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Abstract Current approaches to uncertainty propagation in astrodynamics mainly refer
to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear
dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differ-
ential algebra has already proven to be an efficient compromise by replacing thousands of
pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order
Taylor expansion of the flow of the dynamics. However, the current implementation of the
DA-based high-order uncertainty propagator fails when the non-linearities of the dynamics
prohibit good convergence of the Taylor expansion in one or more directions. We solve this
issue by introducing automatic domain splitting. During propagation, the polynomial expan-
sion of the current state is split into two polynomials whenever its truncation error reaches a
predefined threshold. The resulting set of polynomials accurately tracks uncertainties, even
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in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis
post-encounter motion.

Keywords Differential algebra - Automatic domain splitting - Uncertainty propagation -
Apophis resonant return

1 Introduction

Nonlinear propagation of uncertainties plays a key role in astrodynamics. Orbit determination
is affected by measurement errors; consequently, the knowledge of the state of any spacecraft
or celestial body is characterized by an estimable level of uncertainty. Typically these uncer-
tainties need to be propagated forward in time, for example for spacecraft navigation or to
estimate the collision risk between artificial satellites or the threat from near Earth objects. As
orbital dynamics is highly nonlinear the size of the uncertainty set tends to quickly increase
along the trajectory. Nonlinearities are not confined to object dynamics: even simple con-
versions between different coordinate systems (e.g. the conversion from polar to Cartesian
coordinates that forms the foundation for the observation models of many sensors) introduce
significant nonlinearities and, thus, affect the accuracy of classical uncertainty propagation
techniques.

Uncertainty propagation in nonlinear systems is extremely difficult. Present-day approa-
ches mainly refer to linearized propagation models (Battin 1999; Montenbruck and Eberhard
2001; Crassidis and Junkins 2004) or full nonlinear Monte Carlo simulations (Maybeck
1982). The linear assumption significantly simplifies the problem, but the accuracy of the
solution drops off in case of highly nonlinear systems and/or long time propagations. On the
other hand, Monte Carlo simulations provide true trajectory statistics, but are computationally
intensive and therefore, in many cases, unmanageable. Thus, the main challenge in uncertainty
propagation is to develop methods that can accurately map uncertainties in nonlinear system
with limited computational effort.

The unscented transformation (UT) was proposed to address the deficiencies of lineariza-
tion: a limited number of samples are deterministically chosen to match the mean and
covariance of a (non necessarily Gaussian-distributed) probability distribution (Julier and
Uhlmann 2004; Julier 2002). The main drawback of the approach is that it delivers a second
order approximation of the first two moments of the mapped statistical distributions. This can
turn out to be inadequate for applications when higher order moments are needed to accu-
rately describe the propagated uncertainty set. Gaussian mixtures (Giza et al. 2009; Horwood
and Poore 2011; Jah and Kelecy 2009) have been introduced as a possible way to overcome
this limitation. The method is based on the fact that any probability density function can be
represented by a weighted sum of Gaussian distributions. As each of these distributions is
defined on a reduced domain, a linearized approach or UT can be employed to individually
map each of them without a significant loss in accuracy.

An alternative way to map the statistics is based on the approximation of the flow of the
dynamics in Taylor series and the use of the resulting polynomials as dynamical substitutes.
This approach was presented by Park and Scheeres (2006), and later investigated by other
researchers (Majji et al. 2008; Vittaldev et al. 2012). It was shown that a good agreement
with Monte Carlo simulations can be achieved, however the derivation of the dynamics of
the high order tensor can be complex from the computational standpoint, especially for high
fidelity dynamics.
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These difficulties were addressed by the authors in past works, in which a technique
called differential algebra (DA) was used to automatically expand the flow of the dynamics
up to an arbitrary order (Di Lizia et al. 2008; Armellin et al. 2010). Nonlinear uncertainty
propagation can take advantage of the high order expansions of the flow. For example, as
the accuracy of the Taylor expansion can be tuned by adjusting the expansion order, the
approach of classical Monte Carlo simulations can be enhanced by replacing thousands of
integrations with evaluations of the Taylor expansion of the flow. The most established DA
computation tool is COSY INFINITY by Berz and Makino (Berz and Makino 2006) which is
used in this work. Other implementations of DA techniques have recently been implemented
in academia, e.g. Jet Transport (Alessi et al. 2009), or in industry such as the DA code JACK
developed by Thales Alenia Space (Bignon et al. 2014).

Differential algebra has already proven its efficiency in the nonlinear propagation of uncer-
tainties within different dynamical models, including two-body dynamics (Valli et al. 2012),
(n + 1)- body dynamics (Armellin et al. 2010), and geocentric models (including Earth’s
gravitational harmonics, solar radiation pressure, shadows, and third body perturbations)
(Morselli et al. 2010). Nonetheless, the accuracy of the method tends to decrease drastically
when the uncertainty domain becomes too stretched in one or more directions. This can be
due to one or a combination of the following causes: high nonlinearity of the dynamics, large
initial uncertainty sets, and long term propagations.

The propagation of asteroids motion after a close encounter with a major body is a typ-
ical example. As reported by Valsecchi et al. (2006), the asteroid (99942) Apophis will
have an extremely close approach to the Earth on 13 April 2029. The asteroid orbit will
suffer a very large perturbation, opening the door to the possibility of a resonant return
in 2036. The nonlinearities of the close encounter and of the post-encounter motion will
make any uncertainty in the direction anti-parallel to the Earth heliocentric motion in 2029
diverge by a factor of 40000 in 2036. While performing better than classical linearized
methods, the current implementation of the DA uncertainty propagator still is inaccurate
and impractical in such cases, due to the prohibitively high order required to describe the
resulting uncertainty sets by a single polynomial. Furthermore, in the case of impacts for
some part of the initial conditions, it is mathematically impossible to represent the entire
resulting uncertainty set by a single polynomial expansion (Di Lizia et al. 2009; Alessi et al.
2009).

To overcome these problems, this work introduces a novel method, referred to as automatic
domain splitting, into the DA uncertainty propagator. It handles those situations in which a
single Taylor expansion of the flow is not enough to accurately map the entire initial uncer-
tainty set. The underlying idea is to split the initial domain into manageable subdomains
over which the Taylor expansion shows good convergence properties. This “divide-and-
conquer’’style approach is common in the field of verified numerics. The DA algorithm
developed in this work extends the traditional method in various ways, most importantly
by performing the subdivision of the initial domain adaptively as needed during the inte-
gration instead of a priori. This yields not only a large gain in computational performance
as the initial set is automatically subdivided into optimally sized subsets, but also reveals
valuable information about the dynamical behavior in different regions of the initial condi-
tions.

In past works, the authors have already studied the same asteroid (99942) Apophis (Di
Lizia et al. 2009) using the self-validating Taylor Model integrator COSY VI (Makino and
Berz 2009). Employing its own conceptually similar splitting technique, COSY VI was able
to manage the propagation only until shortly after the first close encounter. This is because
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the purpose of COSY VI is the rigorous verified integration of initial conditions, bringing
along with it different, more stringent requirements.

In this work, this problem is overcome by introducing a dedicated automatic procedure
to identify the necessity of splitting during the integration, determine the direction in which
to split, and to manage the resulting sets. During the integration of the initial condition, the
polynomial representing the current state is constantly monitored. When the nonlinearities of
the system cause the estimated truncation error of the polynomial to grow too large, integration
is paused and the domain of the polynomial is split into two halves along the variable with the
largest contribution to the truncation error. This yields two new polynomials, one covering
each half of the initial condition set. Since the split of the domain of one variable into half
causes the nth order terms of that variable to shrink by a factor of 2", this method efficiently
reduces the size of the highest order terms. Integration is then resumed on each one of the
two new polynomials until either further splits are required or the final state is reached. The
final result of this procedure is a list of final state polynomials, each describing the evolution
of some automatically determined subset of the initial condition.

The application of the resulting tool to the propagation of asteroid (99942) Apophis motion
is addressed in the second part of this paper. Automatic domain splitting is shown to overcome
the previously described issues of the DA uncertainty propagator and to pave the way to a
innovative approach to study the challenging problem of resonant returns. As an additional
contribution, the paper proposes the use of the resulting splitting structure at the end of the
propagation as a novel method to infer the dynamical behavior of the system over the initial
uncertainty domain.

The paper is organized as follows. In the next section, a brief introduction is given about
DA techniques and the high order expansion of the flow of an ODE is described. A simple
application to the propagation of uncertainties in Kepler’s dynamics is presented to show
the advantages of high order propagation with respect to linear methods and to illustrate
its limits for large uncertainty sets and nonlinear dynamics. Automatic domain splitting is
then introduced and the uncertainty propagation in Kepler’s dynamics is resumed to show the
advantages of domain splitting over standard high order propagation. Lastly, the performances
of the resulting splitting DA-based integrator are assessed on the propagation of asteroid
(99942) Apophis.

2 Differential algebra and high order flow expansion

DA supplies the tools to compute the derivatives of functions within a computer envi-
ronment (Berz 1999a). More specifically, by substituting the classical implementation
of real algebra with the implementation of a new algebra of Taylor polynomials, any
function f of v variables is expanded into its Taylor polynomial up to an arbitrary
order n with limited computational effort. In addition to basic algebraic operations,
operations for differentiation and integration can be easily introduced in the alge-
bra, thus finalizing the definition of the differential algebra structure of DA (Berz
1986, 1987). Similarly to algorithms for floating point arithmetic, also in DA vari-
ous algorithms were introduced, including methods to perform composition of func-
tions, to invert them, to solve nonlinear systems explicitly, and to treat common ele-
mentary functions (Berz 1999b). The differential algebra used for the computations
in this work was implemented in the software COSY INFINITY (Berz and Makino
2006).
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Propagation of large uncertainty sets in orbital. . . 243

An important application of DA is the automatic high order expansion of the solution of
an ODE in terms of the initial conditions (Berz 1999a; Armellin et al. 2010). This can be
achieved by replacing the operations in a classical numerical integration scheme, including
evaluation of the right hand side, by the corresponding DA operations. This way, starting from
the DA representation of an initial condition xg, DA ODE integration allows the propagation
of the Taylor expansion of the flow in xo forward in time, up to any final time f7. Any
explicit ODE integration scheme can be rewritten as a DA integration scheme in a straight-
forward way. For the numerical integrations presented in this paper, a DA version of a 7/8
Dormand—Prince (8th order solution for propagation, 7th order solution for step size control)
Runge—Kutta scheme is used. The main advantage of the DA-based approach is that there is
no need to write and integrate variational equations in order to obtain high order expansions
of the flow. It is therefore independent of the particular right hand side of the ODE and the
method is quite efficient in terms of computational cost.

2.1 Kepler’s dynamics example

To illustrate the method, we consider the dynamics of a celestial body moving in the frame-
work of the two-body problem

F=v
[iz_— (D

r,

|
RALS

where r and v are the object position and velocity vectors respectively, and pu is the Sun
gravitational parameter. The nominal initial conditions are set such that the object starts
moving from the pericenter of an orbit with eccentricity of 0.5, lying on the ecliptic plane
(see the dotted line in Fig. 1a). The units are normalized in such a way that both the pericenter
radius and p are equal to 1, thus leading to the following initial conditions:

x=1
=0
o @)

=415

In these units the nominal orbital period is 277 +/8.
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Fig. 1 Propagation of a set of initial positions in the two-body problem using the 6th order Taylor expansion
of the flow of the associated ODE. a Evolution of the initial set over an orbital period. b Accuracy analysis on
the set at #; = 16 (after 0.9 nominal orbital revolutions)
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Fig. 2 Uncertainty set at (a) (b)
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The DA-based integrator is used to compute a 6th order expansion of the ODEs flow
along the orbit. The x and y components of the initial position are then supposed to lie in an
uncertainty box of size 0.008 and 0.08 in the x and y direction respectively. As can be seen in
Fig. 1, this is a rather unrealistic uncertainty set, which has been exaggerated for illustrative
purposes. The evolution of the resulting initial box is now investigated by propagating its
boundary. More specifically, a uniform sampling of the boundary is performed. Then, for
each sample, the displacement with respect to the nominal initial conditions is computed and
the 6th order polynomial maps obtained with the DA-based integrator are evaluated. In this
way, for each integration time, the evolved set can be plotted by means of mere polynomial
evaluations. The evolved set is reported in Fig. la corresponding to nine integration times
uniformly distributed over the orbital period. The time required by COSY INFINITY for the
computation of the 6th order map is about 0.15 s on a 2.4 GHz Intel Core i5 MacBook Pro
running Mac OS X 10.9.1.

The accuracy of the Taylor expansion of the flow is better highlighted in Fig. 1b. Focusing
on the integration time #; = 16, the figure reports the set obtained with a multiple pointwise
integration of the samples (solid line). The propagated sets obtained by the evaluation of the
polynomial maps representing the flow of the ODE in Eq. (1) are then plotted for comparison,
corresponding to different expansion orders. The figure shows that a 6th order expansion of
the flow is necessary to achieve a visually accurate result (i.e. a relative error of the order of
10~%) for the large initial uncertainty set considered in this example. Note that depending on
the actual application, stricter requirements may be appropriate.

Unfortunately, the accuracy of the 6th order Taylor expansion drastically decreases for
longer integration times. Figure 2a focuses on the integration time #; = 34.85, which corre-
sponds to only about 1.96 revolutions of the nominal initial condition. The figure compares
the set obtained by a multiple pointwise integration of the samples with that resulting from the
evaluation of the 6th order polynomial map. The 6th order expansion is not able to accurately
describe the exact set. Even increasing the order of the Taylor expansion does not improve
the accuracy. This is confirmed in Fig. 2b, where the results of a 14th order expansion of the
ODE:s flow are compared with the exact set.

Figure 2a, b demonstrate the aforementioned fact that a single Taylor expansion of rea-
sonable order is not always able to accurately describe the evolution of an initial uncertainty
set. Consequently, while performing better than classical linearized methods, the high order
integrator described above may fail to accurately track uncertainties depending on the non-
linearity of the dynamics, the size of the uncertainty set to be propagated, and the propagation
time.

Automatic domain splitting can play a crucial role to solve the previously described issues.
In the course of the integration of the initial conditions, the uncertainty set is split along its
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variables when the nonlinearities of the system cause the Taylor expansion to lose accuracy.
This yields a list of final polynomials, each one expanded around a different point in the initial
condition box and covering a subset of the initial conditions. The technique and its advantages
with respect to the current implementation of the DA-based integrator are described in the
next section.

3 Automatic domain splitting

The approximation error between an n + 1 times differentiable function f € C"*! and its
Taylor expansion Py of order n, without loss of generality taken around the origin, is given
by Taylor’s theorem (Rudin 1976):

| f(6x) — Pr(dx)] < € - 8x™ ! 3)

for some constant C > 0. We remark in passing that Taylor’s theorem does not require f to
be analytic, it is sufficient that f € C"+1.

Consider now the maximum error e, of Py on a domain B, of radius » > 0 around the
expansion point. By Eq. 3 we have that

|f(6x) — Pr(dx)| < C-8x"T < C -t = e,

If the domain of Py is reduced from B, to a ball B, ; of radius /2, the maximum error
of Py over B, will decrease by a factor of 1 /2 e

+1
|f(6x) — Pr(8x)| < C-8x"*' < C- (%)n = 2:;1

We observe that for sufficiently large expansion orders, such as e.g. n = 9, the effect of
reducing the size of the domain by half is thus greatly amplified and the maximum error

is reduced by a factor of 2%0 ~ 10~*. One solution to the previously described problem of

non-convergence of the polynomial expansion over its initial domain is therefore to subdivide
the initial domain into smaller domains and compute the Taylor expansion around the center
point of each of the new domains. Then the error of the new polynomial expansions in each
sub domain is greatly reduced, while taken in their entirety, the expansions still cover the
entire initial set.

This process is often referred to as a divide and conquer strategy, and is very common in the
field of numerical analysis (Moore et al. 2009). However, the method described before suffers
from an important drawback. To manually subdivide the initial domain into smaller subsets of
a predefined size, it is necessary to know a priori the required size of the subdivided domains
to obtain the desired error. If the initial domains are chosen too small, precious computational
time is wasted computing expansions over several small domains where one large domain
would have sufficed.

Furthermore, for practical reasons such subdivisions are typically performed in a uniform
manner, producing a uniform grid. This adds to the computational cost as often times the
dynamical behaviour of the function f being expanded differs significantly over the various
parts of its domain. In some regions expansions over larger subsets will yield the required
accuracy, while other regions may be more critical and require expansions to be on a more
finely spaced grid.

Lastly, in the case of the expansion of the flow of an ODE, the a priori splitting of
the initial domain into sub domains causes computational yet additional unnecessary over-
head due to the fact that the flow at the beginning of the integration (f = fy) is just
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the identity, i.e. ¢(fp; x) = x. At this initial time, the entire flow over the initial condi-
tion can be accurately represented by the identity polynomial. As the integration of the
dynamics progresses, the flow ¢ is distorted away from the identity until such a time step
t = t;41 at which the polynomial approximation P, surpasses some pre-specified max-
imum error ¢. Up until the previous time step #;, however, the flow is described well by
just one polynomial expansion over the entire initial condition, there is no need to perform
the integration between fo and #; several times using a fine cover of polynomial expan-
sions.

Building on these observations, Automatic Domain Splitting employs an automatic algo-
rithm to determine at which time the flow expansion over a given set of initial conditions
does not describe the dynamics with sufficiently high accuracy any more. Once this case has
been detected, the domain of the original polynomial expansion is divided along one of the
expansion variables into two domains of half their original size. By re-expanding the polyno-
mials around the new center points, two separate polynomial expansions are obtained. As the
re-expansion of the polynomials does not change their order, each of the new polynomials
is identical to the original polynomial on its respective domain. This process is illustrated in
Fig. 3.

More specifically, let P(x) be the polynomial representation of the flow ¢(#;; x) at some
time #;, where x € [—1, 1]¥. The choice of the domain to be [—1, 1] for each component of
X is an arbitrary one, yet this particular choice simplifies many of the following calculations
and has various numerical advantages as well. Without loss of generality, the domain [—1, 1]
of any component x; can be transformed linearly into any other desired interval [a, b].

The split of P into P; and P, along component x; is defined as

1 1

Pl(x) = P(xl,...,xj',l,i-xj'—E,Xj+1,...,xk)
1 1

Py(x) =P xlmn,xjflvi'xj‘f‘i,x./#l,u-,xk

and the domains of Py and P are again assumed to be x € [—1, 1.

From this definition it is evident that P is covering the left half (x; € [—1, 0]) of the
original domain of x; and P, covering the right half (x; € [0, 1]). Since both P; and P,
are again polynomials of the same degree as P, this splitting operation can be performed
exactly in DA arithmetic without adding any truncation errors. The new polynomials P; and
P, have exactly the same graph as that of P, just expanded around a different expansion
point. However, in accordance with Eq. 3, the terms of order » in x; present in P; and P,
will be smaller by a factor of 2" than the corresponding terms in P.

Fig. 3 Illustration of the 1=ty
propagation process with domain

splitting |:>
°
ITor < € [> | # error > &

v

[> error < €

R
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After such a split occurs, the integration can continue on each one of P; and P in the
same manner as described in the previous section until further splits are required or the final
integration time is reached. The result is a list of polynomial expansions, each covering a
specific part of the domain of initial conditions.

The decision when exactly a polynomial needs to be split, and in the case of multivariate
polynomials the direction of the split, is in general difficult to answer. We use a method that
estimates the size of the n + 1 order terms of the polynomial based on an exponential fit of
the size of all the known non-zero coefficients up to order n. If the size of this truncated order
becomes too large, we decide to split the polynomial.

This method allows us to take into account all the information available to us in the
polynomial expansion in order to obtain an accurate estimate of the size of the n + 1
order. Compared to more trivial splitting criteria, such as only considering the size of the
terms of order n, this method improves in particular the estimates for sparse functions
such as functions with symmetries like sin and cos where many terms vanish. The expo-
nential fit is chosen because after reducing the domain by a sufficient number of splits,
the coefficients of the resulting polynomial expansion will in fact decay exponentially
independently of the function being expanded. This is a direct consequence of Taylor’s
Theorem.

To be more precise, given a polynomial P of order n of the form

P(x) = Z agx®

written using multi-index notation, the size S; of the terms of order i is computed as the sum
of the absolute values of all coefficients of exact order i:

Si= 2 laal.

lo|=i

We denote by I the set of indices i for which S; is non-zero. A least squares fit of the
exponential function

fl)=A-exp(B-i)

is used to determine the coefficients A, B such that f(i) = S;, i € [ is approximated
optimally in the least squares sense. Then the value of f(n + 1) is used to estimate the
size S,4+1 of the truncated order n 4+ 1 of P. This method is illustrated in Fig. 4, where the
polynomial under consideration is the Taylor expansion of /1 4 x/2 up to 9th order. The
size S; of each order used for the least squares fit is shown as hatched bars, while the resulting
fitted function f is shown as a line. As can be seen from this simple example, the size of the
10th order term, which was not used in the fitting, is approximated reasonably well by this
method.

As described above, in the case of multivariate polynomials P (x) = P (x1, X2, . .., Xk),
the split is only performed in one component x;. The determination of the splitting direction
X; is once again a non-trivial problem. We use a similar method to determine this direction i
as we used previously for the decision to split. For each j = 1, ..., n we begin by factoring
the known coefficients of P of order up to n with respect to x;, i.e. we write

n
P(x1,x2, o x0) = D X0 @ (X, X1 X XR)
=0

@ Springer



248 A. Wittig et al.
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where the polynomials ¢; ,, do not depend on x;. Then the size S;,, of the polynomi-
als g, is estimated by the sum of the absolute values of their coefficients and the same
exponential fitting routine as described above is applied to obtain an estimate of the size
S nt1 of the truncated terms of order n + 1 in x;. Finally the splitting direction i is cho-
sen to be the direction corresponding to the component x; with largest truncation error
S+l

In this way, all splits are performed in the direction of the variable that currently has
the largest estimated contribution to the total truncation error of the polynomial P, and
thus the splits have the maximal impact on reducing the approximation error. The splitting
process described here in general, and the selection of the splitting direction in particular,
are strongly dependent on the parametrization of the initial condition. The direction of max-
imum expansion in general is not aligned with a single direction of the parametrization,
in which case several variables will contribute to the truncation error. In this case, splits
occur automatically along all variables involved. However, the initial condition can often be
parametrized such that expansion happens mainly along only a few or even just one of the
directions.

3.1 Kepler’s dynamics example: domain splitting illustration

Before we present a full analysis of the effect of the splitting precision on the accuracy,
efficiency and number of final sets in the next subsection, we first demonstrate the domain
splitting technique described in the previous section. We apply it to the same problem of
propagating Kepler’s dynamics as presented in the Sect. 2.1. Computations are performed at
order 14 with the same initial condition box. The splitting precision is set to € = 3 x 1074,
meaning that when the estimated truncation error of an expansion exceeds this limit a split
is triggered. The limit was chosen this high to allow for a better visualization of the splitting
process, in actual applications the limit is typically chosen much lower.

Integrating the dynamics from time 7y = 0 to time 7y = 50 (2.81 nominal revolutions),
the entire computation takes about 22 s on the same machine used for the example in the
previous section, and produces 23 final polynomial expansions covering the initial condition.

Figure 5 shows the resulting sets at various times during the integration. Up until time #, =
16 day (0.90 nominal revolutions), the entire set is well described by a single DA expansion.
At time , = 17 (0.96 nominal revolutions), just before completing the first revolution 2
splits have occurred, leading to three polynomial patches. Another split is performed at time
t. = 33 (1.86 nominal revolutions). Figure 5d shows the 15 DA patches that are necessary
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to accurately track the uncertainty set at time 77 = 40 (2.25 nominal revolutions). Then, the
number of patches increases to 23 at the final integration time.

Figure 6 shows the number of splits as a function of the integration time. As is clear
from this graph, the splits do not just happen at random times equally distributed over the
integration period. Instead, splitting decisions are tightly correlated with the time of perigee
passages (highlighted with grey band in Fig. 6). Clearly, splits cluster around the time of
perigee passage, when the dynamics exhibit the strongest non-linearities and the propagated
set is the most distorted. This is in accordance with the previous observations on the poor
convergence of a single polynomial expansion close to the time or perigee passage in Fig. 2.
It also indicates that the automatic splitting algorithm as introduced above is very efficiently
determining the regions of phase space in which the dynamics require splitting due to high
non-linearities without introducing unneeded splits. As the propagation continues, the time
window in which splitting occurs become wider. This is in part due to the different initial
conditions in the set having different periods, and the overall growth of the set over time.
The splitting algorithm automatically takes these effects into account for each subset when
deciding at which points along the trajectory splits occur.
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Fig. 7 Propagation of the initial (a) (b)
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To further highlight the power of this method compared to the single polynomial expansion,
Fig. 7 focuses on the same integration time #; = 34.85 used in the example presented in the
previous section. More specifically, the figure reports the 9 final resulting polynomials at
t; = 34.85 and the polynomial resulting from a single 14th order Taylor expansion of the
flow on the entire uncertainty set. The comparison between Fig. 7a, b shows that automatic
domain splitting allows the exact propagated set to be described to visual accuracy by the
9 Taylor polynomials. Figure 7b, on the other hand, illustrates how the automatic domain
splitting subdivided the entire initial uncertainty set into 9 smaller sets of varying size during
the 14th order integration. It is apparent that the dynamics in the bottom left quarter of the
initial domain, starting closer to the primary and a little before perigee passage, requires the
most splits.

While rather trivial in this example, splitting pictures such as the one shown in Fig. 7b in
general can carry a significant amount of information about the dynamical behavior of the
system under consideration in different phase space regions. In fact, the size of the boxes in a
given region can give a strong indication of the non-linearity and hence the chaoticity of the
motion there. Especially in higher dimensional cases, splitting pictures allow the identification
of sensitivity to initial conditions by analyzing the number of splits in each direction of the
final sets. Furthermore, different regions of dynamical regimes can be identified by analyzing
the size of the resulting sets over the initial domain.

3.2 Kepler’s dynamics: effect of splitting precision

Having illustrated the method using the previous example, we now proceed to add a quan-
titative analysis of the automatic domain splitting algorithm applied to Keplerian dynamics.
In particular, we focus on the effect of the parameter to the splitting algorithm, the splitting
precision &, on the accuracy of the resulting polynomials, the computation time, and the
number of splits required.

To this end, we consider the same problem described in Sect. 2.1, but propagated for 35
non-dimensional time units and with the following settings for the splitting precision &:

ee{1073,107*,107°,107%,1077, 1078, 107"}

These values are now chosen as they are more representative of a real world application.
The integrations are performed using a Dormand—Prince 7/8 order Runge—Kutta integration
scheme with automatic step size control set to a one step integration error of 10712,

In Table 1, for each such setting the computational time on a 2.9 GHz Intel Core i5 iMac
with 8 GB DDR3 RAM is reported along with the final number of polynomials at the end
of the integration. For each final set of the integration, the evaluation of the polynomial at
the center, the corner points, and 100 randomly chosen points within the set is compared
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Table 1 Dependence of

. . . Comp. Time (s) # of polynomials Max. Error

computational time, maximum

error of the Taylor expansion, and 10-3 179 12 331 % 10-2

number of polynomials on the

splitting precision & 104 22.3 14 3.70 x 1073
1073 28.4 17 2.20 x 1074
1076 353 21 571 x 1073
1077 49.2 31 6.05 x 1076
108 63.0 40 9.61 x 1077
1077 84.2 55 452 x 1078

to pointwise integrations of each corresponding initial condition and the maximum error
encountered is reported.

This analysis shows that the maximum error over the resulting set of polynomial expan-
sions decreases linearly with the selected splitting precision as expected. However, the
maximum error is always larger than the selected integration precision. This too is expected,
as a close analysis of the description of the splitting algorithm reveals. The splitting precision
plays a similar role as the one-step error set in the automatic step size control of the integra-
tion scheme. It is the maximum error that can accumulate at any time before the integrator
takes action to reduce further error accumulation. However, the accumulated error at the
time of the splitting cannot be undone as the splitting solely re-expands the (possibly already
inaccurate) polynomial to prevent exponential error growth in future integration steps. The
ideal tolerance for the splitting precision depends both on the dynamics, as more splits lead
to more accumulation of approximation errors, and the integration time. It has to be chosen
heuristically to ensure the final result satisfies the accuracy requirements of the application,
exactly as the one-step tolerance of the automatic step size control of the integrator.

In the above analysis, we fixed the integrator precision to a low value of 10~'? in order
to reduce the number of factors affecting the result and to isolate the true effect of the
splitting precision setting on the result. In a practical application, the choice of the two
tolerances is related, as the final error of the solution is affected by both values. In general
it is advisable to choose the integration tolerance several orders of magnitude lower than
the splitting tolerance. This is because in a typical integration the number of integrations
steps, and hence the number of single-step errors, is much larger than the number of splits,
and hence the approximation error. However, choosing the integration precision too low with
respect to the splitting precision leads to unnecessary waste of computational time as the final
accuracy in such a case will be almost solely due to the splitting error. In the above analysis,
for the larger splitting precisions the integration tolerance could have been relaxed, reducing
the time of the integration significantly without a noticeable loss of accuracy.

4 Long term propagation of (99942) Apophis

The improvements that automated domain splitting brings into the DA-based integration
are now investigated in the practical application of long-term propagation of uncertainties
during Apophis post-encounter motion. This test case lends itself to the automatic domain
decomposition very well, as it involves a mix of highly non-linear dynamics during the close
encounters with Earth, benign dynamics in the interim motion, and long overall integration
time scales. It thus is a hard problem to treat for uncertainty propagation techniques.
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The motion of Apophis in the Solar System is modeled including relativistic corrections
to the well-known Newtonian forces. Specifically, the full equation of motion of our model
is given by
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where r is the position of Apophis in Solar System barycentric coordinates, G is the gravi-

tational constant; m; and r; are the mass and the Solar System barycentric position of Solar

System body i; r; = |r; — r|; c is the speed of light in vacuum; and B and y are the para-

metrized post-Newtonian parameters measuring the nonlinearity in superposition of gravity

and space curvature produced by unit rest mass (Seidelmann 1992).

In Eq. 4 it is assumed that the object we are integrating is affected by the gravitational
attraction of n bodies, but has no gravitational effect on them; i.e., we are adopting the
restricted (n+1)-body problem approximation. The positions, velocities, and accelerations of
the n bodies are considered as given values, computed from the JPL. DE405 ephemeris model.
In our model, the n bodies include the Sun, the planets, the Moon, as well as the asteroids
Ceres, Pallas, and Vesta. For planets with moons, with the exception of the Earth, the center
of mass of the system is considered. The dynamical model is written in the J2000.0 ecliptic
reference frame and is commonly referred to as the Standard Dynamical Model (Giorgini et al.
2008). This is the dynamical model used by NASA/JPL for the close encounters prediction
in the frame of the Near Earth Object Program (http://neo.jpl.nasa.gov/index.html).

As illustrated in Fig. 8a, the asteroid Apophis will have an extremely close approach
to the Earth on 13 April 2029 with a nominal closest distance of about 3.8 x 10* km. The
asteroid orbit will then suffer a large perturbation on its orbital parameters, which will mainly
affect its semimajor axis, inclination, and argument of the periapsis. No appreciable effect
are expected on eccentricity and right ascension of the ascending node. The orbital period
increases from 323.60 to 422.33 days (see Fig. 8b for a plot of Apophis trajectory before
and after 2029 close encounter). This opens the door to the possibility of a resonant return
to Earth in 2036.

The nominal initial state and the associated o of Apophis at 3456 MJD2000 (June 18,
2009), expressed in equinoctial variables p = (a, Pi, P2, Q1, Q2,1), are used as our test

Fig. 8 Apophis nominal motion (a) (b)
before and after the close _
encounter on April 13th, 2029. 2 25 =
a Distance from earth. b = 1 13 April 2029
Trajectory 5 before =7

o5 5 0.5 13 April 2029

g =

s 1 - 0 >tle

3

g 0.5 -0.5

% .

A o0 1

4000 6000 8000 10000 12000 I =05 0 05 1
Epoch [MID2000] X [AU]
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Table 2 Apophis’ equinoctial

variables at 3456 MJD2000 (June Nom. Value i
18,2009) and associated o val _
Obtaineg)ffgmﬁseog:af E‘;r:’}f‘ sy 0.922438242375914 2.29775 x 10~8 AU
Object Dynamic Site in P —0.093144699837425 3.26033 x 10~8 -
September 2009 P 0.166982492089134 7.05132 x 108 -
01 —0.012032857685451 5.39528 x 108 -
0, —0.026474053361345 1.83533 x 10~8 -
I 88.3150906433494 6.39035 x 10~3 Deg
Fig. 9 Propagation of Apophis’ (a) (b)
uncertain initial conditions. 15 15
a November 19th, 2028 (10550 ' ’
MJD2000). b September 15th, Iy . 1 Iy
2029 (10850 MID2000). ¢ April 05} ] 05t
3rd, 2030 (11050 MID2000). Z ol ] 5, ] ?
d November 8th, 2032 (12000 = <
MJD2000) 0.5} > 05
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case in the following study. More specifically, Table 2 reports the Apophis’ ephemerides
derived from the observations available until late 2009, excluding the recent optical and
radar observations performed from late 2011 onward. These data were obtained by accessing
the Near Earth Object Dynamic Site (http://newton.dm.unipi.it/neodys) in September 2009.

The nonlinearities of the close encounter and of the subsequent post-encounter motion
will make the uncertainty in the direction anti-parallel to the Earth heliocentric motion in
2029 drastically diverge in subsequent epochs. This is clearly illustrated in Fig. 9: the uncer-
tain conditions of Table 2 are first propagated to epoch 10550 MJD2000 (before the close
encounter) by sampling the edges of the 30 uncertainty set with 2000 points and carrying
out the associated pointwise integrations (see Fig. 9a). The integration of Apophis’s motion
is then continued to include the post-encounter motion. The resulting sets of final positions
are illustrated in Fig. 9b—d. As can be seen, the uncertainty set tends to quickly spread along
the orbit due to the perturbations induced by the close encounter and reaches a size on the
order of 0.5 AU.

The performances of the standard DA-based integrator are assessed first. Apophis’ initial
conditions in Table 2 are initialized as DA variables, converted into Cartesian coordinates
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Table 3 Maximum position

error of a single 9th order Taylor Epoch (MJD2000) Epoch (date) Max. error (AU)

represe.nfatlon of'the flow of 10550 19 Nov 2028 05 x 10-11

Apophis’ dynamics over the

initial uncertainty set of Table 2 12800 17 Jan 2035 0.5x 1070

for different epochs 12825 11 Feb 2035 0.1 % 1075
12850 8 Mar 2035 0.8 x 1073
12875 2 Apr 2035 0.5 x 1072
12900 27 Apr 2035 0.2 x 107!

using the relations given in (Battin 1999), and then numerically propagated. Table 3 reports
the maximum position error of a 9th order Taylor representation of the flow at the corners
of the initial set, with respect to the pointwise integration of the same points. The errors are
computed for increasing epochs. The table shows that a single Taylor polynomial of relatively
high order cannot track uncertainties with sufficient accuracy for practical applications such
as impact probability computation. In fact, already long before the resonant return in 2036,
the accuracy of the single DA propagation becomes so low as to be practically useless for
any sort of analysis or estimate.

Following this quick test of the dynamical behavior of the system, automatic domain
splitting is enabled to treat the non-linearities in order to improve the accuracy of the standard
DA-based integration. The initial conditions of Table 2 are propagated until May 1st, 2038
(14000 MJD2000), which includes the resonant return of 2036. A 9th order integration is
performed and the integrator settings have been tuned to split the initial domain so to meet
the requirement of tracking the uncertainties with an accuracy of the order of 10~ AU and
10~ AU/day for the asteroid position and velocity, respectively.

In order to limit the number of generated polynomials and associated subsets, domain
splitting is disabled on any set whose volume is less than 27! times that of the initial domain.
That is, any set is split at most 12 times. Instead of splitting a set further, integration is stopped
at the attempt to perform a 13th split and the resulting polynomial expansion is saved as
“incomplete”. These incomplete polynomials are later treated separately in the analysis of the
results. This limit was introduced to reduce the computational time for this exploratory work,
enabling us to perform a relatively quick parametric analysis of the integrator performances.
The limit can be relaxed or entirely removed in future in-depth work, especially considering
that automatic domain splitting can take advantage of parallelization.

Figure 10a plots the results obtained until April 27th, 2035 (12900 MJD2000) in terms
of Apophis’ distance from Earth. The solid lines represent the trajectories followed by the
center points of each set, whereas the lower and upper bounds of Earth’s distance over the
entire uncertainty set are given by the grey band. As can be seen, the integrator is able to
propagate uncertainties using only one 9th order Taylor polynomial until March 3rd, 2034
(12490 MJD2000), far past the first close encounter of 2029. At this point the nonlinearities
over the now relatively large uncertainty set prevent the integrator from meeting the accuracy
requirements. Thus, a first split occurs in the semimajor-axis direction, which causes the
initial domain to split into two sets with distinct Earth distances of their center points. The
resulting two polynomials are propagated forward in time and only one additional split occurs
before epoch 12700 MJD2000. The perturbation induced by the close encounter intensifies
the nonlinearities and causes a significant number of splits to cascade from the three sets.

The number of splits drastically increases in subsequent epochs. This is clearly illustrated
in Fig. 10b, which reports the results obtained until the final epoch 14000 MJD2000. The
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Fig. 10 Earth distance profiles (a)
resulting from the propagation of 25
the initial uncertainty set of

Table 2. a Distance range over =)
the entire uncertainty set (grey = ]
band) and trajectories of the £
center points (black lines) before 8 1
the resonant return. b Trajectories g 7
- . o y
of the center points of all sets & ]
until the final time 3
g
8] 4
A
O 1 1 1 1 1
10000 10500 11000 11500 12000 12500 13000
Epoch [MJD2000]
(b) 55 _—
- 27
=]
=
=
E 15}
m
=)
2
=
) Ir
Q
g
B
R o0s
0

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
Epoch [MJD2000] x 10

figure shows that most splits tend to occur when the trajectories get close to Earth. This is
expected as Earth’s gravitational perturbation is maximized there, resulting in strongly non-
linear dynamics. The final number of generated domains is 2497, whereas the associated
computational time is 28.13 h on a single 3.7 GHz Intel Core i7-4820K CPU. It is worth
highlighting that not all domains reach the final epoch: this is due to the minimum allowed
domain size we chose as described above. Once a domain of minimum size can no longer be
propagated without failing to meet the accuracy requirements, its integration is stopped.

It is worth comparing the computational time required by the proposed method with the
one of a classical pointwise integration. The pointwise propagation of Apophis motion from
3456 MJID2000 to 14000 MJD2000 takes an average of 50 s on the same machine. The ratio
between the two computational times shows that the breakeven point between the proposed
approach and a classical pointwise Monte Carlo method occurs for the propagation of a
set of two thousand initial conditions, which are not sufficient to accurately represent the
statistics of typical resonant returns. In addition, DA propagation with automatic domain
splitting can be implemented to make use of parallelization techniques as, after splitting,
each split box is propagated independently of all the others. Propagating several boxes in
parallel can provide large savings in computational time. In comparison, to achieve similar
results, classical pointwise Monte Carlo simulations would have to be run on massively
parallel clusters with tens of thousands of cores.
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Table 4 The average number of splits performed in each direction computed over all final sets at the end of
the integration

Direction a Py P 01 02 l
# of splits 5.9 0 1.8 0.9 0 2.9
Fig. 11 Final subdomains of the 1.917105
initial domain in the a, [-plane x107* ‘ ‘
E;
=0
)
—1.917105
—6.89325 0 6.89325
5a [AU] x1078

Most domains do indeed reach the minimum domain size, the average number of total
splits for the final domains is 11.7. To analyze the splits more in depth, we report the average
number of splits along each direction over all of the final domains in Table 4. Evidently, most
splits during the integration occur in the semimajor axis and the true longitude directions,
while P; and Q) are, in fact, never split. Thus without further analysis of the actual numerical
results, the splitting information alone already reveals that the maximum sensitivity in the
initial condition is in the @ and [ direction.

Consequently, even though the entire integration was performed using a full six dimen-
sional initial condition box, we focus our analysis on the dynamics in the projection onto
the a, [-plane of initial condition. Figure 11 shows this projection of the initial uncertainty
set onto the a, [-plane along with all the resulting subdomains created during the propaga-
tion. This figure represents a precious source of information on the dynamics of the system.
Regions of larger final domains can be easily distinguished from those areas where most
splits occur causing the resulting sets to be smaller.

As explained in the previous sections, splits occur when the nonlinearities are too strong
to be managed with a single Taylor polynomial. Therefore, the areas in Fig. 11 where most
splits concentrate coincide with regions of strong nonlinearity, a strong indicator of chaotic
behavior. The size of a box of initial conditions can be inversely related to the local expansion
rate of the phase space of the system. The smaller the initial condition box must be split, the
more expansive the dynamics dynamics are acting on this set of initial conditions. Intuitively,
these regions are recognized to include initial conditions that attain the closest distances from
Earth during their propagation. This conjecture is confirmed by Fig. 12, which superimposes
a color map on Fig. 11.

The color map shown in Fig. 12 illustrates the final epoch reached by each set at the
end of its propagation either because it reached the final epoch or the minimum size. As
can be seen, the regions of larger domains in Fig. 11 match the black areas in Fig. 12. This
means that larger sets smoothly propagate until the final time. Consequently, all the initial
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Fig. 12 Color map 1.917
superimposed to the final xle-4
subdomains in the initial domain

in the a, [-plane: final integration
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conditions lying within have no risk to impact Earth until the final epoch. On the other hand,
the propagation of smaller sets tends to stop before 14000 MJD2000. This means that smaller
domains and the associated colored areas might contain risky initial conditions and deserve
additional analysis. Thus, Fig. 12 allows astrodynamicists to rule out the possibility of impacts
from the black areas and can be used to estimate at least an upper bound for impact probability.

Additionally, the two distinct regions of different colors visible in Fig. 12 provide valuable
information on the resonances. More specifically, moving from the left to the right side of the
figure, the prevalent color of the first colored area indicates that the integration of most sets
there stops around 2036. Similarly, the colors of the second area indicate that the integration of
the associated sets are truncated around the year 2037. Consequently, the colored areas clearly
mark the regions of possible resonances between Earth and Apophis: the initial conditions
lying in the first and second colored areas can result in possible impacts in 2036 and 2037
respectively.

All three areas, black, blue, and red, each exhibit a distinct dynamical behavior; further-
more the blue band serves as a separatrix between the two black regions. This observation is
confirmed in Fig. 13a, b. Sample initial conditions are taken from each of the four main areas
of Fig. 11 as illustrated in Fig. 13a. The resulting distance profiles are plotted in Fig.13b:
initial conditions (2) and (4) lying in the black areas show safe distances from Earth through-
out the entire integration, whereas initial conditions (1) and (3) exhibit close encounters with
Earth around the time of the associated resonance epoch.

One last result deserves to be mentioned. The initial conditions of Table 2 are derived from
the observations available until late 2009. They allowed us to illustrate the advantages and
potential of DA-based automatic domain splitting. In the meanwhile, additional optical and
radar observations have been made available (see http://neo.jpl.nasa.gov/apophis/). Thanks
to the new observations, more accurate initial conditions are available to astrodynamicists.
Table 5 reports Apophis’ ephemerides on July 5th, 2009 (3473.5 MJD2000) including all
recent optical and radar observations. These data were obtained by accessing the Near Earth
Object Dynamic Site in October 2013.

As illustrated in Table 5, recent observations allowed the standard deviation to be con-
siderably reduced with respect to the previously available data (see Table 2). A 9th order
DA-based integration of the new initial conditions reported in Table 5 shows that these new
initial conditions can be smoothly propagated until the final epoch 14000 MJD2000 without
requiring any split of the initial domain. Figure 14 reports the distance profile associated to
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Fig. 13 Analysis for four
dynamical areas of Fig. 12.
a Selected initial conditions.
b Earth distance profiles

Table 5 Apophis’ equinoctial
variables at 3473.5 MJD2000
(July 5, 2009) and associated o
values obtained from the Near
Earth Object Dynamic Site in
September 2013
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the new initial conditions. This matches the distances of closest approach reported in the
Near Earth Object Dynamic Site (http://newton.dm.unipi.it/neodys) and NASA’s Jet Propul-
sion Laboratory website (http://neo.jpl.nasa.gov/apophis/). In order to compare where these
new initial conditions lie with respect to the old ones, we propagated the initial conditions
of Table 5 backward to epoch 3456 MJD2000. Figure 14a shows the result superimposed
on Fig. 12. As expected, the new initial conditions and their associated uncertainties form
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Fig. 14 Apophis motion with (a)
new initial condition.
a Uncertainty set of Table 5 1917
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essentially a single point within the figure, located entirely within one of the black areas.
This result further confirms that Apophis’ impact in 2036 can be ruled out.

5 Conclusion

This paper introduced the automatic domain splitting technique into the classical high order
Differential Algebra based integration with the goal of accurately propagating large sets of
uncertainties in highly nonlinear dynamics and long term integrations. The resulting propa-
gation algorithm automatically splits the initial uncertainty domain into subdomains during
the integration when the polynomial expansions representing the current state do not meet
a predefined accuracy requirement. The final result is a list of final state polynomials, each
describing the evolution of some automatically determined subset of the initial condition.
Thus, altogether, the Taylor polynomials accurately map the entire initial domain into the
final set.

The performance of the splitting integrator has been assessed by applying it to the prop-
agation of asteroid (99942) Apophis post-encounter motion. In order to limit the number of
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generated subdomains and polynomials, a minimum domain size was fixed. Consequently,
not all subdomain achieved the final integration time. It has been shown that these sets cor-
respond to regions of strong nonlinearity in the dynamics, which are automatically identified
by the integration algorithm. Each of the identified regions, in the case of Apophis, has been
matched to regions where risky close encounters can either be ruled out or are possible.
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