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Abstract: To analyze perturbative effects in the proximity of a reference
orbit, it is often advantageous to describe the motion in terms of a set of relative
coordinates. We study the relative motion in an attached moving Dreibein
that has freedom of torsion in configuration space. The original motion is
assumed to be due to the action of scalar or vector potentials, such as those
that arise in gravitation or electromagnetic systems. Transformation rules for
the potentials, common differential operators, and the resulting equations of
motion are derived.
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1. Introduction

In this paper, we will derive transformations of differential equations to so-
called curvilinear coordinates. These coordinates are measured in a moving
right-handed coordinate system that has one of its axes attached and parallel
to a given reference curve in space.
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While this approach at first sight perhaps seems to complicate the descrip-
tion of the motion, it has indeed several advantages. Firstly, if the chosen
reference curve in space is itself a valid orbit, then the resulting flow of the
differential equation will be origin preserving, because the origin just corre-
sponds to the reference curve itself. This fact then opens the door to the use
of perturbative techniques for the analysis of the motion in order to study how
small deviations from the reference curve propagate, for example in the setting
of perturbation theories popular in the field of beam physics [1], [2], [3]. In par-
ticular, if the system of interest is repetitive and the reference curve is closed,
then the origin will be a fixed point of the motion. If the arc length is used as
the independent variable, then after one revolution around the reference orbit,
the system is repetitive, and perturbative techniques around fixed points [4]
can be employed to study the one-turn flow of the differential equation, which
here corresponds to a Poincare map of the motion [5].

The following sections describe in detail the derivation of the motion in
curvilinear coordinates. We will describe the transformations between coor-
dinates and the right hand sides, and will then derive the forms for standard
differential operators including gradient, divergence, curl, and Laplacian in the
new coordinates. In particular these will allow the transformation of differ-
ential equations of which parts are derived from scalar and vector potentials
under preservation of the potential structure. As an application, we derive
the transformation rule for relativistic motion in gravitational or electromag-
netic fields. In a companion paper [6] we study the preservation of existing
Lagrangian and Hamiltonian structure under the transformations.

2. Non-planar Curvilinear Coordinates

Let {~e1, ~e2, ~e3} denote a Dreibein, a right-handed set of fixed orthonormal ba-
sis vectors, which defines the so-called Cartesian coordinate systems. For any
point in space, let (x1, x2, x3) denote its Cartesian coordinates. In order to

introduce the curvilinear coordinates, let ~R(s) be an infinitely often differen-
tiable curve parameterized in terms of its arc length s, the so-called reference
curve. For each value of s, let the vector ~es be parallel to the reference curve,
i.e.

~es(s) =
d~R

ds
. (1)

We now choose the infinitely often differentiable vectors ~ex(s) and ~ey(s)
such that for any value of s, the three vectors {~es, ~ex, ~ey} form a Dreibein,
a right-handed orthonormal system. For notational simplicity, in the fol-
lowing we also sometimes denote the curvilinear basis vectors {~es, ~ex, ~ey} by
{~eC

1
, ~eC

2
, ~eC

3
}.
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Figure 1: Reference curve and the locally attached Dreibeins.

Apparently, for a given curve ~R(s) there are a variety of choices for ~ex(s)
and ~ey(s) that result in valid Dreibeins since ~ex(s) and ~ey(s) can be rotated
around ~es. A specific choice is often made such that additional requirements
are satisfied; for example, if the curve ~R(s) is never parallel to the vertical
Cartesian coordinate ~e3, one may demand that ~ex(s) always lie in the horizontal
plane spanned by ~e1 and ~e2.

The functions ~R(s), ~ex(s), and ~ey(s) describe the so-called curvilinear co-
ordinate system, in which a position is described in terms of s, x and y via

~r = ~R(s) + x~ex + y ~ey.

Apparently the position ~r in Cartesian coordinates is uniquely determined for
any choice of (s, x, y). The converse, however, is not generally true: a point
with given Cartesian coordinates ~r may lie in several different planes that are
perpendicular to the curve ~R(s), as shown in Figure 2.

The situation can be remedied if the curvature κ(s) of the reference curve
~R(s) never grows beyond a threshold, i.e. if

r1 = 1/ max
s

|κ(s)| (2)

is finite. As Figure 3 illustrates, if in this case we restrict ourselves to the
inside of a tube of radius r1 around ~R(s), for any vector within the tube, there
is always one and only one set of coordinates (s, x, y) describing the point ~r.

Let us now study the transformation matrix from the Cartesian basis
{~e1, ~e2, ~e3} to the local basis of the curvilinear system {~es, ~ex, ~ey} = {~eC

1
, ~eC

2
, ~eC

3
}.
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Figure 2: Non-uniqueness of curvilinear coordinates.
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Figure 3: Uniqueness of curvilinear coordinates within a tube.
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The transformation between these basis vectors and the old ones is described
by the matrix Ô(s) which has the form

Ô(s) =



 ~es(s) ~ex(s) ~ey(s)



 =





(~es · ~e1) (~ex · ~e1) (~ey · ~e1)
(~es · ~e2) (~ex · ~e2) (~ey · ~e2)
(~es · ~e3) (~ex · ~e3) (~ey · ~e3)



 . (3)

Because the system {~es, ~ex, ~ey} is orthonormal, so is Ô(s), and hence it satisfies

Ô(s) · Ô(s)t = Î and Ô(s)t · Ô(s) = Î . (4)

Since both the old and the new bases have the same handedness, we also have

det(Ô(s)) = 1, (5)

and hence altogether, Ô(s) belongs to the group SO(3). We remind ourselves
that elements of SO(3) preserve cross products, i.e. for Ô ∈ SO(3) and any

vectors ~a, ~b, we have
(Ô~a) × (Ô~b) = Ô(~a ×~b). (6)

One way to see this is to study the requirement of orthonormality on the
matrix elements of Ô. The elements of the matrix Ô describe the coordinates of
the new parameter dependent basis vectors in terms of the original Cartesian
basis; explicitly, we have

[~es]k = Ok1, [~ex]k = Ok2, [~ey]k = Ok3. (7)

The demand of the right-handedness then reads

~eC
l × ~eC

m =

3
∑

n=1

εlmn~e
C
n ,

where εijk is the common totally antisymmetric tensor of rank three defined as

εijk =







1 for (i, j, k) = (1, 2, 3) and any cyclic permutation thereof
−1 for other permutations of (1, 2, 3)
0 for two or more equal indices

,

and reduces to a condition on the elements of the matrix Ô

3
∑

i,j=1

εijkOilOjm =

3
∑

n=1

εlmnOkn. (8)

We remind ourselves that the symbol εijk is very useful for the calculation of

vector cross products; for vectors ~a,~b, we have

[~a ×~b]k =
3
∑

i,j=1

εijkaibj.
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Using condition (8), we readily obtain (6).
For the following discussion, it is useful to study how the transformation

matrix Ô changes with s. Differentiating (4) with respect to the parameter s,
we have

0 =
d

ds
(Ôt · Ô) =

dÔt

ds
Ô + Ôt dÔ

ds
=

(

Ôt dÔ

ds

)t

+ Ôt dÔ

ds
.

So, the matrix T̂ = Ôt · dÔ/ds is antisymmetric; we describe it in terms of its
three free elements via

Ôt ·
dÔ

ds
= T̂ =





0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0



 . (9)

The three elements we group into the vector ~τ , which has the form

~τ =





τ1

τ2

τ3



 .

We observe that for any vector ~a, we then have the relation

T̂ · ~a = ~τ × ~a.

The components of the vector ~τ , and hence the elements of the matrix T̂ , can
be computed as

τ1 = ~ey ·
d~ex

ds
= −~ex ·

d~ey

ds
,

τ2 = ~es ·
d~ey

ds
= −~ey ·

d~es

ds
,

τ3 = ~ex ·
d~es

ds
= −~es ·

d~ex

ds
. (10)

These relationships give some practical meaning to the components of the
vector ~τ : Apparently, τ1 describes the current rate of rotation of the Dreibein
around the reference curve ~R(s); τ2 describes the current amount curvature

of ~R(s) in the plane spanned by ~ey and ~es; and τ3 similarly describes the

curvature of ~R(s) in the plane spanned by ~ex and ~es. In more mathematical
terms, because of

~es ·
d~es

ds
= 0, ~ex ·

d~ex

ds
= 0, ~ey ·

d~ey

ds
= 0, (11)
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we have

d~es

ds
= τ3~ex − τ2~ey

d~ex

ds
= −τ3~es + τ1~ey

d~ey

ds
= τ2~es − τ1~ex, (12)

as successive multiplication with ~es, ~ex and ~ey and comparison with (10) re-
veals.

3. Differential Operators in Non-planar Curvilinear Coordinates

As the first step in the transformation of the differential equation to the curvi-
linear coordinates, it is necessary to study the form of common differential
operators in the new coordinates. From (7), which has the form

~r =

3
∑

k=1

xk~ek =

3
∑

k=1

{

~R · ~ek + xOk2 + yOk3

}

~ek,

we see that the Cartesian components of ~r are

xk = ~R · ~ek + xOk2 + yOk3, for k = 1, 2, 3. (13)

Hence the partial derivatives of xk with respect to s, x and y are

∂xk

∂s
=

d~R(s)

ds
· ~ek + x

dOk2

ds
+ y

dOk3

ds
= Ok1 + x

dOk2

ds
+ y

dOk3

ds
∂xk

∂x
= Ok2, and

∂xk

∂y
= Ok3,

where (1) and (7) have been used. Thus, the Jacobian matrix Ĉ is

Ĉ =

(

∂(x1, x2, x3)

∂(s, x, y)

)

=















∂x1

∂s

∂x2

∂s

∂x3

∂s
∂x1

∂x

∂x2

∂x

∂x3

∂x
∂x1

∂y

∂x2

∂y

∂x3

∂y















=





O11 O21 O31

O12 O22 O32

O13 O23 O33




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+







x
dO12

ds
+ y

dO13

ds
x
dO22

ds
+ y

dO23

ds
x
dO32

ds
+ y

dO33

ds
0 0 0
0 0 0







= Ôt +





0 x y
0 0 0
0 0 0



 ·
dÔt

ds
= Ôt +





0 x y
0 0 0
0 0 0



 ·
dÔt

ds
· (Ô · Ôt)

=







Î +





0 x y
0 0 0
0 0 0



 · T̂ t







· Ôt =





1 − τ3x + τ2y −τ1y τ1x
0 1 0
0 0 1



 · Ôt.

It is convenient to denote the first part of the Jacobian matrix Ĉ by Â, i.e.

Â =





1 − τ3x + τ2y −τ1y τ1x
0 1 0
0 0 1



 ;

then the Jacobian matrix can be written as

Ĉ = Â · Ôt.

The inverse matrix of Â is found easily; we obtain

Â−1 =









1

1 − τ3x + τ2y

τ1y

1 − τ3x + τ2y

− τ1x

1 − τ3x + τ2y
0 1 0
0 0 1









.

For later convenience, it is advantageous to introduce the abbreviation

α = 1 − τ3x + τ2y. (14)

We note that for x and y sufficiently close to zero, α does not vanish and is
positive. Hence besides the restriction for the motion to be inside a tube of ra-
dius r1 imposed by the need for uniqueness of the transformation to curvilinear
coordinates in (2), there is another condition; defining

r2 =
1

2
min

s
(|

1

τ3

|, |
1

τ2

|), (15)

then if we restrict x, y to satisfy |x|, |y| < r2, the quantity α never vanishes.
In this case, for the inverse matrix of the Jacobian matrix Ĉ we have

Ĉ−1 = Ô · Â−1 = Ô ·







1

α

τ1y

α

− τ1x

α
0 1 0
0 0 1






. (16)

Now all the necessary preparations are made for the calculation of partial
differential operators such as gradient, divergence, curl and Laplacian in the
curvilinear coordinate system.
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3.1. The Gradient

Let f be a scalar function, expressed either in the Cartesian coordinates
(x1, x2, x3), or the curvilinear coordinates (s, x, y). From the chain rule, we
have















∂

∂s
∂

∂x
∂

∂y















f =















∂x1

∂s

∂x2

∂s

∂x3

∂s
∂x1

∂x

∂x2

∂x

∂x3

∂x
∂x1

∂y

∂x2

∂y

∂x3

∂y















·















∂

∂x1

∂

∂x2

∂

∂x3















f = Ĉ · ~∇ctf,

where ~∇ct is the Cartesian differential operator vector. Multiplying with Ĉ−1,
we obtain the expression of this vector in terms of partial derivatives with
respect to the particle optical coordinates as

~∇ctf =















∂

∂x1

∂

∂x2

∂

∂x3















f = Ĉ−1 ·















∂

∂s
∂

∂x
∂

∂y















f

= Ô ·















1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

∂

∂x
∂

∂y















f,

where (16) was used. We now define the vector differential operator ~∇C as

~∇Cf =





∇C
1

∇C
2

∇C
3



 f =





∇s

∇x

∇y



 f =















1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

∂

∂x
∂

∂y















f.

(17)
Then we have

~∇ctf = Ô · ~∇Cf and ~∇Cf = Ôt · ~∇ctf, (18)

or, for later use, in components,

∇ct
k f =

3
∑

l=1

Okl∇
C
l f and ∇C

k f =
3
∑

l=1

Olk∇
ct
l f. (19)
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Let us consider a vector function ~A; we express it in both Cartesian and
curvilinear coordinates:

~A = A1~e1 + A2~e2 + A3~e3 = As~es + Ax~ex + Ay~ey.

We denote the component vectors in Cartesian and curvilinear coordinates
with ~Act and ~AC , respectively, and have

~Act =





A1

A2

A3



 , ~AC =





AC
1

AC
2

AC
3



 =





As

Ax

Ay



 .

Then, because of (3)

~A = As~es + Ax~ex + Ay~ey = As(Ô~e1) + Ax(Ô~e2) + Ay(Ô~e3)

= Ô · (As~e1 + Ax~e2 + Ay~e3),

and so we have

~Act = Ô · ~AC as well as ~AC = Ôt · ~Act . (20)

As a first step, we now want to determine the form of the gradient operator
in curvilinear coordinates. In the Cartesian system, the gradient operation is

gradctf = ~∇ctf =















∂f

∂x1

∂f

∂x2

∂f

∂x3















=
∂f

∂x1

~e1 +
∂f

∂x2

~e2 +
∂f

∂x3

~e3.

As in the situation with the more common coordinate systems, the gradient
operator in the curvilinear system should determine the Cartesian gradient of
a function, and then expresses it in terms of curvilinear coordinates; so we
must have

gradCf = Ôt · gradctf.

We find that ~∇Cf defined in (18) satisfies this demand; so the gradient oper-
ation in the curvilinear system is

gradCf = ~∇Cf =















1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

f

∂

∂x
f

∂

∂y
f















,

that is

gradCf =

[

1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

f

]

~es +
∂f

∂x
~ex +

∂f

∂y
~ey. (21)
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3.2. The Divergence

The divergence in the curvilinear system is calculated as follows. In the Carte-
sian system,

div ~A =
∂A1

∂x1

+
∂A2

∂x2

+
∂A3

∂x3

.

Our goal is to express it in terms of the curvilinear system. For this purpose,
we apply (19) to the three components Act

k =
∑

m OkmAC
m,

div ~A = (~∇ct · ~Act) =
∑

k

∇ct
k · Act

k =
∑

k

∑

l

Okl∇
C
l

(

∑

m

OkmAC
m

)

=
∑

k

∑

l,m

OklOkm∇
C
l AC

m +
∑

k

∑

l,m

Okl(∇
C
l Okm)AC

m.

Since Ô = Ô(s), we have

∇C
l Okm = δls∇sOkm = δls

1

α

dOkm

ds
. (22)

Using this relationship, we obtain

div ~A =
∑

l,m

∑

k

OklOkm∇
C
l AC

m +
∑

k

∑

l,m

Oklδls

1

α

dOkm

ds
AC

m

=
∑

l,m

[ÔtÔ]lm∇
C
l AC

m +
∑

l,m

δls

1

α
[Ôt dÔ

ds
]lmAC

m

=
∑

l,m

δlm∇
C
l AC

m +
∑

m

1

α
TsmAC

m =
∑

m

∇C
mAC

m +
1

α
(−τ3Ax + τ2Ay)

=
1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

As +
∂Ax

∂x
+

∂Ay

∂y
+

1

α
(−τ3Ax + τ2Ay).

Thus, the divergence expressed in the curvilinear system is obtained as

div ~A =
1

α

{(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

As +
∂

∂x
(αAx) +

∂

∂y
(αAy)

}

. (23)
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3.3. The Curl

The derivation of the curl in the curvilinear coordinates is a little more in-
volved. In the Cartesian system,

curlct ~A = ~∇ct × ~Act = [~∇ct × ~Act]1~e1 + [~∇ct × ~Act]2~e2 + [~∇ct × ~Act]3~e3

=















∂A3

∂x2

−
∂A2

∂x3

∂A1

∂x3

−
∂A3

∂x1

∂A2

∂x1

−
∂A1

∂x2















.

The curl in the curvilinear coordinates, which we denote by curlC ~A and which
has the components

curlC ~A =











[

curlC ~A
]

s[

curlC ~A
]

x[

curlC ~A
]

y











,

has to satisfy the condition

curlct ~A = Ô · curlC ~A. (24)

First, let us express each component of curlct ~A in terms of the curvilinear
system, again using the transformation rules for derivative components (19).
We obtain

[curlct ~A]k = [~∇ct × ~A]k =
∑

i,j

εijk∇
ct
i Act

j =
∑

i,j

∑

l,m

εijkOil∇
C
l (OjmAC

m)

=
∑

l,m

∑

i,j

εijkOilOjm∇
C
l AC

m +
∑

l,m

∑

i,j

εijkOil(∇
C
l Ojm)AC

m

=
∑

l,m

(

∑

n

εlmnOkn

)

∇C
l AC

m +
∑

l,m

∑

i,j

εijkOilδls

1

α

dOjm

ds
AC

m

=
∑

n

Okn

(

∑

l,m

εlmn∇
C
l AC

m

)

+
1

α

∑

m

(

∑

i,j

εijkOis

dOjm

ds

)

AC
m,

where (8) and (22) are used to obtain the third line. Making use of the fact
that

∑

i,j

εijkOis

dOjm

ds
= [~es ×

d~eC
m

ds
]k
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as well as the relationships in (12) which entail

~es ×
d~es

ds
= τ3~ey + τ2~ex, ~es ×

d~ex

ds
= −τ1~ex, and ~es ×

d~ey

ds
= −τ1~ey,

we obtain

[curlct ~A]k

=
∑

n

Okn[~∇
C × ~AC ]n +

1

α
{(τ3Ok3 + τ2Ok2)As − τ1Ok2Ax − τ1Ok3Ay}

=
∑

n

Okn[~∇
C × ~AC ]n +

1

α
{Ok2(τ2As − τ1Ax) + Ok3(τ3As − τ1Ay)}.

So

curlct ~A = Ô ·





























[

~∇C × ~AC
]

1[

~∇C × ~AC
]

2[

~∇C × ~AC
]

3











+
1

α





0
τ2As − τ1Ax

τ3As − τ1Ay























.

Now transforming the curl vector to curvilinear coordinates according to (24),
we have

curlC ~A = Ôt · curlct ~A =











[

~∇C × ~AC
]

1[

~∇C × ~AC
]

2[

~∇C × ~AC
]

3











+
1

α





0
τ2As − τ1Ax

τ3As − τ1Ay





=











∇xAy −∇yAx

∇yAs −∇sAy +
1

α
(τ2As − τ1Ax)

∇sAx −∇xAs +
1

α
(τ3As − τ1Ay)











.

So altogether, expressed in terms of partial derivatives with respect to the
curvilinear coordinates, we have

curlC ~A =

















∂Ay

∂x
−

∂Ax

∂y
∂As

∂y
−

1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Ay +
1

α
(τ2As − τ1Ax)

1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Ax −
∂As

∂x
+

1

α
(τ3As − τ1Ay)
















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=
1

α

















α
∂Ay

∂x
− α

∂Ax

∂y
∂

∂y
(αAs) − τ1Ax −

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Ay

−
∂

∂x
(αAs) +

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Ax − τ1Ay

















. (25)

3.4. The Laplacian

The Laplacian operator in the Cartesian system is

4ctf = (~∇ct · ~∇ct)f = (~∇ct)t · ~∇ctf =
∂2f

∂x2

1

+
∂2f

∂x2

2

+
∂2f

∂x2

3

.

In terms of the curvilinear system, utilizing (19), we have

4Cf = (~∇ct)t · ~∇ctf =
∑

k

∑

l,m

Okl∇
C
l (Okm∇

C
m)f

=
∑

l,m

∑

k

OklOkm∇
C
l (∇C

mf) +
∑

k

∑

l,m

Okl(∇
C
l Okm)(∇C

mf)

=
∑

l,m

δlm∇
C
l (∇C

mf) +
∑

k

∑

m

1

α
Oks

dOkm

ds
(∇C

mf)

=
∑

m

(

∇C
m +

1

α
Tsm

)

(∇C
mf)

= ∇s(∇sf) +
(

∇x −
τ3

α

)

(∇xf) +
(

∇y +
τ2

α

)

(∇yf),

where (4) and (22) are used from the second to the third line. Thus, the
Laplacian operator in the curvilinear system, expressed in partials of curvilin-
ear coordinates, has the form

4Cf =
1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

){

1

α

(

∂f

∂s
+ τ1y

∂f

∂x
− τ1x

∂f

∂y

)}

+
1

α

∂

∂x

(

α
∂f

∂x

)

+
1

α

∂

∂y

(

α
∂f

∂y

)

. (26)

3.5. The Velocity Vector

The final differential quantity we want to express in terms of curvilinear coor-
dinates is the velocity vector ~v. It is expressed as

~v = v1~e1 + v2~e2 + v3~e3 = vs~es + vx~ex + vy~ey,
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and similarly before, we define

~vct =





v1

v2

v3



 , ~vC =





vs

vx

vy



 ,

and we have ~vct = Ô · ~vC. To determine the velocity expressed in curvilinear
coordinates, we differentiate the position vector ~r with respect to time t; from
(13), we have

~vct =
d~r

dt
=

3
∑

k=1

d

dt
{~R · ~ek + xOk2 + yOk3}~ek

=

3
∑

k=1

{

Ok1ṡ + Ok2ẋ + Ok3ẏ + ṡ
dOk2

ds
x + ṡ

dOk3

ds
y

}

~ek

= Ô ·





ṡ
ẋ
ẏ



+ ṡ
dÔ

ds
·





0
x
y



 = Ô ·











ṡ
ẋ
ẏ



+ ṡÔt ·
dÔ

ds
·





0
x
y











= Ô ·











ṡ
ẋ
ẏ



 + ṡT̂ ·





0
x
y











= Ô ·





ṡ (1 − τ3x + τ2y)
ẋ − ṡτ1y
ẏ + ṡτ1x



 ,

where (1) is used from the first line to the second line. Comparing with the
previous equation, we see that the velocity expressed in terms of curvilinear
coordinates is given by

~vC =





vs

vx

vy



 =





ṡ · (1 − τ3x + τ2y)
ẋ − ṡτ1y
ẏ + ṡτ1x



 =





ṡα
ẋ − ṡτ1y
ẏ + ṡτ1x



 , (27)

where α = 1− τ3x + τ2y as (14). For future reference, we note that because of
the orthonormality of Ô, we also have the relationships

v2 = ~vct · ~vct = ~vC · ~vC (28)

~vct · ~Act = ~vC · ~AC . (29)

4. Transformation of Fields

In this section, we study the transformation rules for fields derived from scalar
and vector potentials. In particular, this covers the cases of gravitational
as well as electromagnetic interaction. Let us assume that in the Cartesian
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system, the fields ~E and ~B are expressed in terms of a scalar potential Φ and
a vector potential ~A as

~Ect = −gradctΦ −
∂ ~Act

∂t
= −~∇ctΦ −

∂ ~Act

∂t

~Bct = curlct ~A = ~∇ct × ~Act.

Choosing Φ and ~A as the electric and magnetic potentials, this covers the case
of dynamics in electrodynamics. Choosing Φ as the gravitational potential and
~A = 0, covers the gravitational case. Our goal here is to express these fields
and the resulting force laws in terms of the curvilinear coordinates. We need
to find ~EC and ~BC and their relationships to the potentials such that

~Ect = Ô · ~EC , and ~Bct = Ô · ~BC ,

where

~Ect =





E1

E2

E3



 , ~EC =





Es

Ex

Ey



 , and ~Bct =





B1

B2

B3



 , ~BC =





Bs

Bx

By



 .

Using the differential operators from the last section, we have

~EC = Ôt ~Ect = Ôt

(

−~∇ctΦ −
∂ ~Act

∂t

)

= −Ôt ~∇ctΦ − Ôt ∂
~Act

∂t

= −~∇CΦ −
∂

∂t
(Ôt ~Act) = −~∇CΦ −

∂ ~AC

∂t
= −





∇s

∇x

∇y



Φ −
∂

∂t





As

Ax

Ay



 ,

or explicitly expressed in terms of partials of curvilinear coordinates:

~EC =















−
1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Φ −
∂As

∂t

−
∂Φ

∂x
−

∂Ax

∂t

−
∂Φ

∂y
−

∂Ay

∂t















. (30)

The field ~BCcan be determined in a straightforward way from the transforma-
tion rule for the curl (25), and we have

~BC = curlC ~A =











∇xAy −∇yAx

∇yAs −∇sAy +
1

α
(τ2As − τ1Ax)

∇sAx −∇xAs +
1

α
(τ3As − τ1Ay)










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=

















∂Ay

∂x
−

∂Ax

∂y
∂As

∂y
−

1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Ay +
1

α
(τ2As − τ1Ax)

1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

Ax −
∂As

∂x
+

1

α
(τ3As − τ1Ay)

















. (31)

5. Relativistic Motion in Gravitation or Electromagnetic Fields

As an important application of the methods, we study the transformation of
the relativistic equations of motion describing the dynamics in gravitational
fields, which are derivable from a scalar potential, as well as electromagnetic
fields derivable from scalar and vector potentials. We begin with the transfor-
mation for the Cartesian quantity

~f ct = ~Ect + ~vct × ~Bct,

which in the electromagnetic case corresponds to the Lorentz force per unit
charge, and in the gravitational case, with ~Bct = 0, to the gravitational force
per unit mass. We want to find ~fC such that ~f ct = Ô · ~fC , where we write the
components as

~f ct =





f1

f2

f3



 , ~fC =





fs

fx

fy



 .

Because of the orthonormality of Ô, we first observe

~fC = Ôt ~f ct = Ôt( ~Ect + ~vct × ~Bct) = Ôt(Ô ~EC + (Ô~vC) × (Ô ~BC))

= ~EC + ~vC × ~BC =





Es + vxBy − vyBx

Ex + vyBs − vsBy

Ey + vsBx − vxBs



 ,

where the invariance of the cross product under SO(3) transformations (6) was
used. Expressed in terms of curvilinear coordinates, we have explicitly for the
components of ~fC the forms

fs = Es + vxBy − vyBx

= −∇sΦ −
∂As

∂t
+ vx

{

∇sAx −∇xAs +
1

α
(τ3As − τ1Ay)

}

− vy

{

∇yAs −∇sAy +
1

α
(τ2As − τ1Ax)

}

= −∇sΦ −
dAs

dt
+ ṡ

∂As

∂s
+ ẋ

∂As

∂x
+ ẏ

∂As

∂y
+ vx∇sAx − vx

∂As

∂x
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+
vx

α
(τ3As − τ1Ay) − vy

∂As

∂y
+ vy∇sAy −

vy

α
(τ2As − τ1Ax)

= −
dAs

dt
−∇s(Φ − vsAs − vxAx − vyAy) − As∇svs − Ax∇svx

− Ay∇svy − vs∇sAs +
vs

α

∂As

∂s
+ (vx + ṡτ1y)

∂As

∂x
+ (vy − ṡτ1x)

∂As

∂y

− vx

∂As

∂x
+

vx

α
(τ3As − τ1Ay) − vy

∂As

∂y
−

vy

α
(τ2As − τ1Ax),

where (27) is used in the last step. Utilizing the relationships

∇svs =
1

α

(

−ṡ
dτ3

ds
x + ṡ

dτ2

ds
y − ṡτ1τ3y − ṡτ1τ2x

)

∇svx =
1

α

(

−ṡ
dτ1

ds
y + ṡτ 2

1
x

)

∇svy =
1

α

(

ṡ
dτ1

ds
x + ṡτ 2

1
y

)

∇sAs =
1

α

(

∂As

∂s
+ τ1y

∂As

∂x
− τ1x

∂As

∂y

)

,

we have

fs = −
dAs

dt
−∇s(Φ − ~vC · ~AC)

+
As

α

(

ṡ
dτ3

ds
x − ṡ

dτ2

ds
y + ṡτ1τ3y + ṡτ1τ2x + vxτ3 − vyτ2

)

+
Ax

α

(

ṡ
dτ1

ds
y − ṡτ 2

1
x + vyτ1

)

+
Ay

α

(

−ṡ
dτ1

ds
x − ṡτ 2

1
y − vxτ1

)

= −
dAs

dt
−∇s(Φ − ~vC · ~AC)

+
1

α

{

As

d

dt
(τ3x − τ2y) + Ax

d

dt
(τ1y) + Ay

d

dt
(−τ1x)

}

.

fx and fy are computed in the similar but more straightforward way to yield

fx = −
dAx

dt
−∇x(Φ − ~vC · ~AC)

fy = −
dAy

dt
−∇y(Φ − ~vC · ~AC).

Thus, the Lorentz force expressed in curvilinear coordinates is

~fC = ~EC + ~vC × ~BC = −
d ~AC

dt
− ~∇C(Φ − ~vC · ~AC)

+
1

α

{

As

d

dt
(τ3x − τ2y) + Ax

d

dt
(τ1y) + Ay

d

dt
(−τ1x)

}

· ~es, (32)
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knowing the Lorentz force is also the first step towards determining Newton’s
equations of a charged particle in the curvilinear system.

The momentum of the particle ~p is expressed as

~p = p1~e1 + p2~e2 + p3~e3 = ps~es + px~ex + py~ey,

and similarly before, we define

~pct =





p1

p2

p3



 , ~pC =





ps

px

py



 ,

and have as before that ~pct = Ô · ~pC . In the Cartesian system, a particle with
the charge e obeys Newton’s equation

d~pct

dt
= e ~f ct. (33)

Now we merely have to express the momentum derivatives in terms of curvi-
linear coordinates:

d~pct

dt
=

d

dt
(Ô~pC) = Ô ·

d~pC

dt
+

dÔ

dt
·~pC = Ô ·

(

d~pC

dt
+ ṡÔt dÔ

ds
~pC

)

= Ô ·

(

d~pC

dt
+ ṡT̂ ~pC

)

= Ô ·

(

d~pC

dt
+ ṡ~τ × ~pC

)

,

and then (33) can be written as Ô · (d~pC/dt + ṡ~τ × ~pC) = e Ô · ~fC , or directly

d~pC

dt
+ ṡ~τ × ~pC = e ~fC . (34)

Explicitly we then have

d

dt





ps

px

py



+ ṡ ·





τ1

τ2

τ3



×





ps

px

py



 = e ·









Es

Ex

Ey



 +





vs

vx

vy



×





Bs

Bx

By









= e ·















−
d

dt





As

Ax

Ay



−















1

α

(

∂

∂s
+ τ1y

∂

∂x
− τ1x

∂

∂y

)

∂

∂x
∂

∂y















· (Φ − ~vC · ~AC)

+
1

α

{

As

d

dt
(τ3x − τ2y) + Ax

d

dt
(τ1y) + Ay

d

dt
(−τ1x)

}

· ~es

]

. (35)
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