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In this paper, we describe newly developed tools for the study and analysis of the
dynamics in FFAG accelerators based on transfer map methods unique to the code COSY
INFINITY. With these new tools, closed orbits, transverse amplitude dependencies and
dynamic aperture are determined inclusive of full nonlinear fields and kinematics to
arbitrary order. The dynamics are studied at discrete energies, via a high-order energy-
dependent transfer map.

The order-dependent convergence in the calculated maps allows precise determina-
tion of dynamic aperture and detailed particle dynamics. Using normal form methods,
and minimal impact symplectic tracking, amplitude- and energy-dependent tune shifts
and resonance strengths are extracted. Optimization by constrained global optimization
methods further refine and promote robust machine attributes.

Various methods of describing the fields will be presented, including representation
of fields in radius-dependent Fourier modes, which include complex magnet edge con-
tours and superimposed fringe fields, as well as the capability to interject calculated or
measured field data from a magnet design code or actual components, respectively.

Keywords: FFAG; differential algebra; COSY INFINITY; dynamic aperture; symplectic
tracking.

PACS numbers: 29.20.D-, 29.20.dg, 29.27.Bd, 87.56.bd, 41.85.Lc, 41.75.Lx, 41.75.-1

1. Introduction

The broad class of FFAG-type accelerators is experiencing an international revival
in the quest for high beam power, duty cycle, reliability and, in the case of the
spiral-sector FFAG, the potential for compactness at reasonable cost.n2345 The
FFAGs proposed have the high average current and duty cycle characteristic of
the cyclotron combined with the smaller aperture, losses, and energy variability
of the synchrotron. Although new accelerator prototypes are often simulated with
conventional tracking codes, these codes do not provide much flexibility in the field
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Fig. 1. B (vertical) field at injection for nonscaling FFAG lattice showing sharp cutoff of field
at end of CF magnet, along with the radius of the injected orbit along the periodic cell and the
angle as measured with respect to a normal projection relative to a radial line.

description and are limited to low order in the dynamics. This limitation can be
inadequate to fully demonstrate performance including dynamic aperture where
strong nonlinearities due to edge fields and other high-order effects appear. This is
particularly true for the FFAGs. In the muon FFAGs, for example, the large beam
emittances require the inclusion of kinematical (or angle) effects in the Hamiltonian,
which implies that codes which fully describe the kinematics are necessary.%”

The current number of supported design and optimization codes that can ad-
equately describe the complex field and magnet contours for both the scaling and
nonscaling FFAG variants is limited. Outside of COSY, present public codes in-
clude only the cyclotron code CYCLOPS,® and the field-map code ZGOUBL.?1?
The former, which utilizes fields and their geometry expanded in polar coordinates,
has limited accuracy in this application primarily due to lack of out-of-plane ex-
pansion order, and in handling of edge-field effects; this is particularly true for the
case of rapid azimuthal field fall off at magnet edges (as in the FFAG field profile
of Fig. 1), an effect not present in cyclotrons. The results and derived performance
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Fig. 2. Radial and azimuthal tunes for a 14-cell, 30-400 MeV nonscaling proton FFAG showing
dependence on number of radial (N,) and azimuthal (Ny) mesh points used in field calculation.

can be strongly dependent on the integration step size across such an edge with
Fig. 2 showing results for different mesh sizes. Since Cyclops remains a cyclotron
code, it does not directly incorporate field data, either calculated or measured,
primarily derives only closed orbits and tunes for an FFAG, and has no standard
models to handle fringe fields. (Particle tracking and dynamics require another as-
sociated code.) The latter code, ZGOUBI, is presently being used successfully in
FFAG development, but requires dedicated effort and expertise to implement an
FFAG design, particularly when expressed in terms of the conventional magnetic
component definitions. At present, some modern analysis tools for symplectic track-
ing, global optimization, tuneshifts and chromaticities, and resonance analysis are
not as yet available.

In the following an analysis of a 14-cell, linear-field nonscaling 400-MeV FFAG
for protons is compared between MAD, ZGOUBI, and CYCLOPS. (In MAD, the
simulations were performed at discrete energies based on a derived closed orbit.) The
results from MAD reflect a simple hard-edge. Field modeling in Cyclops reflected
the hard edge representation, but experienced difficulty in calculating tunes with
strong sensitivity to the fineness of mesh size discretization near the edge (Fig. 2).
A considerable degree of effort'! was expended in ZGOUBI to effect both the edge
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Fig. 3. Dependence of cell tune on momentum in an example of a nonscaling, linear-field FFAG
which is tune-stabilized about 90°. Solution obtained from the approximated equations.

contour and a hard edge in order to reproduce the MAD model and results. (The
parameters of the Enge function, the convention in ZGOUBI for the fringe-field
model, were adjusted by hand to emulate a hard-edge fall-off.) The final tune de-
pendence in the figure reflects repetitive tuning of the edge angle, again by hand, to
most closely reproduce the desired results of the simpler MAD simulation. Figs. 3-5
show the MAD and final ZGOUBI results for this specific lattice. Tune dependence
of the 14-cell ring modeled in Cyclops using the field and edge profile of Fig. 1 at
injection coupled to the design linear-field gradient and linear edge specified in the
design model is shown in Fig. 2. Note the sensitivity and large distribution in the
tune calculation, especially at low-field points.

Modern extensions of the transfer map-based philosophy as implemented in
the arbitrary order code COSY INFINITY*!® address both limitations: high-order
and accurate dynamics. Yet, the standard field configurations which, in turn, are
based on the standard complement of accelerator components are not able to realize
a general description for the FFAG concept—such as combined function magnets
with complex edge and/or nonlinear field profiles.

Further, in promoting advanced accelerator design, the ability to perform ex-

12,13

tended parameter optimization has become increasingly important, if not critical.
Although effective optimization requires initial conditions that rely on educated,
experienced choices by the designer, subsequent manual adjustment and local op-
timization are rarely fully optimal and often fail for advanced accelerators such as
the FFAGs. Large-scale global optimization, which not only probes local neighbor-
hoods, additionally searches over extended domains of parameter space for suitable
solutions. Recent significant advances in global optimization,6:17:18:19.20 j]lystrated
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Fig. 4. Dependence of cell tune on momentum in an example of a nonscaling, linear-field FFAG
which is tune-stabilized about 90°. Tune as modeled in MAD.
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Fig. 5. Tune dependence of the nonscaling, linear-field FFAG in the code ZGOUBI as initially
modeled in MAD (previous figure) for a single cell. Significant adjustment of edges and Enge-
function parameters was required to achieve approximate agreement with the intended design
described by the MAD simulations and analytical approximations.

by the various different directions of cutting edge research including genetic opti-
mization, divide and conquer approaches, and verified methods, have led to a state
of the art in optimization such that they significantly simplify and promote the de-
sign process. Further, they can prove critical in achieving a robust, state-of-the art
design both in dynamical performance and technical criteria for critical accelerator
technologies such as the FFAGs.



High-Order Description of the Dynamics in FFAGs and Related Accelerators 913

In the following, methods are described that allow the description and analysis
of FFAGs and related types of accelerators. The approaches developed have the
capability to model the wide array of FFAG design parameters and complicated
fields in the presence of very large emittance beams. Description of arbitrary field
profiles will be presented, including a representation in radius-dependent Fourier
modes, which include terms describing the effects of magnet edges along with su-
perimposed fringe fields from the different modes. Alternatively, data from magnet
design codes and field measurements can be used in place of these representations.

2. Field Models

In the following various methods are discussed to describe the transverse focusing
properties of FFAGs and how these methods are applied over the full acceleration
range. The methods differ in level of sophistication and accuracy, as demanded
by the level of complexity of the design fields and physical configuration of the
individual components.

2.1. General Combined-Function Magnets in COSY

In a number of specific cases it is possible to describe an FFAG lattice in terms of
standard COSY beamline elements. For these machines an extended set of combined
function magnets have been implemented both with tilted and curved entrance
edges and a choice of conventional fringe field models. Alternatively, actual data,
either measured or from a magnet design code, can be entered for a calculation using
exact fringe fields. The description of these elements allow a rather sophisticated
level of design as long as the fields of individual elements do not strongly overlap
(implying interaction between components and unnatural fringe fields) and as long
as the field profiles are not unusual or extreme functions of radius or azimuthal
angle. For details we refer to [14].

The disadvantage of this approach is that it is based on a description relative to
a reference orbit and therefore relies on the deflection properties about this orbit.
Studying multiple reference energies, as must be done for an FFAG, makes for a
rapidly expanding problem dimensionally and one that quickly becomes difficult to
analyze. To counter this expansion, in the next sections, we provide field descrip-
tions in terms of a laboratory-based coordinate system that applies to all possible
reference orbits and reduces the descriptive magnitude of the problem.

2.2. Generalized FFAG Magnets

An enhancement of the above approach that provides greater flexibility and con-
trol, entails the superimposition of combined-function (CF) magnets. A “universal”
FFAG magnet can be effectively described in terms of superimposed CF magnets
with arbitrary, high-order (individual multipole) fields. Each overlay retains the re-
quired complex edge curves and associated high-order dynamics. This approach is
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new in that the effective centers of the constituent multipoles do not have to coin-
cide physically in the CF magnet. This approach produces a truly arbitrary field
profile which is difficult or impossible to reproduce in other codes.

Further, since FFAGs have completely periodic lattices, it is sufficient to define
a “half cell” for a repetitive simulation; that is, the structure is defined from one
reflective symmetry point to another. Geometric closure of an orbit requires that all
orbits, even off-reference ones, must be parallel at such points, or “reflection” does
not hold; i.e. all derivatives must be zero for stable orbits. Hence it is sufficient
to construct only a half cell map from which the full cell map is automatically
generated. In the full cell, the model extends from one symmetry point at the
center of a CF magnet, past the next to the same symmetry point in the identical
CF magnet in the sequence. For the half cell, the model extends only to the next
symmetry point—from the center of the horizontally focusing CF magnet to the
center of the horizontally-defocusing CF magnet, for example. The remaining half
of the full cell is generated by reflection to find closed orbit and optical properties
at any energy and for tracking of particle distributions.

In this manner, the full FFAG can be constructed from 2n sector-shaped half
cells, each of which has a sector angle of m/n. The 2n half cells are arranged in
n identical pairs consisting of one half cell and its mirror image to form the full
periodic unit, or full cell. As a consequence of this symmetry, all closed orbits
therefore cross the half cell boundaries perpendicularly and parallel to one another.
The lines normal to the orbits at these symmetry points actually form a radial line
to the geometric center of the FFAG.

Within each full cell, there are either two or three magnets, depending on the
FFAG base unit cell, a FODO, doublet, or triplet structure, and each magnet has
a radial field profile B, ; given by

By = Bo,i - Pp,i(r)

where By ; is a reference field value and Pp; is a dimensionless polynomial in the
polar radius r.

The magnets are bounded by curves describing their effective field boundaries.
Specifically, the first magnet is bounded by the exit curve Pjo; note that the re-
peated mirror symmetric arrangement entails that its entrance curve is also spec-
ified by Pis. The second magnet is bounded by the entrance curve P;. In the
two-bend case, P51 also defines the exit curve due to the imposed mirror symmetry.
In the three-bend case, the exit curve of the second bend is specified by Ps2, and the
entrance curve of the third bend is specified by P5;. The details of the arrangements
are shown in Fig. 6.

All curves in the (x,z) midplane are represented in terms of a parameter ¢ in
the form

—

(x,2)i;(t) = P;j(t) where t € [0,1]
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Fig. 6. The curves describing the effective field boundaries of the FFAG magnets in a cell of
angle m/n in the two-bend (left) and three-bend (right) case.

where the origin of the coordinate system is at the center of the accelerator. In the
vicinity of an edge curve, the fringe field belonging to the magnet bounded by that
curve is given by an Enge Function

_ 1

By(x,2) =B - 1+ exp(P;(d/D;(r)))

where B is the main field acting at the point closest to (x,z) on the effective field
boundary and P; is a polynomial. Note that B is the sum of the contributions from
the individual multipoles. The quantity d is the distance of the point (z, z) to the
effective field boundary, and D; is the aperture of magnet i, which is allowed to
vary with radius in polynomial form.

Enge functions provide significant flexibility for the description of most types of
realistic field fall-offs by appropriately choosing the coefficients of the polynomial in
the exponential function. Thus, fringe field profiles based on other explicit functions
are usually not necessary, at least in early stages of design.

Fringe fields of neighboring curves are allowed to overlap. Overall, the fringe field
description is very similar to the approach that has been followed very successfully
in the study of high-resolution particle spectrographs.

The advantage of this particular field model is that it allows a relatively sim-
ple adjustment of the main parameters commonly studied in the design of FFAG
magnets while providing a fully Maxwellian and realistic field description. Specifi-
cally, the radial field variation appearing in Pg ;(r) affects both the horizontal and
vertical focusing for quadrupole and higher fields and only horizontal focusing for
dipole, and the edge curves f’,] (t) affect both horizontal and vertical focusing. The
Enge fall off is well known to represent realistic field profiles which can be adjusted
to accurately describe most magnets and can even approximate a rapid, hard edge
fall-off which is useful for comparison with codes without fringing fields.
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2.3. Radius-Dependent Fourier Decomposition

From the early days of the study of FFAGs (see for example [21, 22]), midplane
fields are often described in terms of azimuthal Fourier modes. This description
allows the capture of most of the effects relevant to the focusing while abstracting
from the specific shapes of the magnets that provide the desired fields. We provide
this option by allowing a field description of the form

By(r,¢) = ao(r +Zag cos (j(¢ — do(r +Zb sin (j(¢ — ¢o(r))) -

The Fourier coefficients a;(r) and b;(r) as well as the phase angle ¢g(r) are described
in terms of polynomials in r. Higher values of n obviously allow for more faithful
modeling, while all of the common focusing effects can be observed already for lower
values of n.

In some instances it is desirable to capture more radial detail than can be
revealed by the polynomials a;(r) and b;(r). Specifically, let us assume we are given
a table of a;; on a grid of equidistant radii r; =4 - Ar, let P; be the polynomial of
best fit to all data points, and let @;; = a;;/P;(iAr). We then perform a Gaussian
wavelet interpolation®? of the form

a;(r Z 0i;Go(r —iAr)

where G, (z) = exp (—a?/0?) /o\/T with o ~ 1.5Ar.

2.4. Gaussian Wavelet Representation of Polar Midplane Data

Beyond the tools useful to quickly provide field models for the initial design phase,
in addition it is possible to describe the fields in terms of three-dimensional field
models of various levels of sophistication as soon as such field data are known. As a
first step, let us assume we are given a field representation in terms of midplane data
Bg’j ) in polar coordinates r and ¢ on a regular polar grid with spacing Ar and A¢.
The midplane field is then described in terms of these as a wavelet representation
of the form

r.0) =Y Gop(r — 1) - Gog(¢ — ¢;) - B

where the Gaussian wavelet G, has the form G, (z) = exp (—2?/0?) /oy/7 , and o
is chosen as approximately 1.5Ar and 1.5A¢, respectively. From the midplane rep-
resentation, the field is then reconstructed by conventional out-of-plane expansion.

Note that this representation has some inherent limitations since the out-of-
plane is sensitive to errors in the field data in the midplane. It should hence be
used with caution only after the effect of such errors on the quality of the resulting
expansion in the domain of interest is established. One way to remedy this situation
is to utilize the midplane data to first obtain a Fourier representation as described
in section 2.3. Another method is described in the next section.
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2.5. Field Representations from Three-Dimensional Data

From a mathematical point of view, the knowledge of magnetic fields in the mid-
plane is sufficient to determine the fields at any point in space based on a power
series expansion. Specifically, Maxwell’s equations impose well-known conditions
on the Taylor coefficients that under the assumption of midplane symmetry allow
the determination of out-of-plane coefficients from those in-plane. Using DA-based
methods as described in for example [12], the process can even be fully automated
to any order. However, any attempt of representing three-dimensional field data in
terms of fields given only in the midplane is sensitive to measurement errors, since
these can greatly affect any attempt of recovering high-order midplane derivatives.

It is thus desirable to utilize field descriptions that do not rely on the midplane
data. Indeed, a much more favorable approach is the utilization of surface field data.
As discussed in [24, 25, 26, 27], this approach has a tendency to smooth out any
measurement errors and leads to more faithful three-dimensional representations.

Other field arrangements are potentially desirable in certain cases. For exam-
ple, one may want to describe fields of air coil-dominated magnets directly based
on a data file describing the geometry of pieces of the respective coils and their
currents.2”-28:29 Furthermore, if it is deemed desirable, one can perform injection-
to-extraction simulations by providing acceleration elements of varying degrees of
sophistication, beginning from pillbox-type elements to more sophisticated analysis
based on field harmonics.

3. Analysis Tools

Based on the field descriptions provided in the last section, there are various tools
of the COSY environment that can be utilized for subsequent analysis.

e Closed Orbits. First, a set of closed orbits is being determined for a suitable
collection of reference particle energies by optimization.

e Arbitrary Order Maps. For each of the closed orbits, a high-order energy-
dependent transfer map around it is calculated. This includes all dynamics of
the system to arbitrary order, including out-of-plane expansions of fields and any
nonlinear terms in the Hamiltonian.!2-3

e Linear Properties of Maps. For this local map, common linear beam functions
including invariant ellipses and tunes near the closed orbit are determined.

e Tracking. The high-order transfer maps can be used to perform tracking to
estimate the dynamic aperture, presence of resonances, etc. There are various
methods to perform tracking in COSY that preserve the symplectic symmetry
inherent in Hamiltonian systems, including methods that do so with minimal
modifications based on the EXPO approach.3!:32:33

e Acceleration. It is possible to describe the fields in terms of cavities of various
sophistication, ranging from kicks over pillbox-type cavities to Fourier modes in
space and time. Independent of the type of acceleration device used, in order
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to study acceleration effects through such systems, the entire dynamic range in
energy is sampled in steps of energy. For each such step, the map will be repre-
sented through a high-order map including energy dependence, and acceleration
tracking is possible by suitably switching between maps.

e Amplitude Dependent Tunes and Resonances. In addition to the mere
empirical study, there are various tools for analysis of nonlinear effects, includ-
ing the normal form-based computation of high-order amplitude dependent tune
shifts and resonances.!?

e Global Parameter Optimization. COSY allows the automatic adjustment
and optimization of arbitrary system parameters; and different from other tools,
the search uses methods of global optimization with constraints over a pre-
specified search region, and not merely local optimization from a starting pa-
rameter setting.

4. Performance Examples

To provide an illustrative example of the behavior to be expected, we study a sam-
ple FFAG having sixfold symmetry, with focusing stemming from an azimuthal field
variation expressed as a single Fourier mode as well as edge focusing. The system is
studied to various orders of out-of-plane expansion, and conclusions about dynamic
aperture are drawn. We show the results for orders three and five, which are typ-
ical for the situation of conventional out-of-plane expansion in codes like Cyclops.
Because the DA method used in COSY'? is not based on divided differences, the
necessary in-plane derivatives can actually be calculated to any order desired with
an accuracy that is always close to machine precision.'?

The results of tracking without symplectification and with EXPO symplecti-
fication are shown in Figs. 7-12. Apparently symplectification greatly affects the
dynamic aperture to be inferred in the system. Tracking is performed using the
EXPO symplectification scheme which is known to minimize the alterations to the
non-symplectic tracking results compared to other symplectification methods.

Figs. 7-12 show phase portraits in the (x — a) plane (left) and the (y — b) plane
(right), where a = py/po, b = p,/po are normalized horizontal and vertical momenta
correspondingly.

However, Figs. 11 and 12, which are both based on order eleven out-of-plane
expansion, show significant additional effects and different dynamic aperture com-
pared to the lower order cases as seen in Figs. 7 to 10, suggesting that the low order
methods for out-of-plane expansion and dynamics are not sufficient to capture the
details of the dynamics. It would in fact lead to an incorrect prediction of dynamic
aperture, underestimating it in the horizontal direction and overestimating it in the
vertical. Further increases in order beyond eleven do not significantly affect the de-
tails of the symplectic motion shown, but continue to influence the non-symplectic
motion. A rough estimate reveals that in this particular case, the dynamics as seen
in non-symplectic tracking seems to begin to stabilize around order 11, which is
still rather easily obtained within the power of a modern workstation.
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Fig. 7. Horizontal and vertical tracking in a model FFAG with third-order out of plane expansion,
without symplectification. Left: (z — a) plane, right: (y — b) plane, where a = ps/po, b = py/po
are normalized horizontal and vertical momenta correspondingly.
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Fig. 8. Horizontal and vertical tracking in a model FFAG with third-order out of plane expansion,
with EXPO symplectification. Left: (x —a) plane, right: (y —b) plane, where a = pz/po, b = py/po
are normalized horizontal and vertical momenta correspondingly.
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Fig. 9. Horizontal and vertical tracking in a model FFAG with fifth-order out of plane expansion,
without EXPO symplectification. Left: (z — a) plane, right: (y — b) plane, where a = ps/po,
b = py/po are normalized horizontal and vertical momenta correspondingly.
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Fig. 10. Horizontal and vertical tracking in a model FFAG with fifth-order out of plane expansion,
with EXPO symplectification. Left: (x —a) plane, right: (y —b) plane, where a = pz/po, b = py/po
are normalized horizontal and vertical momenta correspondingly.
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Fig. 11. Horizontal and vertical tracking in a model FFAG with eleventh-order out of plane
expansion, without EXPO symplectification. Shows significant additional effects and different
dynamic aperture compared to the lower order cases as seen in Figs. 2 to 5, suggesting that
the low order methods for out-of-plane expansion and dynamics are not sufficient to capture the
details of the dynamics. Left: (z — a) plane, right: (y — b) plane, where a = p./po, b = py/po are
normalized horizontal and vertical momenta correspondingly.
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0.800E-02

Fig. 12. Horizontal and vertical tracking in a model FFAG with eleventh-order out of plane ex-
pansion, with EXPO symplectification. Shows significant additional effects and different dynamic
aperture compared to the lower order cases as seen in Figs. 2 to 5, suggesting that the low order
methods for out-of-plane expansion and dynamics are not sufficient to capture the details of the
dynamics. Left: (z — a) plane, right: (y — b) plane, where a = psz/po, b = py/po are normalized
horizontal and vertical momenta correspondingly.
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