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Efficient High-Order Methods for
ODEs and DAEs

Jens Hoefkens, Martin Berz and
Kyoko Makino

ABSTRACT We present methods for the high-order differentiation through
ordinary differential equations (ODEs), and more importantly, differential
algebraic equations (DAEs). First, methods are developed that assert that
the requested derivatives are really those of the solution of the ODE, and
not those of the algorithm used to solve the ODE. Next, high-order solvers
for DAEs are developed that in a fully automatic way turn an n-th order
solution step of the DAEs into a corresponding step for an ODE initial
value problem. In particular, this requires the automatic high-order solu-
tion of implicit relations, which is achieved using an iterative algorithm
that converges to the exact result in at most n+ 1 steps. We give examples
of the performance of the method.

41.1 Introduction

Under certain conditions, the solutions of ordinary differential equations
(ODEs) and differential algebraic equations (DAEs) can be expanded in
Taylor series. In these cases, we can obtain good approximations of the
solutions by computing the respective Taylor series [8, 9]. Here we show
how high-order methods of AD can be used to obtain these expansions in
an automated way and how these methods allow differentiation through
the solutions. The method can be applied to explicit and implicit ODEs.
Together with a structural analysis of Pryce [14, 15, 16], it can be extended
to obtain Taylor series expansions of the solutions of DAEs.

To use methods of integrating explicit ODEs to solve DAEs, we perform
a structural analysis of the DAE system to convert it into an equivalent set
of implicit ODEs, which is converted into an explicit system by using differ-
ential algebraic methods for the high-order inversion of functional relations.
For n-th order computations, these methods are guaranteed to converge to
the exact result in at most n + 1 steps and return explicit ODEs that are
order n equivalent to the original DAE problem. The resulting system of
ODEs is then integrated to obtain the one-step solution of the DAE sys-
tem. The method can be extended to multiple time steps by projecting the
final coordinates of a particular time-step onto the constraint manifold and
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using the projections as consistent initial conditions for the next iteration.

This chapter is divided in three parts: differential algebraic AD tools
used to solve explicit ODEs and convert implicit ODEs into explicit ones
are presented in §41.2. §41.3 summarizes the structural analysis method
suggested by Pryce that allows the automatic conversion of DAEs into
implicit ODEs, and §41.4 presents an example that has been computed with
the high-order code COSY Infinity [7]; it demonstrates how the combined
method can successfully handle high-index DAE problems.

41.2 Efficient Differential Algebra Methods

For purposes of notation, we consider the set C"*1 (U, R?) (where U C R? is
an open set containing the origin) and equip it with the following relation:
for f,g € C"tY(U,R¥) we say f =, g (f equals g up to order n) if f(0) =
9(0), and all partial derivatives of orders up to n agree at the origin. This
gives an equivalence relation on C"*!(U,R*). The resulting equivalence
classes are called DA vectors, and the class containing f € C"*1(U,R¥) is
denoted by [f]n- For functions expressible via finitely many intrinsics, the
class [f]n corresponds to the evaluation of f with any n-th order AD tool
(see e.g. [17]). Our goal here is to determine [f], when f is the solution of a
DAE. The collection of these equivalence classes is called , D, [2, 4]. When
equipped with appropriate definitions of the elementary operations, the
set , D, becomes a differential algebra [4]. We have implemented efficient
methods of using DA vectors in the arbitrary order code COSY Infinity [7].

Definition 1 For [f], € nD,, the depth A([f].) is defined to be the order
of first non-vanishing derivative of f if [f]n # 0, and n + 1 otherwise.

Definition 2 Let O be an operator on M C ,D,. O is contracting on M,
if any [fln, [9]n € M satisfy A(O([f]n) — O([g]n)) > M[fln — [g]n) with
equality iff [fln = [9]n-

This definition has a striking similarity to the corresponding definitions on
regular function spaces. A theorem that resembles the Banach Fixed Point
Theorem can be established on ,,D,. However, unlike in the case of the
Banach Fixed Point theorem, in ,, D, the sequence of iterates is guaranteed
to converge in at most n + 1 steps.

Theorem 1 (DA Fixed Point Theorem) Let O be a contracting oper-
ator and self-map on M C ,D,. Then O has a unique fized point a € M.
Moreover, for any ag € M the sequence ar, = O(ar_1) converges in at most
n + 1 steps to a.

An extensive proof is given in [4]. In the following sections we demonstrate
how this theorem can be used for high-order integration of ODEs and DAEs.
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41.2.1 Integration of ODEs

Within ,, D, high-order integration of ODEs can be accomplished by using
the antiderivation operator and the DA Fixed Point Theorem.

Proposition 1 (Antiderivation is Contracting) For k € {1,...,v},
the antiderivation 6,;1 : nDy—nDy is a contracting operator on D, .

The proof of this assertion is based on the fact that if a,b € ,D, agree
up to order [, the first non-vanishing derivative of 9, '(a — b) is of order
[+ 1. Using antiderivation, we rewrite the ODE initial value problem z(t) =
f(z,t),z(to) = xo in its fixed-point form

t
O(z(t) =z0+ [ f(z,7)dr.
to
According to Proposition 1, this defines a contracting operator O on ,, D, 41.
Thus, ODEs can be integrated very efficiently by iterating a relatively sim-
ple operator. The iteration is guaranteed to converge to the n-th order
Taylor expansion of the solution in at most n + 1 steps.

Moreover, in the framework of DA, it is possible to replace the fixed initial
value ¢ and additional parameters by additional DA variables. Thus, one
not only obtains the solution of a particular initial value problem, but the
method finds a Taylor expansion of the flow of the ODE as a function of
the dependent variable ¢ and all initial conditions and parameters.

41.2.2 Inversion of functional relations

In this section we show how the Implicit Function Theorem can be used in
the DA framework to convert an implicit ODE to an explicit system. The
following theorem shows that it is possible to compute a representative of
the equivalence class [f~!],, from a representative M of the class [f],.

Theorem 2 (Inversion by Iteration) Assume that f € C"T'(U,R?) is
an origin-preserving map, and let M be a representative of the equivalence
class [f]n. Write M = M + N, where Npy denotes the purely nonlinear
part of M. Assume furthermore that M = D f(0) is regular. Then

O(a)= M "o (I~ Naoa)

is a well defined contracting operator on ,D,. Moreover, for any ag € D,

the sequence of iterates converges in at most n+ 1 steps to a representative
of the class [f ],.

The proof of this theorem uses the fact that if @ and b € ,, D, agree up to
order I, the compositions with M agree to order [ + 1, since A(Mpq) > 1.
See [4] for a full proof of this theorem.

Together with the Implicit Function Theorem, the Inversion by Itera-
tion Theorem allows the efficient computation of explicit expressions of
an implicitly described function g. Given f € C"*1(U x V,R*) (U C R®



346 Jens Hoefkens, Martin Berz and Kyoko Makino

and V C R”) and =z € R’ and y € R?, we write f(z,y). Suppose that
f(0,0) = 0 and that f,(0,0) has rank w. Then, by the Implicit Function
Theorem, there exists a unique C"*1(U,V) such that g(0) = 0, and in a
neighborhood of 0 € R?, f(z,g(z)) = 0. Define & : R*** — Rt% by

*(3)=(ren)=(5)

and obtain an explicit expression for g(z) from the last w components of
®~!(,0), because (z,y) = (z,9(z)) = 2~ (z,0).

The technique of augmenting implicit systems has been used extensively
to first order in bifurcation theory [12] and to high order for symplectic inte-
gration [3]. Other combinations of the Implicit Function Theorem and first
order AD in the field of control theory are discussed by Evtushenko [10].

Finally, for a general function f with f(z¢) = yo, one can extend the
methods presented here using the fact that an origin-preserving function
can be obtained via f(z) = f(z + zo) — yo-

41.3 Structural Analysis of DAEs

The structural analysis of DAEs is based on methods developed by Pryce
[15, 16]. The signature method (¥-method) is used to decide whether a
given DAE possesses a unique solution and to transform it into an equiva-
lent system of implicit ODEs.

We consider the DAE problem fi(...) = ... = fg(...) = 0 with the
scalar independent variable ¢, the k dependent variables z; = x;(¢), and
sufficiently smooth functions

fi (xl,...,xggil),...,xk,...,ng““),t) =0.

For a given j, the i-th equation of this system does not necessarily depend
on z;, the derivatives mg-") for n < &;;, or even any of its derivatives. How-
ever, if there is a dependence on at least one of the derivatives (including
the 0-th derivative xgo) = z;), we denote the order of that highest deriv-

ative by ;. Using this notation, we define the k¥ x k matrix ¥ = (oy;)
by
—oo if the j-th variable doesn’t occur in f;
05 = .
&:; otherwise.

Let Py, be the set of permutations of length k, and consider the assignment
problem (AP) [1] of finding a maximal transversal T € Py as defined by
Maximize ||T|| = Ele Ui,T(i) with Ui,T(i) Z 0.

The DAE is ill-posed if the AP is not regular. On the other hand, if such a
maximal transversal exists, it is possible to compute the (uniquely deter-
mined [16]) smallest offsets (c;), (d;) € Z* that satisfy the requirements

Minimize z = )" d; — > ¢; with dj —¢; > 045 > —occ and ¢; > 0 .
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By differentiation it is possible to derive a k-dimensional system of ODEs
from the original DAEs:

= =% =0

Moreover, if an initial condition (zg, to) satisfies the system of intermediate
equations

O _glemh o 0 gl g
and the system Jacobian
3 =i =0fi/9 (2} )

(with J;; = 0 if the derivative is not present or if d; < ¢;) is non-singular
at that point, the original DAE system has a unique solution in a neigh-
borhood of tg. The solution can be obtained as the unique solution of the
derived ODE, and in a neighborhood of (xg, ), the system has z degrees
of freedom. Finally, the differentiation index vy of the system satisfies

0 ifalld; >0

1 otherwise. (41.1)

vy < maxc; + {
While it has been suggested that the index v4 might equal the given ex-
pression, [18] shows that (41.1) is only an upper bound for it.

41.4 Example

Consider a pair of coupled pendulums in a frictionless environment and as-
sume that the pendulums are massless and inextensible, with point masses
on the ends (Figure 41.1). Denote the tensions in the strings by A1 and Ag,
respectively. Then the equations of motion expressed in Cartesian coordi-
nates r1,y1,Z2,Y2 are

miZ1 + Az /ly — Aa(z2 —21)/l2 =0
maf1 + My /li — X2 (y2 —y1)/la —mig =0
maZs + A2(z2 —z1)/l2 =0
mafa + A2 (y2 —y1)/la —mag =0
i +yl —13=0
(2 —21)* + (12 —91)> = 15 = 0.
The corresponding ¥ matrix of this DAE is shown below, with the entries

forming a maximal transversal in bold face.

2 -1 0 -1 0
-1 2 -1 0 0
0 -1 2 -1 -1
-1 0 -1 2 -1
0 0O -1 -1 -1 -—
0 0 0 0 -1 -

3> =

R R,O 00O
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Further analysis gives the offsets ¢ = (0,0,0,0,2,2) and d = (2,2,2,2,0,0)
and reveals that the system has four degrees of freedom and a differentiation
index v4 of at most three.

o - 20 a0 60 8-0
FIGURE 41.1. Coupled pendulum and z; as function of time.

The second plot in Figure 41.1 shows the time evolution of z; for the
special case g = 1,1; =1y =1, m; = my = 1 and p; = p2 = 5°,30° and 90°
(Integrated to order 6, 0 < ¢ < 80, and At = 0.1), obtained with the
DAE solver discussed above. The results were checked by studying energy
conservation.

41.5 Conclusion

By combining existing AD methods, the X-method for the structural anal-
ysis of DAE systems and DA operations, we derived and demonstrated a
high-order scheme for the efficient integration of high-index DAE problems.
The method involves an automated structural analysis, the inversion of
functional dependencies, and the high-order integration of an ODE system
derived from the original DAE problem. Using techniques for the verified
inversion of functional relations modeled by Taylor models [11, 6] and tech-
niques for the verified integration of ODEs [13], the methods presented can
readily be extended to verified high-order integration of DAEs.

The method presented of integrating DAEs can be simplified by realiz-
ing that in the framework of DA and Taylor models, the antiderivation is
not fundamentally different from other elementary operations. Thus, the
solution of ODEs and DAEs can be obtained by an inversion process. This
could lead to a unified integration scheme for ODEs and DAEs that would
also allow for high-order verification via Taylor models.
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