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TAYLOR MODELS AND COMPUTATIONS IN THE COMPLEX PLANE

ABSTRACT In this note we show how Taylor model methods can successfully alleviate
the problems of conventional interval arithmetic in the complex plane being susceptible to
significant overestimations caused by the dependency problems in the elementary operations.
The use of Taylor models on the other hand results in self-validated methods that fully utilize
the rich structure of the complex numbers.

To show how high order methods can be used for self-validated computations in the
complex plane, we extend real-valued Taylor model methods to complex ones. The extension
provides the tools to compute enclosures of the results of elementary operations and standard
functions. We show how the new methods provide sharp and validated descriptions of image
sets of analytic functions even after extended computations.

Keywords: Taylor models, complex interval arithmetic, dependency problem, wrapping
effect.

Introduction Interval arithmetic on the field R of real numbers provides sharp and
rigorous enclosures for the images of compact intervals under the elementary operations and
intrinsic functions. However, while complex interval arithmetic can be seen as a straightfor-
ward extension of real-valued interval methods, it generally fails to provide sharp enclosures
of the mathematically correct results since the necessary wrapping of results in new interval
boxes often leads to significant overestimations [1, 2, 3].

Realistic problems often require the evaluation of complicated functions composed of
multiple elementary operations and intrinsics. Evaluating such functions with conventional
interval methods suffers from the dependency problem: if the computation involves several
occurrences of the same variable, the result will be an overly pessimistic enclosure of the
mathematically correct result. For the case of real-valued interval arithmetic, this has long
been recognized as one of the main limitations of interval methods[4], and it has been
shown [5] that high order Taylor model methods can avoid the dependency problem for
practical purposes. In the case of interval arithmetic on the field C of complex numbers, the
situation is further complicated by the fact that even the elementary operations and intrinsic
functions are subject to the dependency problem. Thus, complex interval arithmetic is prone
to significant overestimations and often fails to provide rigorous bounds with a sufficient
sharpness even for polynomial expressions [6].

Complex numbers are commonly represented by pairs of two numbers: split into real
and imaginary part or characterized by argument and absolute value

z = x + i · y = r exp (iϕ) (1)

Both representations are equivalent but lead to significantly different results when used
in the context of complex interval arithmetic. Writing complex numbers in terms of real
and imaginary part is equivalent to identifying C with the real linear space R2. In this
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representation, we write complex interval numbers as X + i · Y with the real intervals
X and Y . As such, complex intervals represent rectangles in the complex plane and the
interval methods provide optimal enclosures for the addition and the multiplication with
reals. However, enclosing the product of two such complex intervals in another interval
generally leads to significant overestimations.

As an alternative to representing complex interval numbers by rectangles, the characteri-
zation by arguments and absolute values can be used to enclose sets of complex numbers. In
that case we describe sets as r exp (iΦ) with real intervals r ⊂ R+

0 and Φ ⊂ [0, 2π]. This de-
scription provides optimal validated enclosures for the product of sets of complex numbers.
However, such a description generally overestimates the sum of these objects.

By not providing optimal enclosures for the elementary operations, neither of the two
presented approaches utilizes the full power and rich structure of the complex field C. Other
approaches of bringing self-validated computations to the complex plane while avoiding the
excessive overestimation have been based on complex disks, represented by center and ra-
dius [7, 3]. However, in all cases the problem of overestimating the results of elementary
operations is further aggravated in the case of the standard mathematical functions, where
the actual overestimation may be arbitrary large. Thus, it has been recognized that conven-
tional interval techniques are insufficient to properly deal with computations in the complex
plane. In this paper we will show how the use of high order Taylor model methods can
successfully overcome the limitations of conventional interval methods when it comes to
rigorously enclosing the image sets of analytic functions defined on the complex plane.

Complex Taylor Models Let us introduce Complex Taylor Models (CTM). The
definition and set of its operations are very similar to Taylor Models (TM) in the real case.
And one of the two variants presented of CTM constructing will be based on real TMs
completely. Real TM were suggested and their properties were investigated in details in [8,
9]. TM are presented as a data type in the Cosy Infinity code [10]. All examples of section
3 were calculated with using of this code.

For convenience we start with definition of Taylor Models for real functions of two real
variables.

Definition 1 Let u be a real function of two real variables x, y ∈ R. Suppose the function
is defined and has continuous partial derivatives up to order n+1 (at least) at each point of
two-dimensional box

M = {(x, y) : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2} ⊆ R2. (2)

Assume that (x0, y0) ∈ M and we have a pair of objects: a polynomial

Pα,u (x− x0, y − y0) =
∑

0≤j,k≤n
j+k≤n

Kj,k (x− x0)
j (y − y0)

k (3)

and a real interval Iα,u (the interval remainder bound), such that for any (x, y) ∈ M the
following inclusion is true

u (x, y) ∈ Pα,u (x− x0, y − y0) + Iα,u. (4)

Then we say the pair Tα,u = (Pα,u, Iα,u) is a Taylor Model of function u (x, y). Here
the parameter α = (n, (x0, y0) ,M) contains information about the order of the Taylor
polynomial, reference point (x0, y0) and domain M .
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It is natural to consider the Taylor polynomial as corresponding truncated Taylor series,
and interval remainder bounds as interval estimation of remainder term. But it is practically
useless to consider this interpretation as a path of finding of Taylor Models. Instead of it
we should introduce rules of Taylor Model arithmetic with elementary operations (sum,
product), intrinsic functions etc. In the following we assume that these rules have been
implemented. For details see [9]. For example, evidently we can define a Taylor Model for
the sum of functions u (x, y) and w (x, y) as

Tα,u + Tα,w = Tα,u+w = (Pα,u + Pα,w, Iα,u + Iα,w) . (5)

Here the additions of two polynomials and two real interval numbers should be done in
the usual ways.

Consider a complex function f of one complex variable z ∈ C:

f (z) = u (x, y) + i · w (x, y) . (6)

Here x = Re z, y = Im z. Suppose that assumptions of the definition 1 for u = Re f (z)
and w = Im f (z) are fulfilled and we have separate real Taylor Models Tα,u and Tα,w of the
real and imaginary parts of as real functions of two variables.

Definition 2 We say an ordered pair of Taylor Models T cc
α,f = (Tα,u, Tα,w) is a Coordinate

Complex Taylor Model (CCTM) of the complex function f (z). Thus we have the following
statement for any z = x + i · y (where (x, y) ∈ M):

f (z) ∈ T cc
α,f = Tα,u + i · Tα,w (7)

The next step is the introduction elementary operations and standard functions for Co-
ordinate Complex Taylor Models. Let us start with addition and multiplication. Consider
two complex functions f (z) = u (x, y)+ i ·w (x, y), g (z) = q (x, y)+ i · r (x, y), and their Co-
ordinate Complex Taylor Models. We can define the elementary operations like for complex
numbers. For example:

T cc
α,f + T cc

α,g = T cc
α,f+g = (Tα,u + Tα,q, Tα,w + Tα,r) (8)

T cc
α,f · T cc

α,g = T cc
α,f ·g

= (Tα,u · Tα,q − Tα,w · Tα,r, Tα,u · Tα,r + Tα,w · Tα,q) (9)

Now consider the exponential function

exp f (z) = exp u cos w + i · exp u sin w. (10)

Obviously we have

T cc
α,exp f = (Tα,exp u · Tα,cos u, Tα,exp u · Tα,sin u) . (11)

We should remind that the rules of obtaining real Taylor Models Tα,exp u, Tα,cos u, Tα,sin u

were described in [9].
So the key idea of the coordinate approach is to split the complex function into the real

and imaginary parts and manipulate with well-known real Taylor Models for them. It is
clear that in this approach, it is possible to develop a complete formalism for complex TM
arithmetic like in its real counterpart, the resulting method helps in the suppression of the
dependency problem [5] and the remainder bounds have the high-order scaling property.
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But sometimes it is reasonable to have “pure” Complex Taylor Models. Let us consider
the analytic complex function f of one variable z in a circle S (r0, z0):

f (z) : S (r0, z0) ⊂ C → C. (12)

Here z ∈ C; z0 ∈ C is a reference point; r0 ∈ R+ is the radius of the circle:

S (r0, z0) = {z : |z − z0| < r0, r0 > 0} . (13)

Now let us introduce Complex Taylor Models. Further we assume that z0 ∈ D ⊂
S (r0, z0) where D = {z ∈ C : a1 ≤ Re z ≤ b1, a2 ≤ Im z ≤ b2} is a complex box. Here
a1, b1, a2, b2 ∈ R.

Definition 3 Let us assume that for the analytic complex function f (z) : D ⊂ C → C we
have a pair of objects: a complex polynomial

Pδ,f (z − z0) =
n∑

j=0

Kj · (z − z0)
j (14)

and complex interval Iδ,f , such that for any z ∈ D

f (z) ∈ Pδ,f (z − z0) + Iδ,f . (15)

Here the parameter δ contains information about the order of the polynomial, reference point
and domain interval: δ = (n, z0, D). Then we say the pair T c

δ,f = (Pδ,f , Iδ,f ) is a Complex
Taylor Model of the function f . We call n the order of the Taylor Model, z0 the reference
point of the Taylor Model, D the domain interval of the Taylor Model, δ the parameter of the
Taylor Model. Also we call Pδ,f the Taylor polynomial, Iδ,f the interval remainder bound.

Let us introduce rules of the Complex Taylor Model constructing for the sum and product
of two functions. We note that this is just a reformulation of the real Taylor Models case.
With this aim we will consider a pair of analytical complex functions f (z) and g (z), for
which Taylor models are known, i.e. T c

δ,f = (Pδ,f , Iδ,f ) and T c
δ,g = (Pδ,g, Iδ,g) accordingly.

Thus, it is evident that

f (z) + g (z) ∈ ((Pδ,f (z − z0) + Iδ,f ) + (Pδ,g (z − z0) + Iδ,g))
= (Pδ,f (z − z0) + Pδ,g (z − z0)) + (Iδ,f + Iδ,g) (16)

or it means that a Taylor model T c
δ,f+g for f + g can be obtained via

Pδ,f+g = Pδ,f + Pδ,g and Iδ,f+g = Iδ,f + Iδ,g (17)

Thus we define

T c
δ,f + T c

δ,g = T c
δ,f+g = (Pδ,f + Pδ,g, Iδ,f + Iδ,g) . (18)

In a similar way we will consider a product of the Taylor models. Let us write down a
true for any z ∈ D relation as follows

f (z) · g (z) ∈ ((Pδ,f (z − z0) + Iδ,f ) · (Pδ,g (z − z0) + Iδ,g))
= (Pδ,f (z − z0) · Pδ,g (z − z0)) + Pδ,f (z − z0) · Iδ,g

+Pδ,g (z − z0) · Iδ,f + (Iδ,f · Iδ,g) . (19)
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We need to note, that Pδ,f (z − z0) · Pδ,g (z − z0) is a polynomial of 2n-th order. Let us
divide this polynomial into the sum of two: the first one of n-th order and agrees with the
Taylor polynomial Pδ,f ·g of f · g and an additional polynomial Pe so that

Pδ,f (z − z0) · Pδ,g (z − z0) = Pδ,f ·g (z − z0) + Pe (z − z0) . (20)

We denote bounds of polynomials by B (P ) for polynomial P : D ⊂ C → C:

∀z ∈ D,P (z − z0) ∈ B (P ) . (21)

Remark 4 We demand that B (P ) is at least as sharp as direct interval evaluation of
P (z − z0) on D. More sophisticated methods exist, but are not important for our purposes.

Here B (P ) is a complex interval. Then Iδ,f ·g can be found in following way:

Iδ,f ·g = B (Pe) + B (Pδ,f ) · Iδ,g + B (Pδ,g) · Iδ,f + Iδ,f · Iδ,g. (22)

Thus it is possible to define

T c
δ,f · T c

δ,g = T c
δ,f ·g = (Pδ,f ·g, Iδ,f ·g) . (23)

By using of definition of sum and product of the Taylor models it is possible to calculate
models for functions of the type Q (f): T c

δ,Q(f) =
(
Pδ,Q(f), Iδ,Q(f)

)
, where Q is a complex

polynomial of function f , for which the Taylor model will be considered as known. With
this numerical coefficients tk ∈ C of polynomial Q (f) = t0 + t1 · f + . . . + tm · fm are
represented as the following Taylor models T c

δ,tk
= (Pδ,tk

, Iδ,tk
), where Pδ,tk

= tk and Iδ,tk
=

[(0 + i · 0) , (0 + i · 0)].
For practical use of the Taylor models we need to have an algorithm of calculations of

intrinsic functions of the Taylor models. This algorithm is based on the theorem of expansion
of analytical function into the Taylor series.

As it is known, a function f that is analytic on S (r0, z0) can be represented as the
following power series for any z ∈ S (r0, z0):

f (z) =
∞∑

k=0

1
k!

∂kf (z0)
∂zk

(z − z0)
k
. (24)

One can also consider the complex function as a sum of two real-valued functions of real
arguments:

f (z) = u (x, y) + i · w (x, y) , (25)

where x = Re z ∈ R, y = Im z ∈ R.
After splitting f (z) into real and imaginary parts we can employ Taylor expansions of

the functions (with Lagrangian remainder term) u (x, y) and w (x, y) to represent them as
finite sums

u (x, y) =
n∑

k=0

1
k!

(
∆x · ∂

∂x
+ ∆y · ∂

∂y

)k

u (x0, y0)

+
1

(n + 1)!

(
∆x · ∂

∂x
+ ∆y · ∂

∂y

)n+1

u (xθ1 , yθ1) , (26)

w (x, y) =
n∑

k=0

1
k!

(
∆x · ∂

∂x
+ ∆y · ∂

∂y

)k

w (x0, y0)

+
1

(n + 1)!

(
∆x · ∂

∂x
+ ∆y · ∂

∂y

)n+1

w (xθ2 , yθ2) , (27)
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where ∆x = Re ∆z, ∆y = Im ∆z, ∆z = z − z0, x0 = Re z0, y0 = Im z0, xθj
= x0 +

θj · ∆x, yθj = y0 + θj · ∆y, 0 ≤ θj ≤ 1, j = 1, 2; and the partial differential operator(
∆x · ∂

∂x + ∆y · ∂
∂y

)k

works as

(
∆x · ∂

∂x
+ ∆y · ∂

∂y

)k

=
k∑

j=0

k!
j! (k − j)!

∆xj∆y(k−j) ∂k

∂xj∂y(k−j)
. (28)

For the analytic function f the following formulae are correct

i · ∂

∂x
f (z̃) =

∂

∂y
f (z̃) , (29)

∂

∂z
f (z̃) =

∂

∂x
u (x̃, ỹ) + i · ∂

∂x
w (x̃, ỹ) , (30)

(
∆z · ∂

∂z

)k

f (z̃) =
(

(∆x + i ·∆y)
∂

∂x

)k

f (z̃)

=
(

∆x · ∂

∂x
+ ∆y · ∂

∂y

)k

f (z̃) ,

=
(

∆x · ∂

∂x
+ ∆y · ∂

∂y

)k

(u (x̃, ỹ) + i · w (x̃, ỹ)) , (31)

where k is integer number,∀z̃ ∈ S (r0, z0), x̃ = Re z̃, ỹ = Im z̃.
Thus after taking into account these formulae, the Taylor expansions of u (x, y) and

w (x, y), and the representation of f (z) as the power series we can obtain the following
statements

f (z) =
n∑

k=0

1
k!

∂kf (z0)
∂zk

(z − z0)
k + ReRn+1 (θ1) + i · ImRn+1 (θ2) , (32)

where Rn+1 (θ) = 1
(n+1)!

∂(n+1)f(z0+θ(z−z0))
∂z(n+1) (z − z0)

(n+1) and θ1, θ2 ∈ [0, 1].
Or in the following form:

f (z) =
n∑

k=0

1
k!

∂kf (z0)
∂zk

(z − z0)
k

+
∂(n+1)f (zθ1) /∂z(n+1) + ∂(n+1)f (zθ2) /∂z(n+1)

2 (n + 1)!
(z − z0)

n+1

+
∂(n+1)f (zθ1) /∂z(n+1) − ∂(n+1)f (zθ2) /∂z(n+1)

2 (n + 1)!
(z − z0)

n+1
. (33)

Here ¯ means conjugate complex value, zθ1 = z0 + θ1 (z − z0), zθ2 = z0 + θ2 (z − z0).
Let us emphasize that Rn+1 has the same form as the well-known Lagrangian remainder

term in Taylor theorem for real functions. So we can formulate
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Theorem 5 (Complex Interval analogy of Taylor’s theorem). For the analytic function f
the following inclusion is true with any z ∈ S (r0, z0),

f (z) ∈
n∑

k=0

1
k!

∂kf (z0)
∂zk

(z − z0)
k

+
1

(n + 1)!
∂(n+1)f (z0 + Θ (z − z0))

∂z(n+1)
(z − z0)

(n+1)
, (34)

where Θ = [0, 1] ⊂ R is a real interval. The last term (interval remainder term) has been con-
sidered as complex interval (a box in complex plane ), that contains the set of values (curve
on complex plane) of complex function Rn+1 (θ) = 1

(n+1)!
∂(n+1)f(z0+θ(z−z0))

∂z(n+1) (z − z0)
(n+1)

with θ ∈ [0, 1], and it can apparently be obtained by interval evaluation of Rn+1.

Let us illustrate this result for the special case n = 0.

f (z) = f (z0) + Re
(

∂

∂z
f (z0 + θ1 · (z − z0)) · (z − z0)

)

+i · Im
(

∂

∂z
f (z0 + θ2 · (z − z0)) · (z − z0)

)
, (35)

Or we can write it in the following form:

f (z) = f (z0) +
∂f (zθ1) /∂z + ∂f (zθ2) /∂z

2
(z − z0)

+
∂f (zθ1) /∂z − ∂f (zθ2) /∂z

2
(z − z0). (36)

Here ¯ means conjugate complex value, zθ1 = z0 + θ1 (z − z0), zθ2 = z0 + θ2 (z − z0).
The statements give us a practical way to bound remainder term of intrinsic functions.

Remark 6 The remainder of the Taylor series in the complex plane is usually expressed in
the form:

Rn+1 =
(z − z0)

n+1

2πi

∮

Γ

f (ζ)
(ζ − z) (ζ − z0)

n+1 . (37)

Here z ∈ intΓ, Γ = {ζ : |ζ − z0| = r}. But this form is not convenient for simple realization.
Since it involves integration. The representation of the remainder term in the form suggested
in this paper is similar to the real functions case, allows using almost the same formulae like
in realized real Taylor Models and easier treatment of remainders.

Let consider us several examples of intrinsic functions. We start with the examination
of the exponential function. As it is known, (exp z)(k) = exp z, where ()(k) is the operation
of taking of derivative of k-th order. Bearing in mind that exp 0 = 1, we can find following

exp f (z) = exp (cδ,f ) · exp
(
0 + f̃ (z)

)

∈ exp (cδ,f ) ·




1 + f̃ (z) + 1
2

(
f̃ (z)

)2

+ . . . + 1
k!

(
f̃ (z)

)k

+ 1
(k+1)!

(
f̃ (z)

)k+1

exp
(
Θ · f̃ (z)

)


 . (38)
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Here and further f (z) = cδ,f + f̃ (z), Θ = [0, 1]. The right part of taken expression can
serve as the source for constructing the Taylor model for the function exp f (z). It consists
of the polynomial part and the remainder. The possibility of the constructing of the Taylor
model for a polynomial has been discussed above. The remainder must be bounded by the
complex interval and added into the interval remainder bounds of the Taylor model of the
polynomial part.

The same scheme is used for the construction of the Taylor model for the function{√
f (z)

}
j
, where {}j denotes one-valued branch of the multi-valued function of square

root
√

f (z). Let 0 /∈ Pδ,f(z) (z − z0) + I
δ,f(z) for any z ∈ D. We will also introduce such

notations as

cδ,f = r exp (iϕ), r = |cδ,f |, ϕ = arg cδ,f ,
εj =

{√
cδ,f

}
j

=
√

r · exp (i (ϕ/2 + π (j − 1))), j = 1, 2.

Then with taking into account of
(
{√z}j

)(k)

= (−1)k−1 (2k−3)!!

2k
({√z}

j

)2k−1 , we get

{√
f (z)

}
j

=
{√

cδ,f + f̃ (z)
}

j

∈




εj ·




1 + f̃(z)
2cδ,f

− (f̃(z))2

222!(cδ,f )2
+ . . .

+(−1)k−1 (2k−3)!!(f̃(z))k

2kk!(cδ,f )k




+(−1)k (2k−1)!!
2k+1(k+1)!

(f̃(z))k+1

({√
cδ,f+Θ·f̃(z)

}
j

)2k+1




(39)

Here (2k − 1)!! =
k∏

m=1
(2m− 1), cδ,f 6= 0,

0 /∈ cδ,f + Θ ·
(
B

(
Pδ,f̃(z) (z − z0)

)
+ I

δ,f̃(z)

)
for any z ∈ D.

Let us consider one-valued branches of the function of natural logarithm Lnf (z). Let
again 0 /∈ Pδ,f(z) (z − z0)+ I

δ,f(z) for any z ∈ D. With this we keep that ∂
∂z {Ln z}j = 1

z and
(
{Ln z}j

)(k)

= (−1)k+1 (k−1)!
zk at k ≥ 2. Thus

{Lnf (z)}j =
{

Ln
(
cδ,f + f̃ (z)

)}
j

∈




{Ln (cδ,f )}j + f̃(z)
cδ,f

− 1
2

(f̃(z))2

(cδ,f )2
+ . . .

+(−1)k+1 1
k

(f̃(z))k

(cδ,f )k

+(−1)k+2 1
k+1

(f̃(z))k+1

(cδ,f +Θ·f̃(z))k+1




. (40)

As above cδ,f 6= 0, 0 /∈ cδ,f + Θ ·
(
B

(
Pδ,f̃(z) (z − z0)

)
+ I

δ,f̃(z)

)
for any z ∈ D.

Definition 7 Let us consider a Complex Taylor Model T c
δ,f = (Pδ,f (z − z0) , Iδ,f ). Let |I|

denotes diameter of a complex interval I = [a1, a2]+i·[b1, b2]: |I| =
√

(a2 − a1)
2 + (b2 − b1)

2.
Then we say |Iδ,f | is sharpness of the Taylor Model.
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Theorem 8 (Taylor Model Scaling Theorem). Let f (z) and g (z) are analytic complex
functions that have n-th order Complex Taylor Models T c

δ,f = (Pδ,f (z − z0) , Iδ,f ) and T c
δ,g =

(Pδ,g (z − z0) , Iδ,g) correspondingly. Let us consider circle of minimal possible radius h with
center in point z0 such that it includes domain D: D ⊂ S (h, z0). Let the remainder bounds
Iδ,f and Iδ,g satisfy |Iδ,f | = O

(
hn+1

)
and |Iδ,g| = O

(
hn+1

)
. Then the Taylor Models for

the sum and products of f (z) and g (z) obtained via addition and multiplication of Complex
Taylor Models satisfy

|Iδ,f+g| = O
(
hn+1

)
and |Iδ,f ·g| = O

(
hn+1

)
. (41)

Furthermore, let F be any of the intrinsic functions defined above, then the Complex Taylor
Model for F (f) obtained by the above instructions satisfies

∣∣Iδ,F (f)

∣∣ = O
(
hn+1

)
. (42)

We say the Complex Taylor Models have the (n + 1)st order scaling property.

Proof. The proof for the binary operations follows directly from the definition of the
remainder bounds for the binaries. Similarly, the proof for the intrinsics follows because all
intrinsics are composed of binary operations as well as an additional complex interval, the
width (diameter) of which scales at least with the (n + 1)st power of a bound of a function
that scales at least linearly with h.

Examples In this section we illustrate how the use of high order complex Taylor models
can indeed provide sharp and guaranteed bounds on the ranges of complicated complex
functions. The main advantage of Taylor models methods over the use of conventional
interval techniques lies in the propagation of high order functional dependencies from one
computational step to the next; suppressing the wrapping of intermediate results between
each and every elementary operation.

As a first example of how even simple elementary operations in the complex plane can
result in overestimating the function’s ranges, we consider a simple monomial function of
order six.

f1 (z) = z6 (43)

While linear methods cannot properly model f1, it is clear that any high order method
of at least order six can model the functional behavior up to machine precision. Figure 1
shows the the mathematically correct range of f1 over the domain D1 = [3, 5] + i [1, 4].
While conventional interval arithmetic in either the x/y or the r/ϕ convention is bound to
overestimate the exact range, modeling that function with a single Taylor model over the
whole domain results in a sharpness that is in the order of the machine precision.

As a second example for how Taylor model methods can provide sharp enclosures even
for complicated functions, consider the function f2 that is analytic in the whole complex
plane C:

f2 (z) = z2 + cos (z) + 4i exp
(

z3

7
+ sin

(
z + exp

(
0.5 + z2

)))
(44)

The figure 2 shows the exact range of f2 over the domain D2 = [−0.01, 0.11]+i[−0.01, 0.11].
Additionally, a range enclosure obtained with conventional interval arithmetic is included.
While the interval enclosure is rigorous, it does not provide a sharp enclosure of the math-
ematically exact range. Utilizing complex Taylor model methods on the other hand, allows
the computation of rigorous enclosures that are extremely sharp as shown in the figure 3.
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Figure 1: Exact range of z6 over the complex interval domain D1 = [3, 5]+ i [1, 4]. The com-
puted interval enclosure of the range exceeds the plotted range in all coordinate directions.

The graph also illustrates how for a given domain, the sharpness of Taylor model enclosures
does indeed scale with the (n+1)-st order of that domain, where n is the order of the Taylor
models.

As another example of how high order Taylor model methods can accurately enclose
functional dependencies, Figure 4 shows the evaluation of f2 over the domain D3 = [0, 0.02]+
i[−0.1, 0.12]. Like in the previous example, the plot shows the exact mathematical range and
its interval enclosure and the strong non-linearity of f2 leads to a significant overestimation in
the interval enclosure of the mathematically exact range. As shown in the Figure 5 , complex
Taylor models on the other hand succeed in finding sharp enclosures for the function f2.

As an illustration of how the Taylor model approach can often significantly improve
the sharpness of computed enclosures over sizable domains, consider the evaluation of the
function f2 over the domain box D4 = (0.01 + i0.01) + λ([−0.5, 0.5] + i[0.5, 0.5]) Figure 6
shows the widths of the enclosures computed with interval and Taylor model methods for
several different domain size parameters λ. Apparently, for each of the different methods,
the size of the computed enclosure scales with a power of the domain size and is limited from
below by the machine accuracy. However, while conventional intervals scales approximately
linear with the domain width, the accuracy of Taylor model methods does indeed scale with
the (n + 1)-st order of the domain size. Thus, once the domain size drops below a problem
and order dependent threshold, Taylor model computations can often achieve a much higher
sharpness over larger domains than conventional interval techniques.

This example also shows that “in the large”, the Taylor model approach can sometimes
be worse than simple evaluation with conventional intervals. In fact, Taylor model methods
will usually succeed if the contributions of all the highest order polynomial terms drop
faster with order than the number of coefficients of a given order. Based on this rule of
thumb, for polynomials with coefficients of magnitude 1, the Taylor model methods do not
work well over domains with magnitudes larger than 1; on the other hand, if the domains
have magnitudes of 0.1 or less, the Taylor model methods tend to work very well. Thus,
if a given problem can be treated with conventional interval techniques, there is usually
nothing to be gained by using Taylor models. However, if the problem requires domain
splitting the use of Taylor models often becomes advantageous, especially if the interval
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Figure 2: The plot shows the exact range and interval enclosure of the range of f2 over the
complex interval domain D2 = [−0.01, 0.11] + i [−0.01, 0.11].
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Figure 3: The graph shows the decadic logarithm of the size of the Taylor model remainder
bounds for f2 over the domain D2 with the reference point z0 = 0.01 + i · 0.01 as a function
of Taylor model orders.
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Figure 4: The plot shows the exact range and interval enclosure of the range of f2 over the
complex interval domain D3 = [0, 0.02] + i [−0.1, 0.12].
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Figure 5: The graph shows the decadic logarithm of the size of the Taylor model remainder
bounds for f2 over the domain D3 with the reference point z0 = 0.01 + i · 0.01 as a function
of Taylor model orders.
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Figure 6: Dependence of the computed enclosure width on the size of the domain for con-
ventional interval arithmetic and complex Taylor models of orders two, four, six, eight, and
ten.

approach requires domain splitting beyond the threshold at which the Taylor approach
shows significant improvements.

While Taylor model methods are computationally more expensive than conventional
interval methods, the increased sharpness of the computed enclosures usually outweighs the
computational expense. This is especially true if the desired sharpness requires domain
splitting. To illustrate this, we measure the computational expense of evaluating f2 over the
domain D4 by defining the information count as the number of floating point numbers that
have to be stored and processed in order to obtain the desired sharpness in the enclosure.
Thus, the information count equals the number of domain intervals multiplied with the
actual storage requirements for a single instance of the underlying data type. For complex
functions, the information counts for intervals NI and n-th order Taylor models NT,n are
given by

NI = (#boxes)× 4 (45)

NT,n = (#boxes)× 2
(

(n + 2)!
2 · n!

+ n + 2
)

. (46)

Following table lists the maximum width of subdomains, and the corresponding infor-
mation counts, necessary to enclose the range of f2 over the domain D4 with a uniform
sharpness of 10−3 and 10−5, respectively.
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Method RequiredDomainWidth InformationCount
Sharpness 10−3 10−5 10−3 10−5

Interval 0.418× 10−3 0.418× 10−5 > 10200 > 10200

Taylor, n = 2 0.304× 10−1 0.627× 10−2 1.3× 1021 2× 1097

Taylor, n = 4 0.104 0.040 26030646 4× 1016

Taylor, n = 6 0.180 0.100 158136 71217904
Taylor, n = 8 0.214 0.145 72659 1525956
Taylor, n = 10 0.317 0.181 12447 333208
Taylor, n = 12 0.318 0.209 16439 158038
Taylor, n = 14 0.321 0.316 20303 21791
Taylor, n = 16 0.332 0.316 22121 27351

Due to a prohibitively large number of domain splittings, straightforward interval meth-
ods and low order Taylor models fail to achieve the required sharpness. However, high order
Taylor model methods can provide the requested accuracy with a moderate information
count and without imposing excessive requirements on the computational overhead. More-
over, it is apparent that for each of the two problems there is an optimal computation order
that finds the results at a minimal cost. At this point, any further increase of the computa-
tion order results in only negligible improvements in sharpness at the expense of increased
information counts.

Conclusion We have developed an approach that allows the rigorous representation of
analytic functions by complex Taylor models. Compared to conventional interval methods
that model functions by range intervals, the new method propagates information on high
order derivatives together with rigorous remainder bounds. As an important consequence,
the sharpness of the computed enclosures scales with a high order of the size of the domain.

In computational mathematics, functions are frequently modeled by either one of the
following methods: numerical tables, symbolic representations, range intervals, finite ap-
proximations. The Taylor model approach offers a novel approach to rigorous numerical
analysis by combining many positive aspects of these seemingly different approaches. Tay-
lor models use high order approximations with symbolic polynomial operations and interval
methods to achieve sharp and guaranteed enclosures of functional dependencies.

Lastly, we point out that Taylor model methods are often transparent to the user of
computational software. While conventional interval methods often require an adaptation
of the underlying algorithms, Taylor model methods can usually be used as straightforward
drop-in replacements for floating point number methods and provide rigorous answers to
common questions.
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Summary

Ovsyannikov A., Berz M. Taylor Models and Computations in the Complex Plane.

This article is devoted to the extension of sphere of applications of Taylor models developed

earlier. A definition of the complex Taylor model is introduced. A possibility of their use in

the representation of complex analytical functions is considered. Rules for the construction of

complex Taylor models are suggested for elementary functions. Arithmetic operations on models

are introduced. A series of numerical patterns illustrating advantages of this approach are suggested.

Calculations had been made with the help of the system Cosy infinite.

Овсянников А., Берц М. Модели Тейлора и вычисления на комплексной плоскости.

Данная статья посвящена расширению сферы применения моделей Тейлора, разработан-
ных ранее. Вводится определение комплексной модели Тейлора. Рассматривается возможность
представления с их помощью комплексных аналитических функций. Приводятся правила по-
строения комплексных моделей Тейлора для элементарных функций. Вводятся арифметиче-
ские операции над моделями. В работе рассматривается ряд численных примеров, иллюстри-
рующих возможности данного подхода. Вычисления проводились с помощью системы Cosy
infinite.



РЕФЕРАТ

УДК 519.6

O v s y a n n i k o v A., B e r z М. Taylor Models and Computations in the
Complex Plane. // Вестн. С.-Петерб. ун-та. Сер. 10. 2009. Вып. 2. C. 00-00.

The conduction of scientific and engineering computer calculations is non-trivial task.
One of important components of this task is the assessment of received results and the
assessment of preciseness (correctness) of calculated values. In practice it is common sense
and professional experience of the calculator. More formal approach to the task means such
organization of the calculation process that automatically makes correlation of calculation
values with relation to possible errors, miscalculations on uncertainties of given data as
well as approximation errors and errors which may occur due to computer representation
of numerical values etc. The result of such calculations is certain interval or set that is
certain to contain correct solution. Many publications deal with the construction of such
mathematically approved methods of calculation. As a rule they are based on the interval
mathematics and interval modifications of traditional (conventional) numerical methods. In
this case it is not always possible to get as a result intervals, which are narrows enough. Thus
in the process of calculations one can get catastrophic ballooning of intervals as the result,
for example, of dependency effect which leads to certain overestimations. The usage of the
method of representation of functions into the Taylor series with simultaneous control of
remainders bounds effectively allows effective realization of the calculations with automatic
control of the value of calculation errors. This approach developed in works by Martin Berz
and Kyoko Makino for the case of real functions has, as it is shown, some advantages. With
the turn to the complex plane all calculation problems are getting even more difficult. In
this paper the development of the technique of calculations based on Taylor’s model for
complex analytical functions is considered. Calculation technique based on complex Taylor
model appears to be free of many failures of interval calculations or at least it is able to
reduce unwanted effects such as wrapping effect and dependency problem.

Keywords: Taylor models, complex interval arithmetic, dependency problem, wrapping
effect.


