
Rigorous Reachability Analysis and
Domain Decomposition of Taylor Models

Martin Berz and Kyoko Makino

Michigan State University, East Lansing MI 48824, USA
berz@msu.edu, makino@msu.edu,

WWW home page: http://bt.pa.msu.edu

Abstract. We present mathematically rigorous computational methods
for the transport of large domains through ODEs with the goal of making
rigorous statements about their long term evolution. Of particular inter-
est are determination of locations of attractors, reachability of certain
sets, and proof of non-reachability of others. The methods are based on
Taylor model verified integrators for the propagation of large domains,
and heavily rely on automatic domain decomposition for accuracy. We
illustrate the behavior and performance of these methods using several
commonly studied dynamical systems.
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1 Introduction

Taylor model methods are rigorous computational tools that allow for the rep-
resentation of functional dependencies via a floating point Taylor polynomial as
well as rigorous bound of the accuracy of this representation over a given do-
main – see [1, 2] and references therein. Through the use of a naturally available
antiderivation ∂−1

i discussed in [2], it is possible to generate verified integrators
for ODEs. In the single step, it can make use of a remarkably simple approach of
rigorous enclosure of solutions of flows of ODEs, i.e. their dependence on initial
condition and time, by porting the common Picard iteration scheme to the space
of Taylor models [3]. Using several possible schemes for multi-steps, it is possible
to achieve a far-reaching suppression of the wrapping effect (see for example
[4–8] and many references therein) even in its manifestation in the remainder
bound [9], which in itself is many orders of magnitude smaller than the main
region covered by the flow.

Taylor model methods naturally allow for a domain decomposition approach
in integration in a very similar way as it is used in many interval tools for global
optimization (for a limited cross section of the many relevant books and papers,
see [10–24] and references therein). In the case of optimization, the decision on
whether or not to subdivide the region currently being studied, often referred
to as the box, is made based on whether the box can be excluded because its
known lower bound exceeds an already known upper bound for the minimizer. If
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such an exclusion is not possible, the box is subdivided and each part is studied
further.

On the other hand, in the case of verified integration, an excellent measure
of whether a box is to be rejected is whether the remainder bound of the end
result is unacceptably large, or whether the verified integrator tripped its internal
failure tests for self inclusion in the integration process [3].

In the following, we will use this approach to determine the so-called incidence
matrix, or alternatively a computational graph, for the flow of an ODE over
a sufficiently large time domain, which can then be used for the analysis of
asymptotic behavior of the solution.

2 Incidence Matrices, Graphs, and Reachability

We begin by splitting the domain of interest into n subsets covering the space,
and numbering them as Di. In practice they may consist of a collection of ad-
jacent equally spaced boxes. We then define the so-called incidence matrix M
associated with the splitting via

Mi,j =

{
0 if it can be shown that F (Di) ∩Dj = ∅
1 else

(1)

where F is the flow of the ODE for the time step of interest.
So a value of 0 means that it is possible to show rigorously that an intersection

does not exist. But note that in computational settings, the value 1 does not
necessarily mean that there truly is an intersection, but rather it means that an
intersection cannot be ruled out. The matrix can visually also be represented as
a graph, where nodes denote the Di, and vertices represent a value of 1 in the
incidence matrix.

In practice it is very important that the matrix is usually rather sparse, and
as the number of regions Di is increased and the size of the Di becomes smaller,
the number of nonzero entries per Di does usually not grow very much. This
allows setting up rather large numbers of regions in the many millions, while the
number of nonzero entries are only a moderate multiple of the number of entries.
There is a significant body of literature related to the study of such graphs and
the recovery of dynamics from it, for example [25–27] and references therein.

In the following we generate a simplified, domain decomposition based method
for the determination of such a graph. For efficiency it is very important to not
attempt to perform a verified integration for each of the Di. Rather, we utilize
a domain decomposing verified Taylor model integrator to first treat the entire
region of interest covering all Di, which results in a cover of the original domain
space with a number of boxes that is much more manageable than the number
of boxes Di. In the next step, we identify all domain decomposed boxes in the
initial domain that overlap with Di. Then we compute a sharp enclosure for the
true range of f(Di) by merely using a Horner scheme evaluation of the Taylor
model for the small domain of Di that is actually in the range of domain of the
region of interest.
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In the following we will provide various examples which clarify and illustrate
the practical behavior of the method.

3 The Duffing Equation

As a first example, we consider the commonly studied Duffing equation

ẍ+ δẋ+ αx+ βx3 = γ · cos(ωt), (2)

which models a damped and driven oscillator. The goal is the integration of large
initial condition set for the Duffing equation of the form

dx

dt
= y,

dy

dt
= x− δ · y − x3 + γ · cos t, (3)

i.e. with the parameters

δ = 0.25 and γ = 0.3. (4)

The original domain box is

(xi, yi) ∈ ([−2, 2], [−2, 2]). (5)

We show the case of integrating the Duffing equation from time t = 0 to
t = π. The given initial condition set was initially equally divided into 12 × 12
pieces for purpose of better visibility of the action of the flow. Many initial con-
dition subsets completed the entire time integration without any decomposition,
and only those initial condition subsets located at the place where the strong
nonlinearity exists during the requested integration exhibit decomposition. Since
the Duffing equation is known to exhibit chaotic motion, very rich local dynamics
results, as can be seen in Fig. 1, which shows the images of the resulting Taylor
model solutions with decomposed Taylor model objects at t = π (left), and the
corresponding splits in the initial condition set (right). At the final time t = π,
we count altogether 343 Taylor model objects. The increase of the number of
Taylor model objects is graphed in Fig. 3, starting from 12× 12 = 144 initially
prepared objects.

We note that the Taylor models being used are of order 33 in time as well as
in initial conditions. The CPU time on a midsize notebook computer is about 21
min, and 199 domain splits happened, resulting in a final number of 343 boxes.
The smallest dimension of any of the resulting initial condition boxes has an
edge length of 1/(3× 16).

For better illustration, a portion of the initial condition range consisting of
3 × 3 = 9 divided boxes and covering the region of [−1, 0] × [−1, 0], i.e. a piece
located towards the lower left from the center (0, 0), is shown in Fig. 2. For this
portion of initial condition range, 24 splits happened, resulting in 9 + 24 = 33
objects. The smallest division of the initial condition range size of 1/(3× 16) is
easily observable in the x direction near the origin (0, 0).



4

-2

-1

 0

 1

 2

-2 -1  0  1  2

-2

-1

 0

 1

 2

-2 -1  0  1  2

Fig. 1. Flow integration of the Duffing equation for the parameters show in the text.
The right shows the original domain of interest, and the resulting subdivision of the
domain in boxes that can successfully be transported. The left shows the images of the
boxes under the flow. Note that the remainder error of the integration is below printer
resolution and not visible in the examples.
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Fig. 2. A subset of the mapping of the original domain in a complicated region with
much fine structure, showing that the automatic domain decomposition follows the
computational local complexity of the flow.
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Fig. 3. Growth of the number of domain boxes as a function of integration time.

4 The Lorenz Equations

The next example discusses the Lorenz equations, which describe a simplified
model of unpredictable turbulent flows in fluid dynamics. It is another frequently
used example exhibiting sensitive dependence on initial conditions and chaoticity
and has the form

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz. (6)

The standard parameter values are

σ = 10, β =
8

3
, ρ = 28, (7)

and ρ is often varied. The fixed points are

(0, 0, 0), (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1). (8)

Rigorous flow integrations of large ranges of initial conditions have been
computed using a Taylor model based ODE integrator.

In our example, we attempt a flow integration of the standard Lorenz equa-
tions for an area of initial condition

(xi, yi, zi) ∈ ([−40, 40], [−50, 50], [−25, 75]), (9)

which covers the entire region of interest for dynamics. In practice, this box
of initial conditions is determined by heuristics so that an attractor is safely
included inside.

The initial condition range box is pre-divided to 4 × 5 × 5 = 100 smaller
boxes to preserve a certain grid structure to guide the eye; so each of the original
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domain boxes have the size 20× 20× 20. The integration is conducted using the
Taylor model computation order 21 in both time and initial conditions until
t = 0.1. In the process, domain splitting happened 168 times, resulting in 268
objects. The minimum size experienced in the process is an initial condition box
with edge width 5, 10, 10, respectively. The computation took 27 min including
miscellaneous output for purposes of monitoring, the result, and files for plotting.
Figure 4 shows a grid view of the result. The z axis is shown vertically upward,
and at the bottom edges, the x axis is towards the right, and the y axis is towards
the left.

Fig. 4. Integration of the region of interest for the Lorenz system. Shown are the
original domain of interest and the resulting subdivision of the domain in boxes that
can successfully be transported at right, and the images of the boxes under the flow at
left. Note that the remainder error of the integration is below printer resolution and
not visible in the examples.

5 Conclusion

We have shown how it is possible to use Taylor model based self-verified integra-
tors, when combined with automatic domain decomposition techniques usually
used in global optimization, to obtain rigorous enclosures for flows of differential
equations in an efficient manner. The resulting flow enclosures can be used to
form incidence matrices of high fineness limited only by the size of the remain-
der bound of the Taylor models. Examples illustrating aspects of the method
are given for two commonly used dynamical systems.
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