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1. Introduction

The general question of efficient differentiation is at the core of many parts
of the work on perturbation and aberration theories relevant in Physics and
Engineering; for an overview, see for example [5]. In this case, derivatives of
highly complicated functions have to be computed to high orders. However,
even when the derivative of the function is known to exist at the given point,
numerical methods fail to give an accurate value of the derivative; the error
increases with the order, and for orders greater than three, the errors often
become too large for the results to be practically useful. On the other hand,
while formula manipulators like Mathematica are successful in finding low-
order derivatives of simple functions, they fail for high-order derivatives of
very complicated functions. Consider, for example, the function

g(x) =

sin (x3 + 2x + 1) + 3+cos(sin(ln|1+x|))

exp(tanh(sinh(cosh( sin(cos(tan(exp(x))))
cos(sin(exp(tan(x+2))))))))

2 + sin (sinh (cos (tan−1 (ln (exp(x) + x2 + 3)))))
. (1.1)

Using the differential algebraic (DA) methods discussed in the subsequent
sections and implemented in COSY INFINITY [3, 6], we find g(n)(0) for 0 ≤
n ≤ 19. These numbers are listed in Table 1; we note that, for 0 ≤ n ≤ 19,
we list the CPU time needed to obtain all derivatives of g at 0 up to order n
and not just g(n)(0). For comparison purposes, we give in Table 2 the function
value and the first six derivatives computed with Mathematica. Note that the
respective values listed in Tables 1 and 2 agree. However, Mathematica used
much more CPU time to compute the first six derivatives, and it failed to
find the seventh derivative as it ran out of memory. We also list in Table 3
the first ten derivatives of g at 0 computed numerically using the numerical
differentiation formulas

g(n)(0) = (∆x)−n

(
n∑

j=0

(−1)n−j

(
n
j

)

g (j∆x)

)

, ∆x = 10−16/(n+1),

for 1 ≤ n ≤ 10, together with the corresponding relative errors obtained by
comparing the numerical values with the respective exact values computed
with DA.

On the other hand, formula manipulators fail to find the derivatives of
certain functions at given points even though the functions are differentiable
at the respective points. For example, the functions

g1(x) = |x|5/2 · g(x) and g2(x) =







1−exp (−x2)
x

· g(x) if x 6= 0

0 if x = 0

,
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Order n g(n)(0) CPU Time

0 1.004845319007115 1.820 msec
1 0.4601438089634254 2.070 msec
2 −5.266097568233224 3.180 msec
3 −52.82163351991485 4.830 msec
4 −108.4682847837855 7.700 msec
5 16451.44286410806 11.640 msec
6 541334.9970224757 18.050 msec
7 7948641.189364974 26.590 msec
8 −144969388.2104904 37.860 msec
9 −15395959663.01733 52.470 msec
10 −618406836695.3634 72.330 msec
11 −11790314615610.74 97.610 msec
12 403355397865406.1 128.760 msec
13 0.5510652659782951× 1017 168.140 msec
14 0.3272787402678642× 1019 217.510 msec
15 0.1142716430145745× 1021 273.930 msec
16 −0.6443788542310285× 1021 344.880 msec
17 −0.5044562355111304× 1024 423.400 msec
18 −0.5025105824599693× 1026 520.390 msec
19 −0.3158910204361999× 1028 621.160 msec

Table 1: g(n)(0), 0 ≤ n ≤ 19, computed with DA methods

where g(x) is the function given in Equation (1.1), are both differentiable at 0;
but the attempt to compute their derivatives using formula manipulators fails.
This is not specific to g1 and g2, and is generally connected to the occurrence
of non-differentiable parts that do not affect the differentiability of the end
result, of which case g1 is an example, as well as the occurrence of branch
points in coding as in IF-ELSE structures, of which case g2 is an example.

We show that the differential algebraic structure of the Levi-Civita field R
[1, 2, 4, 12, 10] allows to study many problems connected to computational
differentiation [2, 11]. Using the calculus on R, we formulate a necessary and
sufficient condition for the derivatives of a large class of functions representable
on a computer to exist, and show how to find these derivatives whenever they
exist.
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Order n g(n)(0) CPU Time

0 1.004845319007116 0.11 sec
1 0.4601438089634254 0.17 sec
2 −5.266097568233221 0.47 sec
3 −52.82163351991483 2.57 sec
4 −108.4682847837854 14.74 sec
5 16451.44286410805 77.50 sec
6 541334.9970224752 693.65 sec

Table 2: g(n)(0), 0 ≤ n ≤ 6, computed with Mathematica

Order n g(n)(0) Relative Error

1 0.4601437841866840 54 × 10−9

2 −5.266346392944456 47 × 10−6

3 −52.83767867680922 30 × 10−5

4 −87.27214664649106 0.20
5 19478.29555909866 0.18
6 633008.9156614641 0.17
7 −12378052.73279768 2.6
8 −1282816703.632099 7.8
9 83617811421.48561 6.4
10 91619495958355.24 149

Table 3: g(n)(0), 1 ≤ n ≤ 10, computed numerically

2. The Differential Algebraic Structure of R

In this section, we introduce an operator ∂ on R which will be useful for the
concept of differentiation.

Definition 1. Define ∂ : R → R by (∂x)[q] = (q + 1)x[q + 1].

Lemma 1. ∂ is a derivation on R; that is

∂(x + y) = ∂x + ∂y and ∂(x · y) = (∂x) · y + x · (∂y) for all x, y ∈ R.

Thus, (R, +, ·, ∂) is a differential algebraic field. Furthermore, we have that
λ(∂x) = λ(x)− 1 if λ(x) 6= 0,∞ and ∂0 = 0. However, if λ(x) = 0, then λ(∂x)
can be either greater than, equal to, or smaller than λ(x).
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Proof. Let x, y ∈ R and let q ∈ Q be given. Then

(∂(x + y)) [q] = (q + 1)(x + y)[q + 1]

= (q + 1)x[q + 1] + (q + 1)y[q + 1]

= (∂x)[q] + (∂y)[q].

This is true for all q ∈ Q; hence ∂(x + y) = ∂x + ∂y.
For all q ∈ Q, we also have that

(∂(x · y)) [q] = (q + 1)(x · y)[q + 1]

= (q + 1)
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

x[q1]y[q2]

=
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

(q + 1)x[q1]y[q2]

=
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

(q1x[q1]y[q2] + x[q1]q2x[q2])

=
∑

s + t = q

s + 1 ∈ supp(x), t ∈ supp(y)

(s + 1)x[s + 1]y[t]

+
∑

s + t = q

s ∈ supp(x), t + 1 ∈ supp(y)

x[s](t + 1)y[t + 1]

=
∑

s + t = q

s ∈ supp(∂x), t ∈ supp(y)

(∂x)[s]y[t] +
∑

s + t = q

s ∈ supp(x), t ∈ supp(∂y)

x[s](∂y)[t]

= ((∂x) · y) [q] + (x · (∂y)) [q] = ((∂x) · y + x · (∂y)) [q].

This is true for all q ∈ Q; and hence ∂(x · y) = (∂x) · y + x · (∂y).
Now let x ∈ R be given such that λ(x) 6= 0,∞. Then for all q < λ(x) − 1,

we have that q + 1 < λ(x); and hence (∂x)[q] = (q + 1)x[q + 1] = 0. Hence
λ(∂x) ≥ λ(x) − 1; but (∂x)[λ(x) − 1] = λ(x)x[λ(x)] 6= 0. Hence, λ(∂x) =
λ(x) − 1.

On the other hand, we have that (∂0)[q] = (q +1)0[q +1] = 0 for all q ∈ Q.
Thus, ∂0 = 0; and hence λ(∂0) = λ(0) = ∞.

To prove the last statement, let x1 = 1, x2 = 1+d, and x3 = 1+d1/2; then
λ(xj) = 0 for j = 1, 2, 3. We have that

∂x1 = 0, and hence λ(∂x1) > λ(x1);

∂x2 = 1, and hence λ(∂x2) = λ(x2);

∂x3 =
1

2
d−1/2, and hence λ(∂x3) < λ(x3).
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3. Computer Environment Functions

At the machine level, a function f : R → R is characterized by what it does to
the original set of memory locations. So f induces a function ~F (f) : Rm → Rm,
where m is the number of memory locations affected in the process of comput-
ing f . We note here that, without compiler optimization, ~F (f) is unique up to
flipping of the memory locations; on the other hand, with compiler optimiza-
tion, ~F (f) is unique in the subspace describing the true variables. Moreover, at
the machine level, any code constitutes solely of intrinsic functions, arithmetic
operations and branches. In the following, we formally define the machine
level representations of intrinsic functions, the Heaviside function, and the
arithmetic operations.

Definition 2. Let I = {H, sin, cos, tan, exp, . . .} be the set consisting of
the Heaviside function H and all the intrinsic functions on a computer, which
for the sake of convenience are assumed to include the reciprocal function; and
let O = {+, ·}.

Definition 3. For f ∈ I, define ~Fi,k,f : Rm → Rm by

~Fi,k,f(x1, x2, . . . , xm) = (x1, . . . , xk−1, f(xi)
︸ ︷︷ ︸

k

, xk+1, . . . , xm);

so the kth memory location is replaced by f(xi). Then ~Fi,k,f is the machine

level representation of f . For ⊗ ∈ O, define ~Fi,j,k,⊗ : Rm → Rm by

~Fi,j,k,⊗(x1, x2, . . . , xm) = (x1, . . . , xk−1, xi ⊗ xj
︸ ︷︷ ︸

k

, xk+1, . . . , xm),

so the kth memory location is replaced by xi ⊗xj. Then ~Fi,j,k,⊗ is the machine
level representation of ⊗. Finally, let

F = {~Fi,k,f : f ∈ I} ∪ {~Fi,j,k,⊗ : ⊗ ∈ O}.

Definition 4. A function f : R → R is called a computer function if and
only if it can be obtained from intrinsic functions and the Heaviside function
through a finite number of arithmetic operations and compositions. In this
case, there are some ~F1, ~F2, . . . , ~FN ∈ F such that ~F (f) = ~FN ◦ ~FN−1 ◦ · · · ◦
~F2 ◦ ~F1, and we call ~F (f) : Rm → Rm, already mentioned above, the machine
level representation of f .

Obviously, the so defined class of computer functions in a formal way de-
scribes all those functions that can be evaluated on a computer. Since we will
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be studying only computer functions, it will be useful to define the domain
Dc of computer numbers as the subset of the real numbers representable on a
computer.

We recall the following result [1, 2, 4] which allows us to extend all intrinsic
functions given by power series to R. Also, for a detailed study of power series
with R coefficients, we refer the reader to [12, 10].

Theorem 1. (Power Series with Purely Real Coefficients) Let
∑∞

n=0 anXn be a power series with real coefficients and with classical radius
of convergence equal to η. Let x ∈ R, and let An(x) =

∑n
i=0 aix

i ∈ R. Then,
for |x| < η and |x| 6≈ η, the sequence (An(x)) converges absolutely weakly. We
define the limit to be the continuation of the power series on R.

Remark 1. The continuation H̄ of the real Heaviside function H is defined
for all x ∈ R by

H̄(x) =

{
1 if x ≥ 0
0 if x < 0

.

The functions n
√

x and 1/x are continued to R via the existence of roots
and multiplicative inverses on R.

Definition 5. Let f ∈ I, let D be the domain of definition of f in R, let
x0 ∈ D, and let s ∈ R. Then we say that f is extendable to x0 + s if and only
if x0 + s belongs to the domain of definition of f̄ , the continuation of f to R,
where f̄ is given by Theorem 1 and Remark 1.

Let f1, f2 ∈ I with domains of definition D1 and D2 in R respectively, let
x0 ∈ D1 ∩ D2, let s ∈ R, and let ⊗ ∈ {+, ·}. Then we say that f2 ⊗ f1 is
extendable to x0 + s if and only if f1 and f2 are both extendable to x0 + s.

Let f1, f2 ∈ I with domains of definition D1 and D2 in R respectively, let
x0 ∈ D1 be such that f1 (x0) ∈ D2, and let s ∈ R. Then we say that f2 ◦ f1 is
extendable to x0 + s if and only if f1 is extendable to x0 + s and f2 extendable
to f1(x0 + s).

Finally, let f be a real computer function, let D be the domain of definition
of f in R, let x0 ∈ D, and let s ∈ R; then f is obtained in finitely many steps
from functions in I via compositions and arithmetic operations. We define
extendability of f to x0 + s inductively.

We have the following result about the local form of computer functions,
which will prove useful in studying the differentiability of computer functions.

Theorem 2. Let f be a real computer function with domain of definition
D, and let x0 ∈ D be such that f is extendable to x0 ± d. Then there exists
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σ > 0 in R such that, for 0 < x < σ,

f(x0 ± x) = A±
0 (x) +

i±∑

i=1

xq±i A±
i (x), (3.1)

where A±
i (x), 0 ≤ i ≤ i±, is a power series in x with a radius of convergence no

smaller than σ, A±
i (0) 6= 0 for i = 1, . . . , i±, and the q±i ’s are nonzero rational

numbers that are not positive integers.

Remark 2. Noninteger rational powers may appear in Equation (3.1) as
a result of the root function.

Proof. The statement of the theorem can easily be verified for each f ∈ I.
Let f1 and f2 be two computer functions with domains of definition D1

and D2 in R, respectively. Let x0 ∈ D1 ∩D2, let f1 and f2 be both extendable
to x0 ± d, and let f1 and f2 satisfy Equation (3.1) around x0. For ⊗ ∈ {+, ·},
let F⊗ = f2 ⊗ f1. Thus we have that f1(x0 ± x) = A±

0 (x) +
∑i±

i=1 xq±i A±
i (x)

for x ∈ (0, σ1), and f2(x0 ± x) = B±
0 (x) +

∑j±

j=1 xt±j B±
j (x) for x ∈ (0, σ2),

where σ1 and σ2 are both positive real numbers; A±
i (x), 0 ≤ i ≤ i±, and

B±
j (x), 0 ≤ j ≤ j±, are power series in x with radii of convergence no smaller

than σ = min{σ1, σ2}; A±
i (0) 6= 0 for i ∈ {1, . . . , i±} and B±

j (0) 6= 0 for
j ∈ {1, . . . , j±}; and the q±i ’s and the t±j ’s are nonzero rational numbers that
are not positive integers. As a reminder, we note that σ1, σ2, the A±

i ’s, the
B±

j ’s, the q±i ’s, and the t±j ’s depend on x0.
For 0 < x < σ, we have that

F⊗(x0 ± x) = f2(x0 ± x) ⊗ f1(x0 ± x)

=

(
i±∑

i=0

xq±i A±
i (x)

)

⊗





j±
∑

j=0

xt±j B±
j (x)



 , (3.2)

where q±0 = t±0 = 0. It is easy to check that, for ⊗ = + or ⊗ = ·, the result in
Equation (3.2) is an expression of the form of Equation (3.1).

Now let f1 and f2 be two computer functions with domains of definition
D1 and D2 in R, respectively. Let x0 ∈ D1, let f1 be extendable to x0 ± d, let
f2 be extendable to f1(x0 ±d), and let f1 and f2 satisfy Equation (3.1) around
x0 and f1(x0), respectively. Let F◦ = f2 ◦ f1. Thus we have that

f1(x0 ± x) = A±
0 (x) +

i±∑

i=1

xq±i A±
i (x) for x ∈ (0, σ1),

f2(f1(x0) ± y) = B±
0 (y) +

j±
∑

j=1

yt±j B±
j (y) for y ∈ (0, σ2),
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where σ1 and σ2 are positive real numbers; A±
i (x), 0 ≤ i ≤ i± and B±

j (y), 0 ≤
j ≤ j±, are power series in x and y with radii of convergence no smaller
than σ = min{σ1, σ2}; A±

i (0) 6= 0 for i ∈ {1, . . . , i±} and B±
j (0) 6= 0 for

j ∈ {1, . . . , j±}; and the q±i ’s and the t±j ’s are nonzero rational numbers that
are not positive integers. Without loss of generality, we may assume that
at least one of the series B±

j (y) is infinite. It follows, since f2 is extendable
to f1(x0 ± d), that the q±i ’s are all positive and that A±

0 (0) = f1(x0). Let
A±

00(x) = A±
0 (x)−A±

0 (0) = A±
0 (x)−f1(x0). Then A±

00(x) has no constant term,

and we have, for 0 < x < σ1, that f1(x0±x) = f1(x0)+A±
00(x)+

∑i±

i=1 xq±
i A±

i (x).
Since A±

00(x) has no constant term and the q±i ’s are all positive, there exists

σ ∈ R, 0 < σ ≤ σ1, such that |A±
00(x) +

∑i±

i=1 xq±i A±
i (x)| < σ2 and A±

00(x) +
∑i±

i=1 xq±i A±
i (x) has the same sign for all x satisfying 0 < x < σ. To prove the

last statement, note that since g±(x) = A±
00(x)+

∑i±

i=1 xq±
i A±

i (x) is continuous
at 0, there exists δ1 ∈ R, 0 < δ1 ≤ σ1, such that 0 < x < δ1 ⇒ |g±(x)−g±(0)| =

|A±
00(x) +

∑i±

i=1 xq±i A±
i (x)| < σ2. Now let α±xq± be the leading term of g±(x).

Write g±(x) = α±xq±
(
1 + g±

1 (x)
)
, where g±

1 (x) is continuous at 0 and g±
1 (0) =

0. Hence there exists δ2 ∈ R, 0 < δ2 ≤ σ1, such that 0 < x < δ2 ⇒ |g±
1 (x)| <

1/2 ⇒ 1 + g±
1 (x) > 0 ⇒ g±(x) has the same sign as α±. Let σ = min{δ1, δ2}.

Then 0 < σ ≤ σ1, and 0 < x < σ ⇒ |A±
00(x) +

∑i±

i=1 xq±i A±
i (x)| < σ2 and

A±
00(x) +

∑i±

i=1 xq±i A±
i (x) has the same sign as α±. Thus, for 0 < x < σ, we

have that

F◦(x0 ± x) = f2 (f1(x0 ± x)) = f2

(

f1(x0) + A±
00(x) +

i±∑

i=1

xq±i A±
i (x)

)

= E0

(

A±
00(x) +

i±∑

i=1

xq±i A±
i (x)

)

+

J∑

j=1







∣
∣
∣
∣
∣
A±

00(x) +

i±∑

i=1

xq±
i A±

i (x)

∣
∣
∣
∣
∣

sj

Ej

(

A±
00(x) +

i±∑

i=1

xq±
i A±

i (x)

)





,

where Ej, 0 ≤ j ≤ J, are power series; Ej(0) 6= 0 for 1 ≤ j ≤ J ; and the sj’s
are nonzero rational numbers that are not positive integers.

Note that for 1 ≤ j ≤ J ,

∣
∣
∣
∣
∣
A±

00(x) +
i±∑

i=1

xq±i A±
i (x)

∣
∣
∣
∣
∣

sj

=
∣
∣α±
∣
∣sj xsjq±

(
1 + g±

1 (x)
)sj

=
∣
∣α±
∣
∣sj xsjq±Sj(g

±
1 (x)),

where g±
1 (x) is of the form of Equation (3.1), g±

1 (0) = 0, |g±
1 (x)| < 1/2, and

Sj(g
±
1 (x)) =

(
1 + g±

1 (x)
)sj is a power series in g±

1 (x). Thus, it suffices to show
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that a power series of an expression of the form of Equation (3.1), in which
the q±i ’s are all positive and in which A±

0 (0) = 0, yields an expression of the
same form.

So let S(y) =
∑∞

m=0 amym be a power series with positive radius of conver-
gence η. Then, for x sufficiently small,

S

(

A±
0 (x) +

i±∑

i=1

xq±i A±
i (x)

)

=

∞∑

m=0

am

(

A±
0 (x) +

i±∑

i=1

xq±i A±
i (x)

)m

. (3.3)

For each i ∈ {1, . . . , i±}, write q±i = m±
i /n±

i , where m±
i and n±

i are positive and
relatively prime. Expanding the powers in Equation (3.3), the only exponents
of x that may occur are of the form k + s, where k is a positive integer and

s ∈ T =

{
m±

i

n±
i

, . . . , (n±
i − 1)

m±
i

n±
i

/i = 1, . . . , i±
}

,

a finite set. For each m let Sm(x) = am

(

A±
0 (x) +

∑i±

i=1 xq±i A±
i (x)

)m

. Then

Sm is an infinite series

Sm(x) =

∞∑

n=0

umn(x), (3.4)

where umn(x) is of the form amnxk+s with amn ∈ R, k a positive integer, and

s ∈ T . Let η1 be the radius of convergence of A±
0 (x)+

∑i±

i=1 xq±i A±
i (x), and let

0 < x < η1/2 be such that

∣
∣
∣
∣
∣
A±

0 (x) +

i±∑

i=1

xq±i A±
i (x)

∣
∣
∣
∣
∣
<

η

2
.

Then for each m, the sum in Equation (3.4) converges absolutely; so we can
rearrange the terms in Sm. Moreover, the double sum

∑∞
m=0

∑∞
n=0 umn(x)

converges; so we can interchange the order of the sums (see for example [9],
pages 205-208) and we obtain that

S

(

A±
0 (x) +

i±∑

i=1

xq±i A±
i (x)

)

=

∞∑

m=0

∞∑

n=0

umn(x) =

∞∑

n=0

∞∑

m=0

umn(x).

Thus rearranging and regrouping the terms in Equation (3.3), we obtain an

expression of the form C±
0 (x)+

∑p±

p=1 xr±p C±
p (x), where C±

p (x), 0 ≤ p ≤ p±, are
power series, C±

p (0) 6= 0 for 1 ≤ p ≤ p±, p± is finite, and the r±p ’s are nonzero
rational numbers which are not positive integers. Hence

S

(

A±
0 (x) +

i±∑

i=1

xq±i A±
i (x)

)
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is of the form of Equation (3.1). It follows that F◦(x0 ± x) in Equation (3.3)
is itself of the form of Equation (3.1).

Now let f be a real computer function with domain of definition D, and let
x0 ∈ D be such that f is extendable to x0 ± d. Then f is obtained in finitely
many steps from functions in I via compositions and arithmetic operations.
Using induction, we obtain the result immediately from the above.

Since the family of computer functions is closed under differentiation to
any order n, Theorem 2 holds for derivatives of computer functions as well.

Definition 6. (Continuation of Real Computer Functions) Let f be a real
computer function with domain of definition D and let x0 ∈ D be such that
f is extendable to x0 ± d. Then f is given around x0 by a finite combination
of roots and power series. Since roots and power series have already been
extended to R, f is extended to R around x0 in a natural way similar to
that of the extension of power series from R to C. That is, if f(x0 ± x) =

A±
0 (x)+

∑i±
k

i=1 xq±i A±
i (x) for 0 < x < σ, then we have for the continued function

f̄ that f̄(x0 ± x) = A±
0 (x) +

∑i±
k

i=1 xq±i A±
i (x) for all x ∈ R satisfying 0 < x < σ

and x 6≈ σ.

Having built the necessary theoretical tools, we next try to use the results of
this section to compute derivatives of real functions. In the rest of this paper
we will use f instead of f̄ to represent the continuation of a real computer
function f .

4. Computation of Derivatives with Derivations

In this section, we develop a criterion that will allow us not only to check the
continuity and the differentiability of a real computer function f at a point x0,
but also to obtain all existing derivatives of f at x0.

Lemma 2. Let f be a computer function. Then f is defined at x0 ∈ Dc if
and only if f(x0) can be evaluated on a computer.

This lemma of course hinges on a careful implementation of the intrinsic
functions and operations, in particular in the sense that they should be exe-
cutable for any floating point number in the domain of definition that produces
a result within the range of allowed floating point numbers.

Lemma 3. Let f be a computer function, let D be the domain of definition
of f in R, let x0 ∈ D ∩ Dc, and let s ∈ R. Then f is extendable to x0 + s if
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and only if f(x0 + s) can be evaluated on the computer.

Lemma 4. Let f be a computer function, and let x0 be such that f is
defined at x0 and extendable to x0 ± d. Then f is continuous at x0 if and only
if f(x0 − d) =0 f(x0) =0 f(x0 + d).

Proof. Since f is a computer function, defined at x0 and extendable to
x0 ± d, we have that

f(x0 + x) = A0(x) +
Jr∑

j=1

xqjAj(x) and f(x0 − x) = B0(x) +

Jl∑

j=1

xtj Bj(x)

for 0 < x < σ, where σ is a positive real number; where the Aj’s and the
Bj’s are power series in x, where Aj(0) 6= 0 for 1 ≤ j ≤ Jr and Bj(0) 6= 0
for 1 ≤ j ≤ Jl; and where the qj’s and the tj’s are nonzero rational numbers
that are not positive integers. Let A0(x) =

∑∞
i=0 αix

i and B0(x) =
∑∞

i=0 βix
i.

Then f is continuous at x0 if and only if qj > 0 for all j ∈ {1, . . . , Jr},
tj > 0 for all j ∈ {1, . . . , Jl}, and α0 = β0 = f(x0); that is, if and only if
f(x0 + d) =0 f(x0) =0 f(x0 − d).

Theorem 3. Let f be a computer function that is continuous at x0 and
extendable to x0 ± d. Then f is m times differentiable at x0 if and only if,
for all j ∈ {1, . . . , m}, ∂j (f(x0 + d)) and (−1)j∂j (f(x0 − d)) are both at most
finite in absolute value and their real parts agree. Moreover, in this case

∂j (f(x0 + d)) =0 f (j)(x0) =0 (−1)j∂j (f(x0 − d)) for 1 ≤ j ≤ m.

Proof. Since f is continuous at x0, we have that

f(x0 + x) = f(x0) +

∞∑

i=1

αix
i +

Jr∑

j=1

xqjAj(x)

f(x0 − x) = f(x0) +

∞∑

i=1

βix
i +

Jl∑

j=1

xtjBj(x) (4.1)

for 0 < x < σ, where σ is a positive real number, the Aj’s and the Bj’s are
power series in x that do not vanish at x = 0, and the qj’s and the tj’s are
noninteger positive rational numbers. Thus,

f(x0 + d) = f(x0) +
∞∑

i=1

αid
i +

Jr∑

j=1

dqjAj(d) ,

f(x0 − d) = f(x0) +
∞∑

i=1

βid
i +

Jl∑

j=1

dtjBj(d) .
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Assume f is m times differentiable at x0. Then qj > m for all j ∈
{1, . . . , Jr}, tj > m for all j ∈ {1, . . . , Jl}, and αj = (−1)jβj = f (j)(x0)/j!
for all j ∈ {1, . . . , m}. Hence,

f(x0 + d) =m f(x0) +

n∑

j=1

f (j)(x0)

j!
dj and

f(x0 − d) =m f(x0) +
n∑

j=1

(−1)j f (j)(x0)

j!
dj,

from which we obtain that

∂j (f(x0 + d)) =0 f (j)(x0) =0 (−1)j∂j (f(x0 − d)) for 1 ≤ j ≤ m.

The converse is proved similarly.

All the arithmetic operations and all the transcendental functions have been
implemented in COSY INFINITY [3, 6]. This allows us to apply the theoretical
results of Section 4 for the computation of derivatives of real functions.

5. Examples

As a first example, we consider a simple function and study its differentiability
at 0. Let f(x) = x

√

|x|+ exp(x). It is easy to see that f is differentiable at 0
with f(0) = f ′(0) = 1 and that f is not twice differentiable at 0. We will show
now how using the result of Theorem 3 will lead us to the same conclusion.
First we note that f is defined at 0 and extendable to ±d.

It is useful to look at what goes on inside the computer for this simple
example. Altogether, we need six memory locations to store the variable, the
intermediate values, and the function value. These six memory locations are

x, S1 = abs(x), S2 = sqrt(S1),
S3 = x ∗ S2, S4 = exp(x), a = S3 + S4.

So we can look at ~F (f) as a function from R6 into R6. Let







~E : R → R6; ~E(x) = (x, 0, 0, 0, 0, 0)
~F : R6 → R6; ~F (x, p2, p3, p4, p5, p6) = (x, S1, S2, S3, S4, a)
P : R6 → R; P (x, S1, S2, S3, S4, a) = a

G : R → R; G(x) = P ◦ ~F ◦ ~E(x)

.

Then G(x) = a =M f(x), where M is an upper bound of the support points
that can be obtained on the computer.
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If we input the value x = −d, then the six memory locations will be filled
as follows:

x = −d, S1 = d, S2 = d1/2,

S3 = −d3/2, S4 =
∑M

j=0(−1)jdj/j!, a = −d3/2 +
∑M

j=0(−1)jdj/j!.

So the output will be G(−d) = 1 − d − d3/2 + d2/2! +
∑M

j=3(−1)jdj/j! =M

f(−d). If we input the value x = 0, the output is G(0) = 1. Since f(0)
is real and f(0) =M G(0), we infer that f(0) = 1. Similarly, we find that
G(d) = 1 + d + d3/2 + d2/2! +

∑M
j=3 dj/j! =M f(d).

Note that f(−d) =0 1 = f(0) =0 f(d); hence f is continuous at 0. Since
∂ (f(d)) =0 1 =0 −∂ (f(−d)), we infer that f is differentiable at 0, with f ′(0) =
1. However, ∂2 (f(d)) ∼ d−1/2, which implies that |∂2 (f(d)) | is infinitely large.
Hence f is not twice differentiable at 0.

Next, we consider the two functions already mentioned in the introduction,
g1 and g2, which are clearly computer functions. Consider first the function
g1(x). If we input the values x = −d, 0, d, we obtain the following output up
to depth 3

g1(±d) =3 1.004845319007115d5/2

g1(0) = 0.

Since g1(−d) =0 g1(0) =0 g1(d), g1 is continuous at 0. From ∂ (g1(d)) ∼
d3/2 ∼ −∂ (g1(−d)), we infer, applying Theorem 3, that g1 is differentiable
at 0, with g′

1(0) = 0. Similarly we show that g1 is twice differentiable at 0

with g
(2)
1 (0) = 0. On the other hand, ∂3 (g1(d)) ∼ d−1/2, which entails that

|∂3 (g1(d)) | is infinitely large. Hence g1 is not three times differentiable at 0.
By evaluating g2(−d) and g2(d) up to any fixed depth and applying The-

orem 3, we obtain that g2 is differentiable at 0 up to arbitrarily high orders.
In Table 4, we list only the function value and the first nineteen derivatives
of g2 at 0, together with the CPU time needed to compute all derivatives
up to the respective order. The numbers in Table 4 were obtained using the
implementation of R in COSY INFINITY [3, 6].
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Order n g
(n)
2 (0) CPU Time

0 0. 3.400 msec
1 1.004845319007115 4.030 msec
2 0.9202876179268508 5.710 msec
3 −18.81282866172102 8.240 msec
4 −216.8082597872205 12.010 msec
5 −364.2615904917884 17.570 msec
6 101933.1724529188 25.150 msec
7 3798311.370563978 35.700 msec
8 60765353.84260825 49.790 msec
9 −1441371402.871872 67.210 msec
10 −156736847166.3961 89.840 msec
11 −6725706835826.155 118.950 msec
12 −131199307184575.8 154.530 msec
13 5770286440090848. 200.660 msec
14 0.7837443136320079× 1018 256.460 msec
15 0.4850429351252696× 1020 321.630 msec
16 0.1734774579876559× 1022 400.140 msec
17 −0.1757849296527536× 1023 478.940 msec
18 −0.9350429649226352× 1025 582.150 msec
19 −0.9521402181303937× 1027 702.390 msec

Table 4: g
(n)
2 (0), 0 ≤ n ≤ 19, computed with DA methods on R
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