the electrons
in the near region, we obtain the extension of their field by
representing each of them by Gaussian distribution, which will be
discussed in the following.

Table 2
The relative errors of the potential.

DA order Error

1 3.136�10�2

2 8.348�10�3

3 3.024�10�3

4 1.165�10�3

5 2.086�10�4

6 8.036�10�5
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4.6. Gaussian macroparticles instead of point charges

Sometimes it is important to use a finite number of particles to
represent a continuous distribution. There are two important
cases where this arises; the first is when the number of actual
particles is substantially larger than the number than what can
practically be handled in a simulation. The second case is the
desire to compute a transfer map and aberrations of the system at
hand, which requires the knowledge of high-order field expan-
sions near the reference point, which cannot be done reliably if
point charges are near. To avoid this, one can use 3D spherical
Gaussian distributions instead of point charges as

f ðx,y,zÞ ¼
1

ð
ffiffiffiffiffiffi
2p
p

sÞ3
� exp �

x2

s2
�

y2

s2
�

z2

s2

� �
¼

1

ð
ffiffiffiffiffiffi
2p
p

sÞ3

� exp �
r2

s2

� �
: ð15Þ

It is easy to see from Gauss’s law that the field along the radius
can be expressed as

Er ¼
1

r2
ffiffiffiffiffiffi
2p
p

s3

ffiffiffiffiffiffi
2p
p

erf
rffiffiffi
2
p

s

� �
s3�2rs2exp �

r2

2s2

� �� �
ð16Þ

where erfðr=
ffiffiffi
2
p

sÞ is the error function. By setting a proper value
for s, we can use the Gaussian distribution in Eq. (15) to represent
a point charge. When rbs, Er is equal to the field of a point
charge. When r-0, Er-0. To calculate the expansion of the error
function, we need to find all the derivatives of it. Considering the

definition of the error function

erfðxÞ ¼
2ffiffiffiffi
p
p

Z x

0
e�t2

dt ð17Þ

it is easily to determine its derivative

derfðxÞ

dx
¼

2ffiffiffiffi
p
p e�x2

: ð18Þ

For any given point x, we calculate erf(x) by the rational Cheby-
shev approximation [21] and d erf(x)/dx by Eq. (18), which is
infinitely differentiable and allows the computation of all higher
derivatives.

4.7. Example calculations exhibiting the linear scaling property

To show the performance of the method, for reasons of space we
limit ourselves here to the most important characteristic, namely
the scaling of the computation time to the number of particles. We
perform a series of simulations with expansion order 5 and with
varying numbers of electrons N. Fig. 6 shows the required computa-
tion time for a simulation with varying particle numbers N. We
observe the nearly linear behavior, with a slight deviation around
N¼ 0:4� 106, at which point the number of particles crosses a
threshold for transitions from a three-level scheme to a four-level
scheme, which leads to slightly improved performance after the
transition. Overall, the expected linearity is well achieved.

5. Conclusions and future work

We have shown how we apply the FMM in the DA framework
to calculate the electrostatic potential. Future work will see the
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Table 3
A local expansion.

I Coefficient n Exp. I Coefficient n Exp.

1 �10173.27230228843 0 0 0 0 11 � .3770785081465575 3 3 0 0

2 77.96202591617063 1 1 0 0 12 0.3065719640561415 3 2 1 0

3 84.83337126367421 1 0 1 0 13 1.430687924061862 3 1 2 0

4 94.59868392563654 1 0 0 1 14 0.1167018056511110 3 0 3 0

5 �3.199969762547595 2 2 0 0 15 �1.761289530718459 3 2 0 1

6 4.505077944915953 2 1 1 0 16 0.7359490919857412 3 1 1 1

7 2.824067476091086 2 0 2 0 17 �1.758649785663027 3 0 2 1

8 1.929372636609234 2 1 0 1 18 � .2994523996221934 3 1 0 2

9 �3.396989424915588 2 0 1 1 19 � .6566773810094656 3 0 1 2

10 0.3759022864564996 2 0 0 2 20 1.173313105460495 3 0 0 3

H. Zhang, M. Berz / Nuclear Instruments and Methods in Physics Research A 645 (2011) 338–344 343



Author's personal copy

application to other potentials, the derivation of explicit high-
order time stepping schemes, and the direct connection to
codes performing map integration. Furthermore, we will develop
parallel versions of the algorithms, making use of COSY’s support
for MPI-type parallelization at the machine level. Finally, we will
use the Taylor model data type in COSY to obtain fully rigorous
error estimates of the methods.
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