Studies on Performance of the COSY Infinity Optimizers on
Constraint Satisfaction *

Alexey Poklonskiy T
April 15, 2008

Abstract
In this work we assess the performance of the built-in COSY Infinity optimizers (Nelder-Mead,
Levenberg-Marquardt and Simulated Annealing) and their combinations on the constraint satisfaction
problems formulated as optimization problem. For this study we used problems from the standard test
suit for constrained optimization with Evolutionary Algorithms [20,23]. Results of the simulations are
presented and discussed.

1 Introduction

1.1 Optimization problems

Optimization problems form an important class of all problems in the field of the applied science and design.
Many problems that are not originally formulated as optimization could be reformulated to become so.
After a problem is formulated as a problem of optimization it could be studied and possibly solved using
one of the many numerical optimization methods developed [24]. There exist many different types of those
problems, e.g. combinatorial optimization, stochastic optimization and integer programming. In this work
we restrict our consideration to the nonlinear real-valued optimization problems, i.e. problems that could
be formulated in terms of the functions assuming real values with arguments from the real domain. Those
arguments are typically some control parameters and the functions themselves determine certain measures
of the performance that need to be optimized.

Real-valued optimization problems could be formulated as follows. Let S C RY be a search domain,
x € S be a vector of v control parameters assuming real values,

f:S—R (1)

be an objective function. Then the unconstrained optimization problem is to find f* € R such that

f* = min f(x) (2)
and corresponding x* € S:
[r=fx")
which is usually written as
x" = argmin f(x). (3)

Some real-life problems could be formulated as unconstrained optimization problems, but we are mostly
dealing with the situations where some constraints are imposed on control parameters. Usually they are

*Michigan State University High Energy Physics technical report: HEP-080317
fe-mail: poklonsk@msu.edu, address: B149, Physics and Astronomy Dept., Michigan State University, East Lansing, USA,
48823

enforced by certain physical limitations and time/cost considerations. Therefore constrained optimization
methods form a very important subclass of all optimization methods.
Let x from the problem formulation also be subjected to equality and inequality constraints

gi(x)=0,1=1,...,n (4
h](x SO) .]:L I) (5

then the set
F={xeSCR"|g(x)=0, hj(x)<0,i=1,....n, j=1,...,m} (6)

is called the feasible set. It contains all vectors from the search domain that simultaneously satisfy all
constraints. Such vectors x € F' are called feasible, all other vectors are called unfeasible. If at some point
x € S inequality constraint h;(x) holds as equality (h;(x) = 0), it is called active at x. Equality constraints
are considered active on all S. Using those definitions, we can define constrained optimization problem based
on (3) as
* — : 7
x" = argmin f(x), (7)
where a sought minimum is also called feasible minimum.
Inequality constraints (5) could be transformed into equality constraints by introducing “dummy” vari-
ables &;, j =1,...,m. In this case each inequality constraint

hj(x) <0
is converted to an equivalent equality constraint
hj(x) + & =0.
Equality constraints (4) can in turn be transformed into two inequality constraints each

—gi(X)SO,izl,...,m (8)
gi(x)<0,i=1,...,m,

or, for the methods that do not rely on smoothness of the constraint functions to one inequality constraint
each
lg:(x)] <0, i=1,...,m. (9)

For practical purposes of non-rigorous optimization
lgi(x)]| —e<0,i=1,...,m, (10)

where ¢ is an acceptable tolerance for equality constraint satisfaction is also frequently used. Using those
transformation we can limit our consideration to the problems with either equality-only or inequality-only
constraints without loss of generality. For simplicity we consider only inequality constraints, i.e. constraints
of the type (5), treating n as a total number of constraints. In this case, the feasible set (6) is defined as

F={xeSCR"|hi(x) <0, j=1,...,n}. (11)

Constraints could frequently be incorporated into the objective function or treated as additional objective
functions via penalty and barrier functions [24]. This way, constrained optimization problems could be
explored using optimization methods designed for unconstrained problems. The penalty functions paradigm
was proposed by Fiacco, McCormick and Zangwill [13], [19] as a general numerical method applicable to
constrained optimization problems. Its basic idea is to transform the original constrained minimization
problem (6), (7) into an equivalent unconstrained minimization problem (12) or (13). Here equivalence means
that the feasible minimum of the original constrained problem is a minimum of the resulting unconstrained
problem or at least is acceptably close to it.

This transformation is performed via a set of so called penalty functions P;(h;(x)), j =1,...,n corre-
sponding to a set of constraints. Here penalty function P; calculates the non-negative amount of penalty
assigned to a vector x for violating j-th constraint. Utilizing those functions the problem of constrained
minimization (6), (7) could be transformed into an unconstrained multi-objective minimization problem

. _ in P 12
x" = arg min ®(x), (12)

where ®(x) = (P1(h1(x)), Pa(he(x)),. .. ,Pn(hn(x)),f(x))T, that could be solved by multi-objective opti-
mization techniques. It could also be converted even further to an unconstrained single-objective minimiza-
tion problem

x" = argmin p(x), (13)
where ¢ = ap(@(x)) is the function that combines the original objective function and penalty functions into a
single objective function. Usually penalty functions are chosen such that ||p(x) — f(x)|| — 0 as x — F. The
function ¢ also has to be balanced to guide the search process to a feasible set F' and hold it there, but not
to interfere with the search of the minimum inside F'. Care must be taken to achieve this balance in terms
of the influence of the original objective function and penalties to a combined function ¢. In case penalties
are dominant in a value of the ¢, the pressure to produce feasible points might prevent the algorithm from
finding an optimum. In the opposite situation, i.e. if the original objective function dominates in calculating
the value of ¢, the optimization result tends to be optimal but unfeasible and thus useless.

A variety of methods to define penalty functions for @, to combine them with original objective function
into function o(x), inspired a large number of different constrained minimization methods. Nevertheless,
since different problems have different properties of the constraint functions sets, there seems to be no
universally optimal penalty function definition strategy. Since multi-objective optimization problems are
generally harder to solve due to an increased number of objectives to satisfy simultaneously, it is often more
desirable to convert a constrained problem to a single-objective unconstrained problem (13) by choosing
appropriate Py, Py, ..., Py, o.

The most frequently used method to define combining function ¢ is via linear combination of the indi-

vidual penalties:
n+1

o(p) =Y _w;p;, pe R, (14)
k=1
where w; are freely chosen weight constants. Under this choice of ¢ the constrained optimization problem
(6), (7) is transformed into an unconstrained optimization problem (13). Since w41 is a weight coefficient
of the objective function of the original constrained problem, for simplicity it is usually chosen to be unity.
The objective function then assumes the form

(%) = f(x) + D w; Py(hy(x)). (15)
j=1

For a general-purpose optimizer, in cases where there is no information about a problem available, all
weight coefficients for penalties are usually set to unity, at least initially. Since in practice constraints and
thus penalty functions often have different ranges of values, weight coefficients w; can then be selected as to
normalize penalty values in order to balance their influence on the combined objective function or to increase
the relative impact of some constraints if they are known to be harder or more important to satisfy.

Exterior penalty functions allow unfeasible members to be considered during the search process but assign
them a penalty that generally grows with their distance from the feasible set, while interior penalty functions
prevent search methods from considering unfeasible points. Usually exterior penalty functions are such that
P, =Pj(z)>0,z€ R, j=1,...,n and defined in the following way

0 2 <0

penalty(z) > 0 otherwise (16)

P(z) = {

Most frequently used penalty functions of this type are from the power penalty family:

0 z2<0
2% otherwise

Pz) = { = (max{0, z})%, (17)
from which a = 0, 1,2 are most often selected.

If we then substitute the value of the constraint function into penalty function of the type (16)

Pj(hj(x)),

we obtain a non-negative penalty assigned to a vector x for not satisfying j-th constraint or zero if j-th
constraint is not violated. Here index j of the penalty function is given because generally penalty functions
could be selected separately for each constraint function. Power penalty functions (17) use a violated
constraint function value at the unfeasible point raised to the a-th power as a penalty.

1.2 Evolutionary optimization methods

An interesting family of optimization methods is inspired by the process of evolution described by Darwin in
his revolutionary work “Origin of Species” first published in 1859 [10]. The main driving forces of evolution
according to it are variability in living organisms and natural selection implicitly performed on them by
the environment. Over time those forces shape different species to be very sophisticated inhabitants of the
environment, i.e. make them fit to it.

This familty of methods has a very broad field of real-life applications. Examples include control sys-
tems [12], image analysis [9], marketing [28] and economics [2], traffic control [6], manufacturing [15] and
many others. While EAs do not guarantee to find even a local minimum, practical applications demon-
strate that frequently they are able to find a global minimum or at least produce a practically acceptable
solution. However, the problem is that Evolutionary Algorithms (EAs) were not originally created to han-
dle constraints. Even though unconstrained EAs had already demonstrated themselves to be very efficient
general-purpose optimizers, ability to handle constraints would significantly increase their range of applica-
tions and help in solving many important optimization problems.

Those reasons served as a motivation for a large number of different approaches for constraints handling in
EA that were invented and successfully applied to a number of different problems [8,20,21]. Such techniques
could roughly be subdivided into several categories: killing, penalty functions, special genetic operators,
selection rules, repair methods and other approaches. Repair algorithms are based on the idea of “repairing”
the unfeasible members of the population to make them feasible and then either use the repaired version
to evaluate the fitness of the original member or to replace it altogether. They seem particularly useful
for problems where constraint satisfaction is particularly important. For example for problems where the
number of generations is limited but the result is required to satisfy constraints even if it is not optimal.
One of such problems is to quickly provide good cutoff values for a rigorous global optimizer [4].

We suggest a repair method called REPROPT (REpair by PROjecting through OPTimization). Its
main idea is to perform projection of the unfeasible member to the feasible set by optimizing the penalty
functions via some relatively inexpensive optimization method using unfeasible points as initial values for
the optimizer. Note that by projection in this context we mean an element in the feasible set F' that is
found in the optimization process, hence it depends on the method and method parameter. Moreover, if the
method is stochastic (for example, Simulated Annealing), the results of the projection are not unique.

Parameters of REPROPT include the penalty functions method, projection algorithm, penalty satis-
faction tolerance and maximum number of steps allowed. To select good default values of those param-
eters we performed a study on the performance of this method with different settings on a standard set
of test problems for constrained optimization with Evolutionary Algorithms [20,23]. Built-in COSY Infin-
ity [3] unconstrained optimizers are used for this purpose. The list includes Nelder-Mead [16] (SIMPLEX).
Levenberg-Marquardt [14] (LMDIF) and Simulated Annealing [18] paired with Random Walk (ANNEAL-
ING) algorithms, that proved themselves as versatile and robust optimizers frequently used as standard by
many nonlinear optimization packages.

2 Problems

Test functions for Constrained Optimization single-objective EAs were suggested as a standard benchmark
by Michalewicz [23], and later adopted to test performance of all new methods by the EA community
[7,11,22,25,29]. This test bench includes various synthetic problems (G01-G13) with different properties of
the constraints, feasible set, the sought minimum and several real-life design problems originally solved by
constrained EAs (vess, tens). Problems listed using the notation from expressions (1), (4), (5), (2), (3) the
search space S is given as a set of allowed ranges for x;, i = 1,..., v, values for global minima are listed if
known; best known values are given where the true minima are not known.

Rough empirical classification of the problem difficulty and estimates for p = |F|/|S]| - 100 parameter is
taken from [20] and verified for correctness. Note that generally the most important factors that increase the
difficulty of a constraint satisfaction problem include the presence of at least one nonlinear inequality and
high dimensionality. Note also, that even though theoretically any feasible set where one of the constraints is
equality has measure zero, the parameter p obtained by a finite sampling of the feasible space might be non-
zero. For practical purposes such estimation is more useful than purely theoretical measure. First, because,
for the general set of constraints the problem of precise determination of F' could be extremely difficult.
Second, for practical purposes F' that consists of a single point is harder to treat than F' that consists of
the single line, which is, in turn harder to work with than F that consists of the plane. Therefore those
small deviations of p from theoretical zero allow us to make such distinction even though only approximately.
Values of p in the problem descriptions are obtained by sampling the search space S with 1,000,000 random
points.

Listing 1: g01 Test problem

DIFFICULT

p =~ 0.0003

v=13

n =9 (9 linear inequalities, hi, ha, h3, h4, hs, hg are active)

quadratic objective function

4 13
F(x) =537 (% — z%) — 24i=57Ti
h1(x) = 2z1 +2x2 +x10 + 211 — 10 <0

ha(x) = 2z1 + 223 + 10 + 212 —10 <0
h3(x) = 222 + 223 + 11 + 212 — 10 <0

(x)

(x)

(x)
h4(x) = —2x4 —x5+x10 <0
hs(x) = —2x6 —x7 + 211 <0
he(x) = —2x8 —x9 + 212 <0
h7(x) = =8x1 + 210 <0
hg(x) = =8z +x11 <0
hg(x) = —8x3 + 212 <0

z; €10,1], i=1,...,9
z; € [0,100], ¢=10,...,12
I13€[0,1]

x* =(1,1,1,1,1,1,1,1,1,3,3,3,1)
fx*)=-15

Listing 2: ¢g02 Test problem (best known value from [27])

DIFFICULT

p ~99.9973

v =20

n = 2 (1 linear inequality, 1 nonlinear inequality, hj almost active (—=1078))

nonlinear objective function

f(x)= _‘(Z;J:l cos?(z;) — 21Ty 0052(xi)) (i1 ix%)70'5|

hi(x) = 0.75 — [[_, 2; <0
hz(x) = Zle Ty — 7.5v S 0

z; €[0,10], i=1,...,v

best known f(x*) = 0.803619

Listing 3: ¢g03 Test problem

DIFFICULT

p =~ 0.0026

v =10

n =1 (1 nonlinear equality, g; active)

nonlinear objective function
f(x) = —v2/v [Ty =
g1(x) =37 27 -1=0

z; €[0,10], i=1,...

@

x* =1/y/v(1,1,...,1), any combination of +1’s such that their product is positive

ety = —1

Listing 4: g04 Test problem

AVERAGE

p =~ 27.0079

v=2>5

n =6 (4 linear inequalities, 2 nonlinear inequalities, hi, hg active)

quadratic objective function

f(x) = 5.3578547z3 + 0.8356891z1z5 + 37.293239z1 — 40792.141

h1(x) = 85.334407 + 0.0056858z925 + 0.0006262z1 24 — 0.0022053z325 — 92 < 0
ha(x) = —85.334407 — 0.0056858z2x5 — 0.0006262z1 x4 + 0.0022053z325 < 0
h3(x) = 80.51249 + 0.0071317waz5 + 0.002995521 2 + 0.002181322 — 110 < 0
ha(x) = —80.51249 — 0.0071317z2a5 — 0.0029955z1 x5 — 0.0021813z2 4+ 90 < 0
hs(x) = 9.300961 + 0.0047026z325 + 0.00125471 23 + 0.0019085z324 — 25 < 0
he(x) = —9.300961 — 0.0047026z325 — 0.0012547z 123 — 0.0019085z324 + 20 < 0
x) € [78,102]

xo € [33,45]

@; €[27,45], i=3,...,5

x* = (78,33,29.995256025682, 45, 36.775812905788)
f(x*) = —30665.539

Listing 5: ¢05 Test problem

VERY DIFFICULT

p ~ 0.0000

v=4

n =15 (2 linear inequalities, 3 nonlinear equalities, g1, g2, g3 are active)

nonlinear objective function
f(x) =3z1 + 0.000001;10? + 2z + (0.000002/3)x%

hi(x) = —x4 +z3 — 0.55 < 0

ha(x) = —x3 + x4 — 0.55 < 0

91(x) = 1000 sin(—z3 — 0.25) + 1000 sin(—a4 — 0.25) + 894.8 — z1 = 0
g2(x) = 1000sin(z3 — 0.25) + 1000sin(z3 — 4 — 0.25) + 894.8 — x5 = 0
g3(x) = 1000 sin(z4 — 0.25) + 1000 sin(x4 — 3 — 0.25) + 1294.8 = 0

x; € [0,1200], i=1,2
@; € [~0.55,0.55], i = 3,4

best known x* = (679.9453,1026.067, 0.1188764, —0.3962336)
f(x*) = 5126.4981

Listing 6: ¢g06 Test problem

AVERAGE

p =~ 0.0057

v =2

n = 2 (2 nonlinear inequalities, hi, ho active)

nonlinear objective function
F(x) = (21— 10)® + (22 — 20)?

hi(x) = —(z1 — 5)2 — (2 — 5)% + 100 < 0
h2(x) = (1171 = 6)2 + (2:2 = 5)2 —82.81<0

z1 € [13,100]
z2 € [0,100]

x* = (14.095, 0.84296)
f(x*) = —6961.81388

Listing 7: ¢07 Test problem

AVERAGE

p =~ 0.0000

v =10

n = 8 (3 linear inequalities, 5 nonlinear inequalities hi, ho, hs, hs4, hs, he active)

quadratic objective function

f(x) = 22 + 22 + z120 — 1421 — 1622 + (23 — 10)2 + 4(24 — 5)2 + (x5 — 3)2 + 2(z6 — 1)+
522 + T(zg — 11)2 + 2(z9 — 10)2 + (w10 — 7)% + 45

z; € [=10,10], i=1,...,10

x* = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927)
f(x*) = 24.3062091

Listing 8: ¢08 Test problem

EASY

p ~ 0.8581

v =2

n = 2 (2 nonlinear inequalities)

nonlinear objective function
f(x) = —sin3(2mzy) sin(27ra2) (23 (21 + 22)) -t

hl(x):x%7x2+1§0
hz(x):17x1+(x274)2§0

z; €[0,10], i=1,2

x* = (1.2279713,4.2453733)
F(x*) = —0.095825

Listing 9: ¢09 Test problem

AVERAGE

p~0.5199

v="T

n = 4 (4 nonlinear inequalities, hi, h4 active)

nonlinear objective function

f(x) = (x1 —10)2 + 5(zo — 12)2 + 22 + 3(x4 — 11)2 + 1028 + 722 + 22 — dzgzr — 1026 — 87
3 5 6 7

hi(x) = —127 + 222 + 3z3 + 23 + 423 + 525 < 0
ho(x) = —282 + Tz1 + 322 + 1022 + 24 — 25 <0
h3(x) = —196 + 23z1 + x3 + 623 — 8z7 <0

ha(x) = 4:1:% + x% — 3z1290 + 2x§ + 5z — 117 <0

@ € [-10,10], i=1,...,7

x* = (2.330499, 1.951372, —0.4775414, 4.365726, —0.6244870, 1.038131, 1.594227)
f(x*) = 680.6300573

Listing 10: ¢g10 Test problem

DIFFICULT

p =~ 0.0020

v=_8

n =6 (3 linear inequalities, 3 nonlinear inequalities, hi, hg, hs active)

linear objective function

f(x) =21 +x2 + 23

hi(x) = —1 + 0.0025(z4 + 6) < 0

ha(x) = —1 4+ 0.0025(z5 + 27 —24) <0

hg(x) =-1 +»0.01(x3 —>I5) <0

ha(x) = —z126 + 833.3325224 + 10021 — 83333.333 < 0
hs(x) = —xox7 + 125025 + zowg — 125024 < 0

he(x) = —x3x8 + 1250000 + 2325 — 250025 < 0

1 € [100, 10000
x; € [1000,10000], i=2,...,3
z; € [10,1000], i =4,...,8

x* = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)
f(x*) = 7049.3307

Listing 11: g1 Test problem

EASY

p ~0.0973

v =2

n =1 (1 nonlinear equality, gi active)

linear objective function
f(x) =2} + (22 - 1)?
g1(x) = x2 790% =0

z; € [-1,1], i=1,2

x* = (£1/v/2,1/2)
f(x*) =0.75

10

Listing 12: ¢g12 Test problem

EASY

p =~ 4.7697

v=3

n =1 (93 nonlinear inequalities joined by logical OR instead of usual AND, disjoint F’)

quadratic objective function
F(x) = —=10071(100 — (21 — 5)2 — (w2 — 5)2 — (z3 — 5)?)

hi(x) = (x1 — p)? + (2 — q)% + (x5 —)2 —0.0625 <0, i=1,...,9%, p,q,r=1,...,9

x is feasible if it satisfies one of h;
z; €10,10], i =1,2,3

x* = (5,5,5)
f(x*)=~1

Listing 13: ¢g13 Test problem

VERY DIFFICULT

p ~ 0.0000

v=2>5

n =3 (1 linear equality, 2 nonlinear equalities, gl, g2, g3 active)

nonlinear objective function

f(X) — T1T2T3T4T5

g1(x) = Z?:l z2 -10=0
g2(x) = 223 — bxaws =0
g3(x)=a3+a3+1=0

z; €[—2.3,2.3], i=1,2
z; €[—3.2,3.2], i=3,4,5

x* = (—1.717143,1.595709, 1.827247, —0.7636413, —0.763645)
F(x*) = 0.0539498

11

Listing 14: Design of a Pressure Vessel (vess) [17] (best known value from [7])

AVERAGE

p =~ 39.6762

v=4

n =4 (3 linear inequalities, 1 nonlinear inequality)

quadratic objective function

f(x) = 0.6224z1z374 + 1.7781x22% + 3.1661x324 + 19.842% 73

hi(x) = —z1 + 0.0193z3 <0

ha(x) = —x2 + 0.00954z3 < 0

h3(x) = —mzdws — 4/37z3 + 1296000 < 0
ha(x) =24 —240 <0

zi €[1,99], i=1,2
€ [10,200], i = 3,4

best known: f(x*) = 6059.946341

Listing 15: Design of a Tension/Compression Spring (tens) [1] (best known value from [7])

EASY

p ~ 0.7537

v=3

n =4 (1 linear inequality, 3 nonlinear inequalities)

quadratic objective function

f(x) = (z3 + 2)w22]

hi(x) =1 — 2323(7178521)"1 <0

ha(x) = (423 — $1a:2)(12566(;t2m1 —zf))71 4+ (510822)"1 -1 <0
h3(x) = 1 — 140.45z125 251 <0

ha(x) = (x2 +21)1.5" 1 —1<0

z1 € [0.05, 2]

xo € [0.25,1.3]

z3 € [2,15]

best known: f(x*) = 0.012681

12

3 Methodology

For all test problems certain transformations and conventions were used.

All equality constraints of the type (4) were converted into equivalent inequality constraints (5) using
transformation (8) or (9) so that the feasible set is given by (11).

All constraints in the test set are known to be satisfiable, i.e. feasible set is known to be non-empty.
Since we were not interested in the global minima of the constraint functions, but rather in the simultaneous
satisfactions of all constraints, a set of constraint functions was converted to a set of penalties using power
penalties (17) with @ = 0,1,2. Using the property (16), that power penalty functions satisfy, the problem of
projecting the point xy onto F' via a chosen optimizer could be formulated as follows: using x(as a starting
value, find x¢ such that

oP; (hi(xy)) :r}?eiglPZ-(hi(x)) =0,i=1,...,n. (18)

Such x; would then be feasible automatically. Note that this method is equivalent to approach (12) that allow
to convert single-objective constrained optimization problems to multi-objective unconstrained problems via
penalty functions. The difference is that in our case we do not have an objective function to minimize. Note
that in (18) for practical purposes we might be satisfied with non-zero penalty values if they are within the
desired tolerance from zero. This is particularly applicable to converted equality constraints because they
might be non-zero simply due to the limited precision of the computer arithmetic and floating-point errors
in computations.
Three types of the objective functions were tested:

o all combined: the multi-objective problem (18) was converted to a single-objective problem (15) via
the combining function (14) with all w; = 1.

o cquality combined + inequality combined: the multi-objective problem (18) was converted to a two-
objective optimization problem with inequality constraints and equality constraints (transformed to
inequality constraints using (9) but still more difficult to satisfy than true inequalities) converted to 2
separate objective functions using the same method as for all combined approach. This distinction was
made because equality constraints are usually harder to satisfy; thus, they might require more severe
penalties to be satisfied.

e separate: the multi-objective optimization problem (18) was treated as-is. It must be noted, however,
that for ANNEALING and SIMPLEX methods it was internally converted into the single-objective
optimization problem by optimizing the sum of the squares of the objective functions, i.e. equivalent
to the all combined method for a = 2. LMDIF has the ability to solve multidimensional problems
directly.

The following abbreviations for the search methods are used: S — SIMPLEX, L. — LMDIF, A —
ANNEALING optimization methods. Combined methods were implemented by making several steps using
one method and then making several steps using another method with the hope to combine the strengths
of both methods and to compensate for their weaknesses. Combinations of methods and their abbreviations
are: S+A — SIMPLEX + ANNEALING, S+L — SIMPLEX + LMDIF, L4+A — LMDIF + ANNEALING.

Each combination of the penalty function (¢ = 0,1,2, selected separately for equality and inequality
constraints) and optimization problem formulation (all combined, equality combined + inequality combined,
separate) was tested for each of the simple (S, L, A) and combined (S+A, S+L, L+A) methods. For prob-
lems without equality constraints, optimization problems all combined and equality combined + inequality
combined are equivalent, hence only all combined was tested. For problems with only one constraint all
formulations of optimization problems are equivalent. Therefore for problems with both types of constraints
the total number of tested approaches is 3 x 3 x 3 x 6 = 162, for problems with inequality constraints only
2 x 3 x 6 = 36 and for problems with one inequality constraint the number of tested cases was 12.

Special abbreviations for each variant of the problem formulation and optimization strategy is employed.
The description starts with the abbreviation of the optimization method (S, L, A, S+A, S+L, L+A) followed

13

by the type of the penalty function used for the constraints in parentheses. For problems with equality
and inequality constraints both types are separated by a comma, the first type corresponds to equality
constraints. Types are: 1 for power 0, z for power 1, 22 for the power 2. For problems with inequality or
equality constraints only, one type denotes the type of the penalty used for the corresponding constraints. For
optimization problems of the all combined type “:c” is added after the method abbreviation before parenthesis.
For problems with both equality and inequality constraints type equality combined + inequality combined is
marked with “c”, types of the penalties are separated by “+” instead of comma. Examples: S+L:c(z?) denotes
SIMPLEX+LMDIF combined method, problem with inequality constraints only, all combined objective
function, penalty power is 2. L(z) denotes LMDIF method, separate objective functions, penalty power
1. L+A:c(z + 22) denotes combined LMDIF+ANNEALING optimization method, equality combined +
inequality combined optimization problem with penalty power 1 for equality constraints and 2 for inequality
constraints.

Test problems were built by taking constraints from the standard constrained optimization test bench
for EAs [20,23] (see section 2. Since it mostly consists of inequality constrained problems only, a simple
2-dimensional problem (19) with one equality and four inequality constraints was suggested [5].

g(x) =22 +25-1.12=0

hi(x) =21 —-1<0

ho(x)=—21—1<0 (19)
hg(x) =22 —1<0

hy(x)=—22—1<0

Initial points were generated randomly uniformly distributed over
S = [-100, 100]”

and
S = [-1000, 1000]".

Total number of different points tested for each combination: 1000.

For all methods the maximum number of steps is 1000, precision is 107°. For combined methods, the
maximum number of steps with the first and second methods in one step of the combined algorithm, was 10,
the total maximum number of steps was counted by summing steps made by both methods and was 1000.
The projection was considered successful if all objective functions were within tolerance from the global
minimum of zero. Projection was considered failed if the desired tolerance was not reached and method
either converged or reached a maximum allowed number of steps.

4 Results

With all conventions from section 3 a series of tests was performed. Output is summarized in the tables;
where, for every combination of the method, penalty functions and the objective function construction
method, the percentage of the successful runs and average number of steps (including the failed runs) are
listed. The best methods in terms of the number of the successful runs are listed in boldface, the number
of steps of those methods is also marked for convenience. Note that for methods with similar success rates
the one with smaller average number of steps is preferred. Headers of the columns represent powers of the
penalty functions as described in methodology.

For each method three rows contain results for all combined, equality combined + inequality combined and
separate objective function construction methods. In case there are no equality constraints or no inequality
constraints, equality combined + inequality combined method is equivalent to all combined and is not tested,
therefore the number of rows for each method in this case is two. Problems G03 and G11 have one equality
constraint each, hence the number of rows in this case is one.

14

4.1 Problem GOO from (19)

e 1000 random points from [—100, 100]”
Success rate:

Method % success
1,1 | 1,z ‘ 1, 22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22,z ‘ 22,22
0.00 | 0.00 | 0.00 60.20 57.10 31.70 78.50 72.50 74.50
SIMPLEX 0.00 | 0.00 | 0.00 29.10 29.10 29.70 37.00 37.00 37.70
0.00 | 0.00 | 0.00 29.10 29.10 29.70 37.00 37.00 37.70
0.00 | 0.00 | 0.00 50.60 60.90 81.90 64.70 92.70 94.10
LMDIF 0.00 | 0.00 | 0.00 66.80 91.80 95.50 80.10 85.90 89.80
0.00 | 0.00 | 0.00 66.80 98.10 99.60 80.00 98.10 94.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.20 0.10 0.20
ANNEALING | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.30 0.00 0.20
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.50 0.20
0.00 | 0.00 | 0.00 91.00 64.90 85.50 96.10 | 100.0 99.40

SMP-+LMD 0.00 | 0.00 | 0.00 84.50 | 100.0 100.0 98.80 99.90 | 100.0
0.00 | 0.00 | 0.00 84.50 | 100.0 100.0 98.80 | 100.0 100.0

0.00 | 0.00 | 0.00 0.10 0.30 0.100 | 77.30 76.30 71.60
SMP-+ANN 0.00 | 0.00 | 0.00 0.20 0.20 0.200 | 76.60 73.30 74.10
0.00 | 0.00 | 0.00 0.20 0.20 0.00 77.70 75.90 75.80

0.00 | 0.00 | 0.00 | 99.60 91.20 73.10 98.20 93.00 95.50
LMD+ANN 0.00 | 0.00 | 0.00 | 99.70 | 100.0 100.0 98.50 75.00 97.30
0.00 | 0.00 | 0.00 | 99.70 | 100.0 100.0 98.50 | 100.0 96.60

Average number of steps:

% avg.steps

Method
1,1 | 1,z ‘ 1, 22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22,2 ‘ 22,22
4. 37. 40. 338. 4009. 422. 262. 338. 329.
SIMPLEX 4. 4. 4. 452. 452. 452. 359. 359. 359.
4. 4. 4. 452. 452. 452. 359. 359. 359.
6. 26. 34. 113. 94. 72. 134. 128. 166.
LMDIF 6. 23. 73. 56. 79. 91. 112. 203. 176.
6. 10. 62. 56. 50. 65. 112. 92. 145.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
ANNEALING | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. 236. 405. 206. 169. 118. 125.
SMP+LMD 1000. | 1000. | 1000. 248. 140. 271. 129. 233. 179.
1000. | 1000. | 1000. 248. 70. 201. 129. 113. 126.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. 428. 435. 476.
SMP+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. 431. 458. 476.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. 410. 439. 468.
1000. | 1000. | 1000. 118. 240. 383. 225. 279. 273.
LMD+ANN 1000. | 1000. | 1000. 104. 170. 232. 217. 741. 382.
1000. | 1000. | 1000. 101. 82. 147. 220. 156. 226.

15

e 1000 random points from [—1000, 1000]"
Success rate:

Method % success
1,1 | 1,z ‘ 1,22 ‘ z,1 | Z,2 z, 22 ‘ 22,1 | 22,2 22, 22
0.00 0.00 | 0.00 56.40 58.30 31.80 70.40 73.90 74.80
SIMPLEX 0.00 0.00 | 0.00 29.00 29.00 29.30 40.60 40.60 41.10
0.00 | 0.00 | 0.00 29.00 29.00 29.30 40.60 40.60 41.10
0.00 0.00 | 0.00 45.80 56.10 81.30 64.70 86.90 92.00
LMDIF 0.00 | 0.00 | 0.00 64.90 92.80 97.70 | 81.20 80.60 88.80
0.00 0.00 | 0.00 65.10 99.60 99.10 81.10 99.60 92.80
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ANNEALING | 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 90.80 63.20 88.50 | 98.20 | 100.0 99.70

SMP+LMD 0.00 | 0.00 | 0.00 84.50 | 100.0 100.0 99.60 | 100.0 100.0
0.00 | 0.00 | 0.00 84.50 | 100.0 100.0 99.60 | 100.0 100.0

0.00 | 0.00 | 0.00 0.20 0.20 0.10 76.60 73.90 70.20
SMP+ANN 0.00 | 0.00 | 0.00 0.30 0.20 0.40 76.20 71.80 69.10
0.00 | 0.00 | 0.00 0.20 0.10 0.10 76.20 74.10 71.60
0.00 | 0.00 | 0.00 | 99.40 93.60 70.60 | 98.30 92.70 91.50
LMD+ANN 0.00 | 0.00 | 0.00 | 99.50 | 100.0 100.0 97.70 0.700 51.00
0.00 | 0.00 | 0.00 | 99.60 | 100.0 100.0 97.70 | 100.0 87.40

Average number of steps:

Method % avg.steps

1,1 | 1,z ‘ 1,22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22,2 ‘ 22,22

4. 51. 53. 386. 395. 455. 351. 343. 344.

SIMPLEX 4. 4. 4. 447. 447. 447. 366. 366. 366.
4. 4. 4. 447. 447. 447. 366. 366. 366.

6. 33. 48. 187. 168. 121. 210. 207. 209.

LMDIF 6. 30. 87. 131. 92. 114. 191. 271. 227.
6. 11. 72. 131. 45. 79. 192. 101. 167.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
ANNEALING | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. 261. 442. 201. 189. 161. 163.
SMP+LMD 1000. | 1000. | 1000. 274. 192. 332. 164. 342. 281.
1000. | 1000. | 1000. 274. 90. 233. 164. 154. 171.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. 512. 531. 573.
SMP-+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. 508. 541. 599.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. 513. 537. 573.
1000. | 1000. | 1000. 151. 223. 437. 297. 341. 366.
LMD+ANN 1000. | 1000. | 1000. 135. 271. 332. 299. | 1000. 788.
1000. | 1000. | 1000. 133. 106. 171. 292. 218. 318.

16

4.2 Problem GO1 (Listing 1)
e 1000 random points from [—100, 100]”

Success rate:

Method 1 | % iucces‘s 22
SIMPLEX 888 9(2):8(? 92:507
LMDIF 000 | 1000 | 1000
ANNEALING 8:;3 ﬁjig 8:22
SIMPLEX-+LMDIF 8:88 8:88 8:88
SIMPLEX+ANNEALING 8:88 ;:gg 3:22
LMDIF+ ANNEALING 8:33 332 323
Average number of steps:
Method : avgi # zf Strpszz
SIMPLEX ﬁ: 4%52): 3?};:
LADIF 16| 45 | 234
ANNEALING 1000. | 1000, | 1000,
SIVIPLEX + LMDIF 1000. | 1000. | 1000,
SIMPLEX +ANNEALING | J000™ | 305" | 5000,
LMDIF+ANNEALING }888: SZ;; 1333:

17

e 1000 random points from [—1000, 1000]"
Success rate:

Method % success
1L [= [2
SIMPLEX 8:88 8?:28 9?:(5)(())
LMDIF 000 | 1000 | 1000
ANNEALING 8:88 8:88 8:88
SIMPLEX+LMDIF 8:88 8:88 8:88
SIMPLEX+ANNEALING 8:88 8:88 8:88
LMDIF+ANNEALING 8:88 8:88 8:88
Average number of steps:
Method vty 7 Of sy
1 [= | 22
SIMPLEX ﬁ: 42?: 42;:
LADIF 16| a5, | as
ANNEALING 1000, | 1000, | 1000,
SIVIPLEX { LMDIF 1000, | 1000, | 1000,
SIMPLEX+ANNEALING | J000" | 100" | 1ogo,
LMDIF+ANNBALING | o | 1000 | o0,

18

4.3 Problem GO02 (Listing 2)

e 1000 random points from [—100, 100]”
Success rate:

Method 1 |% SZCCGS‘S 22
SIMPLEX 3.00 | 70.00 | 70.00
LMDIF 25.50 | 9780 | 8260
ANNEALING 73.60 | 7560 | 76.80
SIMPLEX LMDIF 3520 | 5120 | 810
SIMPLEX + ANNEALING | 2220 | 0000 | 57 0o
LMDIF+ANNEALING 22128 3;:28 32:28
Average number of steps:
Method 1 avgl; # zf st‘epSZQ
SIMPLEX 2o | 275 | 278
LMDIF s | o5 | w5,
ANNEALING 1000. | 1000. | 1000
SIMPLEX LMDIF o0, | 243 | o3
SIMPLEX+ANNBALING | (0 |02 |06
LMDIF+ANNEALING gé: }}13; Eg:

19

e 1000 random points from [—1000, 1000]"
Success rate:

Method % success
1 | = | 2
SIMPLEX 3140 | 1580 | 5320
LMDIF 37,00 | 94.00 | 76.00
ANNEALING 3160 | 5060 | 5220
SIMIPLEX HLAIDIF 32.60 | 77.00 | 77,00
SIMPLEX t ANNPALING | 300 | 7060 | 7950
LMDIF+ANNEALING 3238 gggg 2238
Average number of steps:
Method avg # of stops
1 [= | 22
SIMPLEX 2o | o6 | 3
LMDIF 21 | 108 | a1
ANNEALING 1000, | 1000, | 1000,
SIMPLEX § LMDIF o | | s
SIMPLEX+ANNEALING gg;: 38421: 38;:
LMDIF+ANNEALING ;32: 223 22?:

20

4.4 Problem GO03 (Listing 3)
e 1000 random points from [—100, 100]”

Success rate:

Method % success
1 | z ‘ 22
SIMPLEX 0.00 100.0 99.90
LMDIF 0.00 83.30 77.70
ANNEALING 0.00 0.00 0.00
SIMPLEX+LMDIF 0.00 | 100.0 | 100.0
SIMPLEX+ANNEALING [0.00 | 46.80 | 55.20
LMDIF+ ANNEALING 0.00 | 100.0 | 100.0
Average number of steps:
Method avg # of steps
1 | z ‘ 22
SIMPLEX 7. 258. 257.
LMDIF 9. 338. 430.
ANNEALING 1000. 1000. 1000.
SIMPLEX+LMDIF 1000. 333. 488.
SIMPLEX+ANNEALING 1000. 924. 901.
LMDIF+ANNEALING 1000. 270. 361.
e 1000 random points from [—1000, 1000]"
Success rate:
Method % success
1 | z ‘ 22
SIMPLEX 0.00 99.50 99.50
LMDIF 0.00 69.40 68.80
ANNEALING 0.00 0.00 0.00
SIMPLEX+LMDIF 0.00 99.90 100.0
SIMPLEX+ANNEALING | 0.00 0.00 0.00
LMDIF+ANNEALING 0.00 100.0 100.0
Average number of steps:
Method avg # of steps
1 | z ‘ 22
SIMPLEX 7. 343. 343.
LMDIF 9. 475. 526.
ANNEALING 1000. 1000. 1000.
SIMPLEX+LMDIF 1000. 466. 691.
SIMPLEX+ANNEALING 1000. 1000. 1000.
LMDIF+ANNEALING 1000. 419. 614.

21

4.5 Problem G04 (Listing 4)
e 1000 random points from [—100, 100]”

Success rate:

Mothod % success
N
SIMPLEX 338 9;:38 gg:g(?
LMDIF 130 | 1000 | 1000
ANNEALING Zj§§8 a0 | e
SIMPLEX+LMDIF 12:28 3328 gg:gg
SIMPLEX+ANNEALING 18:;8 22:88 %ﬁjﬁé’
LMDIF+ANNEALING g:gg 133:80 133:30
Average number of steps:
Method ave i of steps
1 [2 [22
SIMPLEX ?: 12?;: 10(7):
LMDIF o | 19| so
ANNEALING 1000, | 1000, | 1000,
SIMPLEX+LMDIF ggz: lg; }2?
SIMPLEXHANNEALING | gt | 6 | oy
LMDIF+ANNEALING g;?: 1;2: }sz

22

e 1000 random points from [—1000, 1000]"
Success rate:

Method % success
1 z 22
SIMPLEX 8:88 9?:58 9-1{:;8
LADIF 000 | 9990 | 1000
ANNEALING 8:88 8:88 8:88
SIMPLEX +LMDIF 8:88 ;g:i% 98;?,%
SIMPLEX+ANNEALING 8:88 3;:18 32:;8
LMDIF+ANNEALING 8:88 13{‘;;3‘) lgg:go
Average number of steps:
Method v # of stops
R
SIMPLEX 1?' 15252): 142:;:
LMDIF Sj ?ﬁ: 14312:
ANNEALING 1000, | 1000, | 1000,
SIMIPLEX + LMDIF 1000, | 194 | 874
SIMPLEX t ANNBALING | (006 | 3o | g7
LMDIF+ANNEALING }888: f:fg; 26§$:

23

4.6 Problem GO05 (Listing 5)

e 1000 random points from [—100, 100]”
Success rate:

% success eq-+ineq/eq,ineq/separate

Method
1,1 | 1,z ‘ 1, 22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22,2 ‘ 22,22
0.00 | 0.00 | 0.00 | 0.20 | 0.10 | 0.50 0.90 0.90 | 0.80
SIMPLEX 0.00 | 0.00 | 0.00 | 0.10 | 0.10 | 0.10 0.90 0.90 | 0.90

0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 0.30 | 0.30
LMDIF 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 10.10 | 1.40
0.00 | 0.00 | 0.00 | 0.70 | 1.20 | 1.00 | 1.00 3.30 | 3.80
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
ANNEALING | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
SMP+LMD 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.20 | 1.30 | 0.30 | 2.10 3.10 | 3.60
0.00 | 0.00 [0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
SMP+ANN 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
LMD-+ANN 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.80 | 0.90 | 0.70 | 1.60 2.20 | 3.30

Average number of steps:

% success eq+ineq/eq,ineq/separate

Method
1,1 | 1,z ‘ 1,z2 ‘ z,1 | 2,2 ‘ z,z2 ‘ z2,1 | z2,z ‘ 22,z2
12. 52. 52. 661. 663. 699. 660. 679. T17.
SIMPLEX 6. 6. 6. 661. 661. 661. 660. 660. 660.
6. 6. 6. 506. 506. 506. 458. 458. 458.
8 26. 38. 534. 523. 502. 801. 646. 979.
LMDIF 8 15. 95. 531. 542. 454, 456. 938. 991.
8 15. 98. 153. 741. 456. 177. 336. 211.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
ANNEALING | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
SMP+LMD 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. 997. | 1000. 997. 992. 989.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
SMP+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
LMD+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. 999. 996. 990.

24

e 1000 random points from [—1000, 1000]"
Success rate:

% success eq+tineq/eq,ineq/separate

Method
1,1 | 1,z ‘ 1,22 ‘ z,1 | Z,2 ‘ z, 22 ‘ 22,1 | 22,z ‘ 22,22
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.30 | 0.10 | 0.10 | 0.10
SIMPLEX 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.10 | 0.10

0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
LMDIF 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.90 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.20 | 0.10
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
ANNEALING | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
SMP+LMD 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.10 | 0.10 | 0.20 | 0.00 | 0.10 | 0.20
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
SMP-+ANN 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
LMD+ANN 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.30

Average number of steps:

% success eq+ineq/eq,ineq/separate

Method
1,1 | 1,z ‘ 1, 22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22,z ‘ 22, 22
6. 71. 71. 866. 873. 867. 860. 870. 897.
SIMPLEX 6. 6. 6. 866. 866. 866. 860. 860. 860.
6. 6. 6. 854. 854. 854. 841. 841. 841.
8. 26. 55. 569. 564. 437. 857. 748. 985.
LMDIF 8. 16. 113. 585. 568. 420. 633. 973. 994.
8. 16. 115. 411. 946. 525. 221. 338. 184.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
ANNEALING | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
SMP+LMD 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
SMP-+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
LMD+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.

25

e 1000 random points from [0, 1200] x [0, 1200] x [—0.55,0.55] x [—0.55,0.55] (from problem formulation
on Listing 5)
Success rate:

Method % success eq+tineq/eq,ineq/separate
1,1 | 1,z ‘ 1, 22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22, 2 22, 22
0.00 | 0.00 | 0.00 | 12.60 | 13.10 | 12.90 56.80 56.60 57.00
SIMPLEX 0.00 | 0.00 | 0.00 12.90 | 12.90 13.10 56.60 56.60 57.20
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 74.90 74.70 75.30
LMDIF 0.00 | 0.00 | 0.00 0.00 0.00 0.10 74.80 73.30 75.60
0.00 | 0.00 | 0.00 80.70 | 87.00 | 91.40 | 93.10 | 100.0 100.0
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ANNEALING | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.10 0.00 0.00
SMP+LMD 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 | 79.70 | 83.10 | 84.50 | 90.00 | 100.0 100.0
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SMP+ANN 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LMD+ANN 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 | 0.00 | 0.00 84.60 | 80.90 84.80 93.10 99.90 | 100.0

Average number of steps:

% success eq-+ineq/eq,ineq/separate

Method
1,1 | 1,z ‘ 1, 22 ‘ z,1 | 2,2 ‘ z, 22 ‘ 22,1 | 22,2 ‘ 22,22
6 10. 10. 484. 487. 485. 230. 265. 266.
SIMPLEX 6. 6. 6. 481. 481. 481. 230. 230. 230.
6. 6. 6. 158. 158. 158. 111. 111. 111.
8 10. 9. 224. 224. 229. 429. 496. 466.
LMDIF 8 9. 20. 221. 218. 239. 403. 500. 478.
8 9. 20. 37. 68. 75. 99. 97. 98.

1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
ANNEALING | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
SMP+LMD 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. 282. 259. 278. 465. 407. 411.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
SMP+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
LMD+ANN 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000. | 1000.
1000. | 1000. | 1000. 242. 288. 279. 477. 438. 436.

26

4.7 Problem GO06 (Listing 6)
e 1000 random points from [—100, 100]”

Success rate:

Method % success
1 | z ‘ 22
0.00 80.30 80.60
SIMPLEX 0.00 0.00 0.00
0.00 7.10 2.90
LMDIF 0.00 99.90 99.60
0.90 3.20 2.40
ANNEALING 0.70 0.20 0.40
0.00 20.20 5.50
SIMPLEX+LMDIF 0.10 100.0 99.80
0.20 73.70 47.60
SIMPLEX+ANNEALING 0.00 9.90 9.80
0.00 89.50 56.50
LMDIF+ANNEALING 0.00 | 100.0 100.0
Average number of steps:
Method avg 7 of steps
1 | z ‘ 22
4. 292. 314.
SIMPLEX 4 4 4
6. 175. 974.
LMDIF 6. 83. 121.
1000. | 1000. | 1000.
ANNEALING 1000. 1000. 1000.
1000. 814. 958.
SIMPLEX+4LMDIF 999. 191, 270.
1000. 701. 812.
SIMPLEX+ANNEALING 1000. 081, 979.
1000. 506. 803.
LMDIF+ANNEALING 1000. 298, 309.

27

e 1000 random points from [—1000, 1000]"

Success rate:

Method % success
1 z 22
0.00 77.90 77.10
SIMPLEX 0.00 0.00 0.00
0.00 8.20 1.20
LMDIF 0.00 | 99.50 | 98.40
0.00 0.10 0.00
ANNEALING 0.00 0.00 0.00
0.00 20.80 1.70
SIMPLEX+LMDIF 0.00 | 100.0 99.90
0.00 63.00 39.90
SIMPLEX +ANNEALING | "/ 010 010
0.00 87.00 52.80
LMDIF+ANNEALING 000 | 1000 | 1000
Average number of steps:
Method avg # of steps
1 | z ‘ 22
4. | 321. | 346.
SIMPLEX . . 4
6. | 216. | 971.
LMDIF 6. | 116. | 183.
1000. 1000. 1000.
ANNEALING 1000. | 1000. | 1000.
1000. 813. 993.
SIMPLEX+LMDIF 1000. 209. 310.
1000. | 772. | 841.
SIMPLEX+ANNEALING 1000. 1000. 1000.
1000. | 528. | 845.
LMDIF+ANNEALING 1000. 255, 375.

28

4.8 Problem GO07 (Listing 7)
e 1000 random points from [—100, 100]”

Success rate:

Average number of steps:

Mothod % success
N
SIMPLEX 888 43:38 63:58
LMDIF 8:88 188:8 ggég
ANNEALING 8:88 8:88 8:88
SIMPLEX+LMDIF 000 | 000 | 000
SIMPLEX+ANNEALING 8:88 8:58 8:88
LMDIF+ANNEALING | 000 | 000 | 000
Method ave 7 of steps
R
SIMPLEX E 72421: 71411:
LMDIF 14, | 122 | 3a2
ANNEALING 1000, | 1000, | 1000,
SIVIPLEX + LMDIF 1000, | 1000, | 1000.
SIMPLEX+ANNEALING | {000 | 100" | 1000,
LMDIFHANNEALING | o | 1000 | o0

29

e 1000 random points from [—1000, 1000]"

Success rate:

Method % success
1 z 22
0.00 25.20 | 40.40
SIMPLEX 0.00 0.00 0.00
0.00 99.80 | 92.90
LMDIF 0.00 | 100.0 | 97.20
0.00 0.00 0.00
ANNEALING 0.00 0.00 0.00
0.00 0.00 0.00
SIMPLEX+LMDIF 0.00 0.00 0.00
0.00 0.00 0.00
SIMPLEX +ANNEALING | " 00 0.00 0.00
0.00 0.00 0.00
LMDIF+ANNEALING 0.00 0.00 0.00
Average number of steps:
Method avg # of steps
1 | z ‘ 22
12. 908. 869.
SIMPLEX 12. 50. 50.
14. | 139. | 499.
LMDIF 14. | 129. | 514.
1000. 1000. 1000.
ANNEALING 1000. | 1000. | 1000.
1000. 1000. 1000.
SIMPLEX+LMDIF 1000. | 1000. | 1000.
1000. | 1000. | 1000.
SIMPLEX+ANNEALING 1000. 1000. 1000.
1000. | 1000. | 1000.
LMDIF+ANNEALING 1000. 1000. 1000.

30

4.9 Problem GO8 (Listing 8)

e 1000 random points from [—100, 100]”
Success rate:

Method % success
N
0.00 | 100.0 | 100.0
SIMPLEX 0.00 1.60 1.70
0.00 | 86.80 57.90
LMDIF 0.00 99.50 89.20
0.80 5.70 2.80
ANNEALING 1.10 2.20 2.40
0.00 | 100.0 | 100.0
SIMPLEX+LMDIF 0.00 | 100.0 | 100.0
0.10 | 100.0 | 100.0
SIMPLEX+ANNEALING | /0 | o' 90.20
0.20 | 100.0 | 100.0
LMDIF+ANNEALING 010 | 1000 | 1000
Average number of steps:
Method ave # of steps
1 [2 |22
4. 47. 50.
SIMPLEX 4. 35. 35.
6. 75. | 502.
LMDIF 6. 56. 194.
1000. | 1000. | 1000.
ANNEALING 1000. | 1000. | 1000.
1000. 62. | 119.
SIMPLEX+LMDIF 1000 67. | 140.
1000. | 185. | 179.
SIMPLEX+ANNEALING | jooo" | 0 | o2
1000. 64. | 126.
LMDIF+ANNEALING 1000. 66. | 132.

31

e 1000 random points from [—1000, 1000]"
Success rate:

Method % success
1 z 22
SIMPLEX 8:88 108:(1)0 108:(1)0
LMDIF 000 | o810 | st
ANNEALING 8:(1)8 8:18 8:}8
SIMPLEX+LMDIF 8:88 }83;8 igg:g
SIMPLEX+ANNEALING 8:88 105(7):20 lgg:?o
LMDIF+ANNEALING 8:88 }88:8 188:8
Average number of steps:
Method ave i of steps
R
SIMPLEX i: ig: (Ej
LMDIF 2: 1818: gﬁ:
ANNEALING 1000. | 1000, | 1000
SIMPLEX+LMDIF }888: 3:1 ig;:
SIMPLEX tANNBALING | oo+ | G0 | 500
LMDIF -+ ANNEALING }888: gg: ig;:

32

4.10 Problem GO09 (Listing 9)
e 1000 random points from [—100, 100]”

Success rate:

Average number of steps:

Method % success

NN
SIMPLEX 000 | 450 | 460
LMDIF 000 | 8720 | 5460
ANNEALING 8:88 8:88 8288
SIMPLEX LMDIF 000 | 6000 | 5250
SIMPLEX-+ANNEALING 8:88 3:28 §j§8
LMDIF+ANNEALING 8:88 23228 f,;j?,%
Method ave # of steps

1 [2 |22
SIMPLEX o | 10| 120
LMDIF kS
ANNEALING 1000, | 1000, | 1000.
SIMPLEX + LMDIF 1000, | 579, | oto,
SIMPLEX ANNEALING | 006" | 1500 | 1000
LMDIFFANNBALING | Joio- | 835 |

33

e 1000 random points from [—1000, 1000]"

Success rate:

Average number of steps:

Method % success

1 | z ‘ 22
SIMPLEX 200 | ‘020 | 020
LMDIF 000 | 3360 | 750
ANNEALING 8:88 8:88 8:88
SIMPLEX + LMDIF 000 | 780 | 1090
SIMPLEX -+ ANNEALING 8:88 8:88 2;}*8
LMDIF tANNFALING | 00 | 5350 | 4740
Method ave # of steps

R
SIVPLEX o | 65 | 265
LMDIF 0| 7 | s
ANNEALING 1000. | 1000. | 1000,
SIMPLEX-+LMDIF }888: 3?; 382:
SIMPLEX+ANNEALING | J000" | 100" | g5y,
LMDIF+ANNEALING }888: Sf;fj Z‘éij

34

4.11 Problem G10 (Listing 10)
e 1000 random points from [—100, 100]”

Success rate:

Average number of steps:

Vethod % success
N
SIMPLEX 888 2%8 43:28
LMDIF 000 | 6550 | 81.90
ANNEALING 8:88 8:88 8288
SIMPLEX +LMDIF 8:118 6388 52:2%
SIMPLEX+ANNEALING 8:‘118 é:gg (1):(1)-8
LMDIF+ANNEALING 8:88 72:2% 7(2):2%
Method ave # of steps
R
SIMPLEX 18: 8151 7?8:
LADIF iz | 27, | as
ANNEALING 1000, | 1000, | 1000.
SIMPLEX+LMDIF 1888: 1232: 59(?;:
SIMPLEX ANNEALING | 006" | 1500 | 1000
LMDIF+ANNEALING }888: 1??.(,)3: 1503;,):

35

e 1000 random points from [—1000, 1000]"

Success rate:

Average number of steps:

Mothod % success
NN
SIMPLEX 030 | ‘o0 | “030
LMDIF 030 | 52,00 | 7780
ANNEALING 8;;8 8:;8 g:ig
SIMPLEX LMDIF 300 | 6470 | ras0
SIMPLEX + ANNEALING 31(1]8 ;ég ;:Sg
LMDIF+ANNEALING 8:;8 (1).2:28 2;:?8
Method v # of steps
R
SIMPLEX }(1): 6;2: 682:
LMDIF 1o | 543 | 445
ANNEALING 1000, | 1000, | 1000.
SIMPLEX LMDIF 1000, | 472, | s40.
SIMPLEX+ANNEALING }888: gg; g;g:
LMDIF+ANNEALING }888: Zgg: §§Sj

36

4.12 Problem G11 (Listing 11)

e 1000 random points from [—100, 100]”

Success rate:

Average number of steps:

e 1000 random points from [—1000, 1000]"

Success rate:

Average number of steps:

Method % success
1 | z l 22
SIMPLEX 0.00 66.90 83.60
LMDIF 0.00 100.0 100.0
ANNEALING 0.00 0.00 1.40
SIMPLEX+4LMDIF 0.00 100.0 100.0
SIMPLEX+ANNEALING | 0.00 2.50 55.00
LMDIF+ANNEALING 0.00 100.0 100.0
Method avg # of steps
1 | z ‘ 22
SIMPLEX 4. 322. 250.
LMDIF 6. 20. 66.
ANNEALING 1000. | 1000. | 1000.
SIMPLEX+LMDIF 1000. 50. 122.
SIMPLEX+ANNEALING | 1000. 992. 615.
LMDIF+ANNEALING 1000. 56. 147.
Method % success
1 | z l 22
SIMPLEX 0.00 70.60 85.80
LMDIF 0.00 99.90 | 100.0
ANNEALING 0.00 0.00 0.30
SIMPLEX+4LMDIF 0.00 99.90 | 100.0
SIMPLEX+ANNEALING | 0.00 2.70 50.80
LMDIF+ANNEALING 0.00 100.0 100.0
Method avg 7 of steps
1 z 22
SIMPLEX 4. 295. 224.
LMDIF 6. 25. 87.
ANNEALING 1000. | 1000. | 1000.
SIMPLEX+LMDIF 1000. 69. 169.
SIMPLEX+ANNEALING | 1000. 995. 706.
LMDIF+ANNEALING 1000. 79. 217.

37

4.13 Problem G12 (Listing 12)

e 1000 random points from [—100, 100]”
Success rate:

Method % success
1 | z l 22
SIMPLEX 0.00 90.60 90.80
LMDIF 0.00 90.40 85.20
ANNEALING 0.00 0.60 0.20
SIMPLEX+LMDIF 0.00 100.0 100.0
SIMPLEX+ANNEALING 0.00 100.0 100.0
LMDIF+ANNEALING 0.00 100.0 100.0
Average number of steps:
Method avg # of steps
1 | z ‘ 22
SIMPLEX 5. 340. 338.
LMDIF 7. 191. 287.
ANNEALING 1000. 1000. 1000.
SIMPLEX+LMDIF 1000. 125. 210.
SIMPLEX+ANNEALING 1000. 368. 352.
LMDIF+ANNEALING 1000. 132. 221.
e 1000 random points from [—1000, 1000]"
Success rate:
Method % success
1 | z l 22
SIMPLEX 0.00 91.60 92.80
LMDIF 0.00 84.40 83.20
ANNEALING 0.00 0.00 0.00
SIMPLEX+LMDIF 0.00 100.0 100.0
SIMPLEX4+ANNEALING | 0.00 99.60 99.80
LMDIF+ANNEALING 0.00 100.0 100.0
Average number of steps:
Method avg 7 of steps
1 | z ‘ 22
SIMPLEX 5. 431. 429.
LMDIF 7. 266. 326.
ANNEALING 1000. 1000. 1000.
SIMPLEX+LMDIF 1000. 171. 295,
SIMPLEX+ANNEALING 1000. 744. T27.
LMDIF+ANNEALING 1000. 187. 335.

38

4.14 Problem G13 (Listing 13)
e 1000 random points from [—100, 100]”

Success rate:

Average number of steps:

Vethod % success
N
SIVPLEX 200 | 000 | 000
LMDIF 888 7222% 7?1,:2((])
ANNEALING 8:88 8:88 8288
SIVIPLEX + LMDIF 000 | 9830 | 9590
SIMPLEX +ANNEALING 8:88 8:88 8:88
LMDIF+ANNEALING 8:88 9323% 33:2%
Method ave # of steps
R
SIMPLEX ; Zggﬁ g;;
LMDIF o | saz | 421
ANNEALING 1000. | 1000, | 1000,
SIVPLEX 4 LMDIF 1000, | 361 | a8
SIMPLEX ANNEALING | 006" | 1500 | 1000
LMDIF+ANNEALING }888: 1;33: 595:3:

39

e 1000 random points from [—1000, 1000]"

Success rate:

Average number of steps:

Vethod % success
N
SIMPLEX 000 | o0 | sao
LMDIF 000 | 5780 | 66.60
ANNEALING 8:88 8:88 8:88
SIMPLEX § LMDLF 000 | 9510 | 8600
SIMPLEX +ANNEALING 8:88 8:88 8:88
LMDIF+ANNEALING 8:88 gg:g% 9212%
Method ave # of steps
R
SIVPLEX v | 7 | oo
LMDIF 5. | s30. | saa
ANNEALING 1000, | 1000, | 1000.
SIMPLEX-+LMDIF {888: 15083: ;,’SSj
SIMPLEXt ANNEALING | 000" | 100 | 1000
LMDIF+ANNEALING }888: 12-(,)3: é’f,’;‘:j

40

4.15 Problem of the Design of a Pressure Vessel (vess) (Listing 14)

e 1000 random points from [—100, 100]”
Success rate:

Method % success
N
SIMPLEX 370 | as0 | 380
LMDIF 340 | 8740 | 89,40
ANNEALING 228 1%8 1é:38
SIMPLEX ¢ LMDIF 1090 | 9340 | 7930
SIMPLEX+ANNEALING ﬂ:gg g?:gg 28:28
LMDIF tANNEALING | 1o | o760 | go.60
Average number of steps:
Method ave i of steps
R
SIMPLEX 2: 1;(1): 1?1):
LADIF s | o0 | 150,
ANNEALING 1000, | 1000, | 1000,
SIMPLEX 4 LMDIF o8, | 112, | 3
SIMPLEX+ANNEALING gf;: ;gé: ;33:
LMDIF s ANNBALING | 28 | 198 | 00

41

e 1000 random points from [—1000, 1000]"

Success rate:

Average number of steps:

Vethod % success
N
SIMPLEX 1138 92:31,(? 93:28
LMDIF 130 | 6510 | 6690
ANNEALING i:?g 2;38 g:ig
S I e e
SIMPLEX + ANNEALING i:gg 33:;8 g:gg
LMDIF ANNEALING | 30| 7500 | 7250
Method ave i of steps
R
SIMPLEX g: 1221: 122?1,:
LMDIF s | s |
ANNEALING 1000. | 1000, | 1000
SIMPLEX+LMDIF gg}: 23?;: 24%2:
SIMPLEX+ANNEALING ggé: SZE: ;}g:
LMDIF+ANNEALING ggg: 322: §8§:

42

4.16 Problem of the Design of a Tension/Compression Spring (tens) (Listing
15)

e 1000 random points from [—100, 100]”
Success rate:

Method % success
NN
SIVPLEX 000 | 000 | 000
LMDIF 000 | 2070 | 2280
ANNEALING 8:38 8:(1)8 81‘;’8
SIMPLEX + LMDIF 8:88 8:?8 ijig
SIMPLEX+ANNEALING 8:(1)8 23:88 2?:(1)8
LMDIF+ANNEALING 8:88 f:;g 1?:28
Average number of steps:
Method ave i of steps
R
SIMPLEX g: 13: 111:
LMDIF ;: ;Sg: ggg:
ANNEALING 1000. | 1000. | 1000,
SIVPLEX 4 LMDIF 1000, | 1000, | 74
SIMPLEX t ANNEALING | 006" | 106" | 1000
LMDIF+ANNEALING }888: 1338: S?i’j

43

e 1000 random points from [—1000, 1000]"

Success rate:

Average number of steps:

Mothod % success
NN
SIMPLEX 000 | oo | o0
LMDIF 000 | 20 | 460
ANNEALING 8:88 8:88 3183
SIMPLEX+LMDIF 8:88 8:88 (1):28
SIMPLEX+ANNEALING 8:88 13:}8 18:38
LMDIF+ANNEALING 8:88 8:38 é:ig
Method v # of steps
R
SIMPLEX Ej 15: 1}}1:
LMDIF o | s | tes
ANNEALING 1000, | 1000, | 1000.
SIMPLEX 4 LMDIF 1000, | 1000, | 1000.
SIMPLEX + ANNEALING | 1000" | 100 | 1000
LMDIF +ANNBALING | j00" | 000" | 1000

44

5 Conclusions

The test results from section 4 are summarized in the following two performance tables. For every problem
the three best approaches to constraint satisfaction from section 3 are listed for every initial point sampling
range. Comparison is based on the percentage of successful runs and average number of steps made in search
process (including failed ones):

e On 1000 random initial points from [—100, 100"

problem I I 11
name | succ [st name | succ st name | succ [st
0 L+A(z,2) | 100.0 | 82 L(z,z) 98.1 50 | S+L(z,z) | 100.0 | 70
1 L(z) 100.0 | 45 Lic(z) 98.67 | 94 L(z2) 100.0 | 234
2 L{z) 97.8 | 65 | StA:c(z2) | 97.6 93 | St+Awc(z) | 97.0 | 94
3 S(z) 100.0 | 258 | L+A(z) | 100.0 | 270 | S+L(z) | 100.0 | 333
4 L(z) 100.0 | 19 | L+A(z) | 100.0 53 L(22) 100.0 | 80
5 L(z2 + 2) 10.1 | 938 - - - - - -
6 L(z) 99.9 | 83 L(22) 99.6 | 121 | S+L(z) | 100.0 | 191
7 L(z) 100.0 | 122 L(z2) 99.3 | 342 - - -
8 L+A(z) 100.0 66 S+L(z 100.0 67 L{z) 99.5 56
9 S:c(22) 96.1 | 327 | L+A(2?) 975 | 513 | L+A(2) 89.6 | 373
10 L(22) 81.9 | 386 | S+L(22) 76.0 | 501 | L+A(z) 74.1 | 379
11 L(z) 100.0 | 20 | S+L(z) | 100.0 50 | L+A(z) | 100.0 | 56
12 S+L(z) | 100.0 | 125 | L+A(z) | 100.0 | 132 | S+L(z2) | 100.0 | 210
13 L+A(z) 99.9 | 361 | S+L(2) 98.3 | 327 L(z) 75.6 | 342
pres S+L:c(22) | 98.3 | 242 | L+A(2) 91.6 | 141 L(z) 89.4 | 90
tens L(2?) 22.8 | 202 L(z) 20.7 | 329 | S+A:c(z?) 25.1 | 902
e On 1000 random initial points from [—1000, 1000]"
problem I I i
name | succ [st name | succ [st name | succ [st
0 L+A(z,2) | 100.0 | 106 | L(z,z) 99.6 | 45 | S+L(z,2) | 100.0 | 90
1 L(z) 100.0 | 45 | Lic(z) 98.5 | 97 L(z2) 100.0 | 278
2 L(2) 94.0 | 103 | S+Axc(z) | 788 | 302 | S+A:wc(22) | 78.6 | 301
3 S(z) 99.5 | 343 | S+L(2) 99.9 | 466 | L+A(z) | 100.0 | 419
4 1.(2) 99.9 | 41 | T+A(z) | 100.0 | 130 1.(22) 100.0 | 125
5 - - - - - - - - -
6 L(2) 99.5 | 116 L(z2) 98.4 | 183 | S+L(z) | 100.0 | 209
7 L(z) 100.0 | 129 L(2?) 97.2 | 514 - - -
8 L+A(z) 100.0 92 S+L(z 100.0 91 L(z) 98.1 80
9 Sic(22) 59.3 | 715 | L+A(22) | 474 | 572 | L+A(2) 25.4 | 913
10 L(z2) 77.8 | 445 | S+L(22) | 74.3 | 540 | L+A(2) 66.6 | 453
11 L(2) 99.9 | 25 | S+L(z) 99.9 | 69 | L+A(z) | 100.0 | 79
12 S+L(z) | 100.0 | 171 | L+A(z) | 100.0 | 187 | S+L(22) | 100.0 | 295
13 L+A(z) 98.3 | 472 | S+L(2) 98.1 | 502 L(z) 66.6 | 542
pres S+Lic(22) | 93.5 | 268 | Sic(2?) 93.3 | 123 S:c(z2) 92.1 | 121
tens L(2?) 4.6 | 196 L(z) 2.5 | 168 | S+A:c(z?) 15.3 | 984

45

From those tables it could be clearly seen that the optimal approach to constraint satisfaction on the
selected set of problems is:

e optimizer: LMDIF

e objective function type: separate, i.e. penalties for individual constraints are treated as separate
objectives in a multi-objective optimization problem (12)

e power for the penalty function: a = 1 for both equality and inequality constraints

This approach is the first best for problems G01, G02, G04, G06, GO7 and G11, second best for GOO and
tens, third best for GO8, G13 and pres. Combined LMDIF+ANNEALING search method used with the
same penalty function and objective function type is a second best approach with a slightly larger number
of steps. However, for some problems (G03, G13), it demonstrated significantly better performance; and, for
most of them it does not perform significantly worse than the leader. We believe that this is caused by the
fact that the random and very heuristic ANNEALING method helps the deterministic and analytic LMDIF
method to avoid getting stuck on difficult landscapes in the search space of the complicated problems. We
also believe that a good performance of the next best SIMPLEX+LMDIF combined method is also due to
the LMDIF while the heuristic SIMPLEX method helps LMDIF to not get stuck. Therefore we consider
LMDIF (possibly paired with heuristic “helper method”) as a best selection for the constraint satisfaction on
the presented set of problems. ANNEALING method alone demonstrated the worse results and SIMPLEX
showed generally average performance.

In view of the “No Free Lunch Theorems for Search and Optimization” [30] such a superior performance
of one optimization method over others could be explained by the fact that it uses the largest amount of
information about the problem under consideration to guide the search process. While SIMPLEX and AN-
NEALING are purely heuristic methods and do not use any information about a problem apart from function
values, LMDIF uses both first derivative and approximation of the second derivative [14] to determine the
direction to the minimum. As one can see (section 2), most of the constraints in the presented set of the
problems are given in a form of nice, twice continuously differentiable functions. Hence it is possible to use
this extra available information to run the specialized method. We speculate that for general constraint
functions that do not possess such nice properties, results in terms of the best constraint satisfaction method
might be quite different. Other optimization methods exploiting certain properties of the considered classes
of the problems should be more efficient for those problems.

Data in the summary tables could also be used to select an optimal number of steps for guaranteed
constraint satisfaction. However, we are generally interested not only in performance but also in the com-
putational price as well; hence, a different set of tests might be needed in order to determine a minimal
maximum number of steps allowed to reach a desired rate of successful runs to all runs. Here we can only
conclude that this level would depend on the maximum allowed number of steps. Setting it to values less
than the average from the tables would most likely lead to degraded performance.

We also note that problems with equality constraints (G03, G05, G13) and the high-dimensional problems
(G03, G07, G09, G10) have indeed demonstrated themselves as being harder to solve. However, the high-
dimensional problem G02 and problem G11 with equality constraint only did not obey this empirical rule.
Hence we suggest the estimation of the difficulty of the problem based on this rule to be taken with care and
always verified by simulations.

We see that for those problems power penalty functions (17) with a = 1 are the best choice, while
a = 2 are significantly inferior. However, this result is not only problem-dependent but also also optimizer-
dependent hence we could not conclude that those functions would be a best choice for any combination
of the problem and optimizer. We believe that step penalty functions, i.e. a = 0, that demonstrated near
zero percent successful runs in our test (see tables in section 4), should generally be avoided as they do
not provide any information about the direction in which penalty is increasing and decreasing. Since they
only indicate if the point is feasible or not, the search landscape for such penalties is flat which leads most
optimization methods to fail because of the inability to make a move to a point better than the initial. This
conclusion is in accordance with the previous studies on penalty functions [26].

46

Wherever it applies (problems G00, G05) our studies do not demonstrate a significant difference in
performance between the all combined and equality combined + inequality combined optimization problem
formulation methods except for the GO5 tested on 1000 random points from [—100,100]” where it demon-
strated 2.5 better performance than ony other method. However, those results were not verified by the test
performed on the search domain from the problem formulation (see Listing 5). Both those objective function
types were outperformed by the separate method and thus are not recommended.

Poor results for the problem GO05 for both test ranges is observed to be due to a difference in 3 orders
of magnitude between search domains for z1,z5 € [0,1200] and z3,24 € [—0.55,0.55] from the problem
formulation (see Listing 5) that is inconsistent with the search domains of [—100,100]* and [—1000, 1000]*
used in testing. Additional testing on the suggested search domain supported all observations about the
best method and objective function construction method presented earlier. It must be noted, however, that
the best results were obtained when quadratic power penalties were used for equality constraints, i.e. when
penalties for violating inequality constraints were steeper than the ones for violating equality constraints.

We should finally note that the tolerance used for constraint satisfaction definitely influences the overall
performance, especially in case of equality constraints. In our tests we used tolerance of 10~° but this value
is generally problem-dependent and might have to be either increased or softened.

Based on our tests we conclude that the transformation of the constraint satisfaction problem into a
multi-objective unconstrained optimization problem (12) via power penalty functions (17) with ¢ = 1 and
successive treatment of the resulting optimization problem with the LMDIF COSY Infinity optimizer is a
reasonable choice of the default parameters for REPROPT. However, we should note that the problem set
is not very large and is not covering all possible cases hence the results are not universal and thus might not
be universally applicable. In case of the poor performance of the REPROPT method we suggest tuning of
parameters based on the information about the problem, possibly after studies similar to the ones performed
for this work.

References

[1] Ashok Dhondu Belegundu. A Study of Mathematical Programming Methods for Structural Optimization.
PhD thesis, University of Iowa, Iowa, USA, 1982.

[2] R. H. Berry and G. D. Smith. Using a genetic algorithm to investigate taxation induced interactions in
capital budgeting. In Proc. of the International Conference on Neural Networks and Genetic Algorithms,
pages 567-574, 1993.

[3] M. Berz and K. Makino. COSY INFINITY Version 9.0 programmer’s manual. Technical Report
MSUHEP-060803, Department of Physics and Astronomy, Michigan State University, East Lansing, MI
48824, 2006. see also http://cosyinfinity.org.

[4] M. Berz, K. Makino, and Y .-K. Kim. Long-term stability of the Tevatron by verified global optimization.
Nuclear Instruments and Methods, 558:1-10, 2005.

[5] Martin Berz. Private communication.

[6] G. Casadei, A. Palareti, and G. Proli. Classifier system in traffic management. In Proc. of the Interna-
tional Conference on Neural Networks and Genetic Algorithms, pages 620-627, 1993.

[7] Carlos A. Coello Coello and Efrén Mezura-Montes. Constraint-handling in genetic algorithms through
the use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193-203,
July 2002.

[8] Carlos A. Coello Coello. A Survey of Constraint Handling Techniques used with Evolutionary Al-
gorithms. Technical Report Lania-RI-99-04, Laboratorio Nacional de Informatica Avanzada, Xalapa,
Veracruz, México, 1999.

47

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

R. Cucchiara. Analysis and comparison of different genetic models for the clustering problem in image
analysis. In Proc. of the International Conference on Neural Networks and Genetic Algorithms, pages
423-427, 1993.

Charles Darwin. The Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. London: John Murray, 6 edition, 1872.

Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test prob-
lems. Evolutionary Computation, 7(3):205-230, 1999.

D. Deugo and F. Oppacher. Achieving self-stabilization in a distributed system using evolutionary
strategies. In Proc. of the International Conference on Neural Networks and Genetic Algorithms, pages
400-407, 1993.

A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimiaztion
Techniques. Wiley, New York, 1968.

Philip E. Gill and Walter Murray. Algorithms for the solution of the nonlinear least-squares problem.
SIAM Journal on Numerical Analysis, 15(5):977-992, 1978.

Philip Husbands, Frank Mill, and Stephen Warrington. Genetic algorithms, production plan optimi-
sation and scheduling. In Proceedings of the 1st Workshop on Parallel Problem Solving from Nature,
pages 80-84, 1991.

Nelder J.A. and Mead R. A simplex method for function minimization. Computer Journal, 7:308-313,
1965.

S. Kazarlis and V. Petridis. Varying fitness functions in genetic algorithms: Studying the rate of increase
of the dynamic penalty terms. In A. E. Eiben, T. Béck, M. Schoenauer, and H.-P. Schwefel, editors,
Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V), pages 211-220, Heidelberg,
Germany, September 1998. Springer-Verlag.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671-680, 1983.

G.P. McCormick. Penalty function versus nonpenalty function methods for constrained nonlinear pro-
gramming problems. Mathematical Programming, 1:217-238, 1971.

Efrén Mezura-Montes. Alternative Techniques to Handle Constraints in Fvolutionary Optimization.
PhD thesis, Computer Science Section, Electrical Eng. Department., CINVESTAV-IPN, México City,
México, December 2004.

Z. Michalewicz. A survey of constraint handling techniques in evolutionary computation methods. In
J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proc. of the Fourth Annual Conference on
Evolutionary Programming, pages 135-155, Cambridge, MA, 1995. The MIT Press.

Zbigniew Michalewicz. Genetic Algorithms, Numerical Optimization, and Constraints. In Larry J.
Eshelman, editor, Proceedings of the Sizth International Conference on Genetic Algorithms (ICGA-
95), pages 151-158, San Mateo, California, July 1995. University of Pittsburgh, Morgan Kaufmann
Publishers.

Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms for constrained parameter opti-
mization problems. FEvolutionary Computation, 4(1):1-32, 1996.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, July 2006.

48

[25]

[26]

[27]

[28]

[29]

[30]

Akira Oyama, Koji Shimoyama, and Kozo Fujii. New Constraint-Handling Method for Multi-Objective
Multi-Constraint Evolutionary Optimization and Its Application to Space Plane Design. In R. Schilling,
W. Haase, J. Periaux, H. Baier, and G. Bugeda, editors, Evolutionary and Deterministic Methods for
Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN
2005), Munich, Germany, 2005.

J. Richardson, M. Palmer, G. Liepins, and M.Hillard. Some guidelines for genetic algorithms with
penalty functions. In Proceedings of the Third International Conference on Genetic Algorithms, pages
191-197, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

Thomas P. Runarsson and Xin Yao. Stochastic ranking for constrained evolutionary optimization. IEEE
Transactions on Evolutionary Computation, 4(3):284-294, September 2000.

S. Sandqvist. On finding optimal potential customers from a large marketing database — A genetic algo-
rithm approach. In Proc. of the International Conference on Neural Networks and Genetic Algorithms,
pages 528-535, 1993.

Ankur Sinha, Aravind Srinivasan, and Kalyanmoy Deb. A Population-Based, Parent Centric Procedure
for Constrained Real-Parametrer Optimization. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 943-949, Vancouver, BC, Canada, July 2006. IEEE.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. Evolutionary Computation,
IEEE Transactions, 1(1):67-82, April 1997.

49

