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A high order optimal control strategy is proposed in this work, based on the use of
differential algebraic techniques. In the frame of orbital mechanics, differential algebra
allows to represent, by high order Taylor polynomials, the dependency of the spacecraft
state on initial conditions and environmental parameters. The resulting polynomials can
be manipulated to obtain the high order expansion of the solution of two-point boundary
value problems. Since the optimal control problem can be reduced to a two-point
boundary value problem, differential algebra is used to compute the high order expansion
of the solution of the optimal control problem about a reference trajectory. Whenever
perturbations in the nominal conditions occur, new optimal control laws for perturbed
initial and final states are obtained by the mere evaluation of polynomials. The perfor-
mances of the method are assessed on lunar landing, rendezvous maneuvers, and a low-
thrust Earth–Mars transfer.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Nominal space trajectories are usually designed by
solving optimal control problems that minimize the con-
trol action to meet mission constraints. However, uncer-
tainties and disturbances affect the spacecraft dynamics in
real scenarios. Moreover, state identification is influenced
by navigation errors; consequently, the spacecraft state is
only known with a given accuracy. Thus, after the nominal
solution is computed, an optimal feedback control strategy
that assures the satisfaction of mission constraints must be
implemented. More specifically, given an initial deviation
of the spacecraft state from its nominal value or a pertur-
bation on the nominal final target conditions, the optimal
control aims at canceling the effects of such errors by
correcting the nominal control law, while minimizing
propellant consumption.
d by Elsevier Ltd. All rights

izia).
Optimal feedback control was originally developed for
linear systems. In linear optimal control theory, the system
is assumed linear and the feedback controller is con-
strained to be linear with respect to its input [1]. The
technological challenges imposed by the recent advances
in aerospace engineering are demanding stringent accu-
racy requirements and cost reduction for the control of
nonlinear systems. Unfortunately, the accuracy of linear-
ized dynamics can drop off rapidly in nonlinear aerospace
applications, affecting the performances of linear optimal
controller. Thus, nonlinear optimal feedback control theory
has gained interest in the past decades.

Various aspects of nonlinear optimal control have been
addressed. Several techniques are available for solving
control-affine problems, which are mainly based on dynamic
programming or calculus of variations. In Bellmans dynamic
programming, the problem is approached by reducing
it to solving the nonlinear first-order partial differential
Hamilton–Jacobi–Bellman (HJB) equation [2]. The solution
to the HJB equation determines the optimal feedback
control, but its use is very intricate in practical problems.
reserved.
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Fig. 1. Analogy between the floating point representation of real num-
bers in a computer environment (left figure) and the introduction of the
algebra of Taylor polynomials in the differential algebraic framework
(right figure).
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An alternative approach is based on the calculus of varia-
tions and Pontryagins maximum principle, which show
the Hamiltonian nature of the second order information of
the optimal control problem [3]. Within this frame, the
optimal control problem is reduced to a two-point bound-
ary value problem (TPBVP) that is solved, in general,
by successive approximation of the optimal control input
using iterative numerical techniques. However, the solu-
tion determined is only valid for one set of boundary
conditions, which prevents its immediate use for feedback
control.

The complexity of finding the exact solution of the HJB
equation has motivated research for approximated methods
that are able to supply suboptimal laws for the control
of nonlinear systems about reference solutions. In Bryson
and Ho [2], an approximating technique is presented, based
on a second order expansion of the augmented performance
index of the optimal control problem, which is referred
to as neighboring extremal paths computation. The State-
dependent Riccati equation (SDRE) control method is among
the more attractive tools to obtain such approximate solu-
tions. It was originally proposed by Pearson [4], and Wernli
and Cook [5], and then described in detail by Mracek and
Cloutier [6], and Beeler [7]. This method involves manipulat-
ing the governing dynamic equations into a pseudo-linear
non-unique form in which system matrices are given as a
function of the current state and minimizing a quadratic-like
performance index. An algebraic Riccati equation using the
system matrices is then solved repetitively online to give the
optimal control law. Thus, the SDRE approach might turn out
to be computationally expensive when the solution of the
Riccati equation is not properly managed. This can prevent its
use for real-time optimal control. A significant computational
advantage can be obtained with the θ�D technique [8].
Similar to SDRE, the θ�D technique relies on an approximate
solution to the HJB equation. However, it offers a great
computational advantage for onboard implementation with-
out solving the Riccati equation repetitively at every instant.

Recent advances have been made in the frame of
variational approach to optimal control theory. Second
order methods were introduced by Bullock [9] and then
extended by Olympio [10] to space trajectory design. Based
on the Hamiltonian nature of the optimal control problem,
the method computes a linear control update iteratively
using the gradient of the Hamiltonian function. A higher
order approach was introduced by Park and Scheeres
[11] through the theory of canonical transformations.
More specifically, canonical transformations solve bound-
ary value problems between Hamiltonian coordinates and
momenta for a single flow field. Thus, based on the
reduction of the optimal control problem to an equivalent
boundary value problem, they can be effectively used to
solve the optimal control problem analytically as a func-
tion of the boundary conditions, which is instrumental
to optimal feedback control. The main difficulty of this
approach is finding the generating functions via the solu-
tion of the Hamilton–Jacobi equation. This problem was
solved by Park and Scheeres by expanding the generating
function in power series of its arguments.

Differential algebraic (DA) techniques [12] are used in
this work to develop an alternative approach to the gene-
rating function method. Differential algebra serves the
purpose of computing the derivatives of functions in a
computer environment. More specifically, by substituting
the classical implementation of real algebra with the
implementation of a new algebra of Taylor polynomials, it
expands any function f of v variables into its Taylor series up
to an arbitrary order n. DA techniques are used in this work
to represent the dependency of the spacecraft state on the
initial conditions by means of high order Taylor polyno-
mials. Then, the resulting Taylor polynomials are manipu-
lated to impose the boundary and optimality conditions of
the optimal control problem. This enables the expansion of
the solution of the optimal control problem with respect to
the initial conditions about an available reference trajectory.
The resulting Taylor polynomials can be evaluated for new
solutions of the optimal control problem, so avoiding
repetitive runs of classical iterative procedures.

The paper is organized as follows. A brief introduction
to differential algebra is given in Section 2. Being at the
basis of the proposed methods, the possibility of expand-
ing the flow of ODEs is presented in Section 3. The optimal
control problem and the algorithm for the high order
expansion of its solution are illustrated in Sections 4 and 5,
respectively. The application of the algorithm to a rendez-
vous maneuver, a lunar landing, and a low-thrust Earth–
Mars transfer problem is addressed in Section 6.

2. Differential algebra

DA techniques find their origin in the attempt to solve
analytical problems by an algebraic approach [12]. Histori-
cally, the treatment of functions in numerics has been
based on the treatment of numbers, and the classical
numerical algorithms are based on the mere evaluation
of functions at specific points. DA techniques are based on
the observation that it is possible to extract more informa-
tion on a function rather than its mere values. The basic
idea is to bring the treatment of functions and the
operations on them to the computer environment in a
similar way as the treatment of real numbers. Referring to
Fig. 1, consider two real numbers a and b. Their transfor-
mation into the floating point representation, a and b, is
performed to operate on them in a computer environment.
Then, given any operation � in the set of real numbers, an
adjoint operation ⊗ is defined in the set of FP numbers
such that the diagram in figure commutes. (The diagram
commutes approximately in practice, due to truncation
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errors.) Consequently, transforming the real numbers
a and b in their FP representation and operating on them
in the set of FP numbers return the same result as carrying
out the operation in the set of real numbers and then
transforming the achieved result in its FP representation.
In a similar way, suppose two sufficiently regular functions
f and g are given. In the framework of differential algebra,
the computer operates on them using their Taylor series
expansions, F and G. Therefore, the transformation of real
numbers in their FP representation is now substituted by
the extraction of the Taylor expansions of f and g. For each
operation in the function space, an adjoint operation in
the space of Taylor polynomials is defined such that the
corresponding diagram commutes. Extracting the Taylor
expansions of f and g and operating on them in the
function space return the same result as operating on
f and g in the original space and then computing the Taylor
expansion of the resulting function. The straightforward
implementation of differential algebra in a computer
allows to compute the Taylor coefficients of a function
up to a specified order n, along with the function evalua-
tion, with a fixed amount of effort. The Taylor coefficients
of order n for sums and product of functions, as well as
scalar products with reals, can be computed from those of
summands and factors; therefore, the set of equivalence
classes of functions can be endowed with well-defined
operations, leading to the so-called truncated power series
algebra [13].

Similar to the algorithms for floating point arithmetic,
the algorithm for functions followed, including methods to
perform composition of functions, to invert them, to solve
nonlinear systems explicitly, and to treat common ele-
mentary functions [12]. In addition to these algebraic
operations, also the analytic operations of differentiation
and integration are introduced, so finalizing the definition
of the DA structure. The differential algebra sketched in
this section was implemented by Berz and Makino in the
software COSY-Infinity [14].

3. High order expansion of ODE flow

The differential algebra introduced in the previous
section allows to compute the derivatives of any function
f of v variables up to an arbitrary order n, along with the
function evaluation. This has an important consequence
when the numerical integration of an ODE is performed
by means of an arbitrary integration scheme. Any explicit
integration scheme is based on algebraic operations,
involving the evaluations of the ODE right hand side at
several integration points. Therefore, carrying out all the
evaluations in the DA framework allows differential alge-
bra to compute the arbitrary order expansion of the flow of
a general ODE initial value problem.

Without loss of generality, consider the scalar initial
value problem

_x ¼ f ðxÞ
xðtiÞ ¼ xi:

(
ð1Þ

Replace the point initial condition xi with its DA repre-
sentative ½xi�, i.e., consider the variation ½xi� ¼ x0i þ δxi,
where x0i is the reference point for the expansion. If all
the operations of the numerical integration scheme are
carried out in the framework of differential algebra, the
Taylor expansion of the solution with respect to the initial
condition is obtained at each step. As an example, consider
the forward Euler scheme

xk ¼ xk�1 þ Δt � f ðxk�1Þ ð2Þ
and analyze the first integration step, i.e.,

x1 ¼ x0 þ Δt � f ðx0Þ; ð3Þ
where x0 ¼ xi. Substitute the initial value with ½x0� ¼ ½xi� ¼
x0i þ δxi in Eq. (3) for

½x1� ¼ ½x0� þ Δt � f ð½x0�Þ: ð4Þ
If the function f is evaluated in the DA framework, the
output of the first step, ½x1�, is the Taylor expansion of the
solution x1 at t1 with respect to the initial condition about
the reference point x0i . The previous procedure can be
repeated for the subsequent steps until the last integration
step is reached. The result at the final step is the n-th order
Taylor expansion of the flow of the initial value problem
(1) at the final time tf. Thus, the expansion of the flow of a
dynamical system can be computed up to order n with a
fixed amount of effort.

4. Optimal control problem

Suppose the spacecraft moves under the general
dynamics

_x ¼ f ðxðtÞ;uðtÞ; tÞ; ð5Þ
where x¼ fx1;…; xvg is the state vector and u¼ fx1;…; xmg
is the control vector (m≤v). The optimal control problem
aims at finding the m control functions uðtÞ that minimize
the performance index

J ¼ φðxf ; tf Þ þ
Z tf

ti
LðxðtÞ;uðtÞ; tÞ dt: ð6Þ

The initial state vector, xi, and the final state vector, xf , are
not necessarily fixed, as well as the final time tf. In addition
to the previous statements, boundary and path constraints
can be imposed:

ψðxf ; tf Þ ¼ 0 and CðuðtÞ; tÞ≤0; ð7Þ
respectively, where ψ ¼ fψ1;…;ψpg and C ¼ fC1;…;Cqg.

The above problem can be solved by reformulating
it as a boundary value problem on a set of differential
algebraic equations (DAEs) [2]. To this aim, the dynamics
and constraints are added to the performance index J to
form the so-called augmented performance index

J ¼ φðxf ; tf Þ þ νTψðxf ; tf Þ

þ
Z tf

ti
½Lðx;u; tÞ þ λT ðf ðx;u; tÞ� _xÞ þ μT Cðu; tÞ� dt; ð8Þ

where two kinds of Lagrange multipliers are introduced:
�
 a p-dimensional vector of constants, ν, for the final
constraints in (7);
�
 an n-dimensional and a q-dimensional vector of func-
tions λ and μ for the dynamics in (5) and the path
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constraints in (7), which are usually referred to as
adjoint or costate variables.

The optimal control problem is then reduced to identify a
stationary point of the augmented performance index J .
This is achieved by imposing the gradient of J to be zero
with respect to all optimization variables; specifically,
the state vector x and the control vector u, the Lagrange
multipliers ν and the costate variables λ and μ, the
unknown components of the initial state xi and the final
state xf , and the final time tf. In particular, the optimality
with respect to λ and x leads to the following relations:

∂J
∂λ

¼ 0⇒ _x ¼ f x;u; tð Þ

∂J
∂x

¼ 0⇒_λ ¼� ∂f
∂x

� �T

λ� ∂L
∂x

� �T

; ð9Þ

whereas ∂J=∂u¼ 0 yields

∂L
∂u

� �T

þ ∂f
∂u

� �T

λþ ∂C
∂u

� �T

μ¼ 0: ð10Þ

Eqs. (9) and (10) together are usually referred to as Euler–
Lagrange equations. It is worth observing that the Euler–
Lagrange equations form a system of DAEs: the differential
part is represented by Eq. (9), which defines the dynamics
for the state variables x and the costate variables λ; the
role of the algebraic constraint is played by Eq. (10).
The previous system must be coupled with the boundary
conditions ensuing from the optimality conditions with
respect to the remaining optimization variables (see [2] for
further details). The optimal control problem is therefore
solved as a boundary value problem on a system of DAEs.

A particular optimal control problem is addressed in
this work. The dynamics is supposed to be affine in the
control vector u, i.e.,

_x ¼ f ðx;u; tÞ ¼ ~f ðx; tÞ þ BðxÞu; ð11Þ
where BðxÞ is a v�m matrix, whose elements do not
depend on the controls. Moreover the control functions
are sought to minimize the performance index

J ¼ 1
2

Z tf

ti
uTu dt ð12Þ

and no path constraints are imposed. Based on the
previous hypotheses, Eq. (10) assumes the simpler form

uþ BT ðxÞλ¼ 0: ð13Þ
Eq. (13) supplies an explicit relation between the control
functions u and the costate variables λ, which can be
substituted in Eq. (9). The original system of DAEs of
the Euler-Lagrange equations translates into the system
of ODEs:

_x ¼ ~f x; tð Þ�B xð ÞBT xð Þλ

_λ ¼� ∂f ðx; λ; tÞ
∂x

� �T

λ: ð14Þ

Therefore, the original optimal control problem reduces to
a two-point boundary value problem on the set of ODEs
(14), where boundary conditions are imposed on the initial
and final values of the state and costate variables, depend-
ing on the optimal control problem at hand.

5. High order optimal feedback

Suppose the problem of transferring a spacecraft from a
fixed initial state to a fixed final state with fixed ti and tf
is of interest, i.e., boundary conditions assume the simpler
form

xi ¼ x i

xf ¼ x f :

(
ð15Þ

The optimal control problem is then reduced to the
problem of solving Eq. (14) subject to the boundary condi-
tions in Eq. (15).

Several techniques are available in the literature to
solve the previous problem for assigned xi and xf , like
the simple and multiple shooting schemes or difference
methods [15]. This means that, given xi and xf , the
previous techniques are applied to compute the initial
values of the costate variables that solve the TPBVP, which
will be indicated as λ0i . The solution is then uniquely
identified by the initial state and costate vectors, xi and
λ0i , respectively.

Assume now a reference solution λ0i is available and
suppose the Taylor expansion of the solution of the opti-
mal control problem with respect to the initial state
and the final state is of interest. Differential algebra can
effectively serve this purpose. To this aim, initialize both
the initial state xi and the initial costate λi as DA variables.
This means the variations

½xi� ¼ xi þ δxi
½λi� ¼ λ0i þ δλi ð16Þ

with respect to the fixed initial state xi and the reference
solution λ0i are considered.

Using the techniques introduced in Section 3, the
solution of Eq. (14) at tf is expanded with respect to the
initial state and costate vectors. More specifically, the
dependence of the final state and costate vectors on their
initial values is obtained in terms of the high order
polynomial map

½xf �
½λf �

 !
¼

x f þ δxf
λ0f þ δλf

 !
¼

xf

λ0f

 !
þ

Mxf

Mλf

 !
δxi
δλi

 !
; ð17Þ

where xf and λ0f are the constant parts of the map (i.e.,
the reference solution flowing from xi and λ0i under the
ODEs (14)), whereas all higher order terms are included in
Mxf and Mλf .

Subtract now the constant part from Eq. (17) for

δxf
δλf

 !
¼

Mxf

Mλf

 !
δxi
δλi

 !
: ð18Þ

Then, extract Mxf from Eq. (18) and consider the map

δxf
δxi

 !
¼

Mxf

Ixi

 !
δxi
δλi

 !
; ð19Þ

which is built by concatenating Mxf with the identity map
for δxi, Ixi .



P. Di Lizia et al. / Acta Astronautica 93 (2014) 217–229 221
Using inversion techniques for high order polynomials
[12], the map in Eq. (19) is inverted to obtain

δxi
δλi

 !
¼

Mxf

Ixi

 !�1
δxf
δxi

 !
: ð20Þ

Consider now the components of map (20) for δλi,
which will be indicated as

δλi ¼Mλi ðδxf ; δxiÞ: ð21Þ

The polynomials in (21) are the arbitrary order Taylor
expansion of the solution of the optimal control problem
with respect to the initial and final states. More specifi-
cally, given any perturbation δxi and δxf of the initial and
final states from their reference values xi and xf , respec-
tively, the mere evaluation of the polynomials in Eq. (21)
delivers the high order correction δλi to λ0i to obtain
the corresponding solution of the optimal control problem
from the perturbed initial state x i þ δxi to the perturbed
final state xf þ δxf .

It is worth observing that a possible alternative
approach to address the previous problem consists in
solving the TPBVP for the new solution λi using classical
techniques. The main disadvantage of this approach is that
a new TPBVP must be solved for each displaced initial and
final states. This involves running through the iterative
procedures of the classical TPBVP solvers. Each iterative
procedure is able to deliver one solution, whose validity
is limited to one specific δxi and δxf . Consequently, the
classical TPBVP solvers should be applied for each new δxi
and δxf . The Taylor expansion of the optimal control
problem supplies an effective alternative method to over-
come this issue. First of all, analytical information is
gained, which can supply a valuable insight on the under-
lying dynamics. Moreover, for any δxi and δxf , the same
polynomial map is evaluated to compute the optimal
control law connecting the displaced initial state to the
displaced target state. This means that the high order map
in Eq. (21) must be computed only once for all possible
offsets, and the optimal control laws are then obtained
through the evaluation of the same polynomials, so avoid-
ing the use of iterative algorithms. Nevertheless, the poly-
nomial relation between δλi, and δxi and δxf given by
Eq. (21) is accurate up to the order of the DA-based
computation.
Fig. 2. Rendezvous maneuver.
6. Applications

The performances of the high order optimal feedback
control method introduced in Section 5 are investigated
on three test cases: a rendezvous maneuver, the landing
of a probe on Moon's surface, and a continuously propelled
Earth–Mars transfer. The effectiveness of the control
corrections, as well as the accuracy of the polynomial
expansions, and the computational efficiency of the
method are assessed. The three test cases favor the
illustration of the performances of the method and have
been taken from relevant literature [17]. Large perturba-
tions on boundary conditions are considered to magnify
nonlinearities and properly compare the high order
solutions with those attained using classical nonlinear
methods such as simple shooting.

As mentioned above, the accuracy of map (21) depends
on the computation order. Within the radius of conver-
gence of the Taylor expansion, the order necessary to meet
a given accuracy level can be selected by assessing the
error of the polynomial approximation. The error of a
Taylor expansion of order n over the set of all admissible
perturbations can be estimated by computing the range of
the polynomial of all n+1-th order terms over the same
set. This can be done using polynomial bounders available
in COSY-Infinity [14]. The same technique can be adopted
to estimate the level of uncertainty that can be managed
for a given expansion order and desired accuracy. This
procedure was adopted to select the expansion order used
in the lunar landing test case. On the other hand, the
dependency of the error on the expansion order is studied
in the rendezvous and Earth–Mars transfer test cases.
6.1. Rendezvous maneuver

A rendezvous maneuver is analyzed as the first test
case for the high order optimal feedback technique intro-
duced in Section 5. The study of this problem is motivated
by the work of Park, Guibout and Scheeres based on
the alternative approach of generating functions [17,11].
The space rendezvous is a maneuver which takes two
spacecraft, originally moving on different orbits, to the
same final reference orbit, matching their positions and
velocities. Referring to Fig. 2, this rather general case can
be focused on the problem of a spacecraft (referred to
as chaser) targeting an object (referred to as target) on
its orbit.

A continuously propelled rendezvous maneuver is
considered. The target is supposed to move on a circular
orbit of radius R, whereas the chaser is assumed to be
subject to a controlled two-body dynamics. In this frame-
work, the rendezvous maneuver is classically designed in a
non-inertial reference frame that is centered at the target
position, with x-axis constantly aligned with the orbital
radius, y-axis directed towards the target orbital velocity,
and z-axis chosen to form a right-handed coordinate system
with x and y (see Fig. 2). Thus, the non-inertial reference
frame rotates along the circular target orbit with constant
angular velocity ω and the chaser is subject to the relative
dynamics

_x ¼ vx; _y ¼ vy; _z ¼ vz

_vx ¼ 2 _y� 1þ xð Þ 1
r3
�1

� �
þ ux
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Fig. 4. Rendezvous maneuver: velocity.
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Fig. 5. Rendezvous: control.
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_vy ¼�2 _x�y
1
r3
�1

� �
þ uy

_vz ¼�1
r3

zþ uz; ð22Þ

where lengths and time are normalized using R and 1=ω,
respectively; u¼ ðux;uy;uzÞ is the control vector; and

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ xÞ2 þ y2 þ z2

q
.

The chaser is supposed to have initial offsets from the
target in both position and velocity, which are denoted by
δri and δvi, respectively. The optimal control problem is
solved to design the control law u that takes the chaser
from its displaced initial state to the fixed target state (i.e.,
to the origin of the rotating frame with zero velocity) in a
given time tf�ti. The relative dynamics (22) is affine in the
control vector u. Thus, the optimal control problem can be
reduced to a TPBVP with fixed initial and final states for
the chaser.

First, a reference solution of the optimal control pro-
blem must be identified before applying the high order
DA-based technique. To this aim, it is worth observing that
the relative dynamics in Eq. (22) satisfies f ðx¼ 0;u¼ 0; tÞ
¼ 0, with x¼ ðx; y; z; vx; vy; vzÞ. This means that xðtÞ ¼ 0 and
uðtÞ ¼ 0 for any t is a trivial solution of the optimal control
problem that is used as reference solution for the high
order expansion.

The performances of the high order optimal feedback
control algorithm are now investigated. The chaser is sup-
posed to have a displaced initial position δri ¼ ð0:2;0:2;0Þ
and a displaced initial velocity δvi ¼ ð0:1;0:1;0Þ. The rendez-
vous maneuver is designed to take the chaser to the target
state in 1 time unit. The exact solution of the optimal control
problem is first identified by solving the associated TPBVP
using a simple shooting technique. The result is reported
in Figs. 3, 4, and 5 in terms of position, velocity, and
control profile, respectively. It is worth observing that the
relative dynamics in Eq. (22), together with Eq. (13), yields
u¼�λ4;5;6, so that λ4 ¼�ux, λ5 ¼�uy, and λ6 ¼�uz. For the
sake of completeness, Fig. 6 illustrates the reference profile of
the first two components of the costate vector, λ1;2.

Figs. 3 and 4 show that the exact solution takes the
chaser to the target state in the assigned time. The exact
solution is then compared with the trajectory, control, and
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Fig. 3. Rendezvous maneuver: position.
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Fig. 6. Rendezvous: λ1;2.
costate profiles obtained using the DA-based optimal
feedback control algorithm introduced in Section 5, using
different expansion orders. As can be seen, the low accu-
racy of the first order correction is significantly improved
using fourth and sixth order expansions. This is confirmed
in Figs. 7 and 8, which illustrate the profiles of the error
of the DA-based approximation with respect to the exact
solution along the maneuver at different expansion orders.
The error is computed as the norm of the difference vector
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between the DA-based approximation of u and λ1;2;3, and
their exact counterparts.

As already mentioned in Section 5, the main advantage
of the high order optimal feedback control algorithm is
that map (21) must be computed only once for all possible
offsets: for any initial offset of the chaser with respect
to the target, the same polynomial map is evaluated to
compute the corresponding optimal control law. Then,
moving to the real scenario, once the offset is measured,
the corresponding optimal control can be computed by
evaluating map (21) instead of using iterative techniques.
This feature is exploited in Figs. 9 and 10: a set of 20
perturbed positions distributed over a circle of radius 0.2
in the rotating frame is selected. For each sample, a sixth
order correction is computed using the polynomial map (21).
Clearly, the chaser is always moved to the origin of the
reference frame.

The advantages of the high order optimal feedback
with respect to classical simple shooting is now assessed.
The computational time required to evaluate the sixth
order map (21) at all perturbed positions is 7.18�10�3 s
on a Intel Core i5 2.4 GHz, running Mac OS X 10.7.5. This
value can be compared with the time required to obtain
the exact solution for all perturbed positions using classi-
cal simple shooting. Using ballistic motion to compute the
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Fig. 7. Rendezvous: control error with respect to the exact solution.
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Fig. 10. Rendezvous: velocity trajectories for initial positions lying on a
circle of radius 0.2. Each petal is flown clockwise.
first guess for the initial costate vector, the iterative
procedure to solve the optimal control problem for all
perturbed initial positions using simple shooting takes
13.62 s on the same machine. Although more efficient
procedures might be used to identify first guesses for the
initial costates, the significant difference in computational
time highlights the advantage of high order optimal feed-
back control with respect to classical simple shooting.
The time required to compute the sixth order map (21)
is 5.75 s. However, as mentioned above, it must be com-
puted only once for all possible offsets, which is performed
offline.

The radius of convergence of the Taylor expansion is
investigated in Figs. 11 and 12. More specifically, a radial
displacement of the chaser initial position of the form
δri ¼ ðr;0;0Þ is imposed, whereas the initial velocity is set
to its reference value (i.e., δvi ¼ ð0;0;0Þ). The error of the
DA-based approximation with respect to the exact solution
is computed as the norm of the difference vectors between
the associated initial values of u and λ1;2;3. The errors on u
and λ1;2;3 are reported in Figs. 11 and 12, respectively, for
different expansion orders. As error of the DA-based
approximation tends to increase with the distance r from
the reference position. The convergence radius can be
estimated as the maximum r for which the error tends
to decrease for increasing expansion orders. It can be
approximated to about 0.35 in this test case.



0.1 0.2 0.3 0.4 0.5 0.6
10−6

10−5

10−4

10−3

10−2

10−1

100

r

||u
ex

ac
t(0

) −
 u

D
A

(0
)||

1st order expansion
4th order expansion
6th order expansion

Fig. 11. Rendezvous: error of the DA-based approximation on the initial
control vs. distance from reference point.

Fig. 12. Rendezvous: error of the DA-based approximation on the initial
λ1;2;3 vs. distance from reference point.

Fig. 13. Lunar landing problem.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

time [min]

al
tit

ud
e 

[k
m

]

reference solution
without corrections
with corrections

Fig. 14. Lunar landing: altitude dispersion.
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6.2. Lunar landing

The optimal feedback control of a probe landing on
Moon's South pole is addressed in this section. The control
profile is designed in the frame of the controlled two-body
problem. Referring to Fig. 13, the lander is supposed to
originally move on an elliptical polar descent orbit, taking
it from an altitude of 100 km (apocenter) to an altitude of
20 km (pericenter). The landing phase is supposed to start
at the pericenter of the descent orbit. Final conditions are
imposed to put the lander over Moon's south pole at an
altitude of 2 m, with a downward velocity of 3 m/s, from
which the final phase of the landing maneuver is supposed
to start. A Cartesian reference frame is selected to describe
the dynamics: the y-axis is aligned with Moon's South
pole; the x-axis lies on Moon's equatorial plane, pointing
towards the orbital descending node; the z-axis is selected
to form a right-handed reference system. The landing
dynamics is described by the set of ODEs as follows:

_r ¼ v

_v ¼� μ

r3
r þ u; ð23Þ

in which r and v are the probe position and velocity,
respectively; r¼ ∥r∥; μ is Moon's gravitational parameter;
and u is the control vector. As from Eq. (23), the dynamics
is affine in the control vector u. Thus, Eq. (14) holds for the
problem at hand and the optimal control problem is then
reduced to a TPBVP with fixed initial and final states for
the landing probe.

A reference solution of the optimal control problem is
first identified by solving the resulting TPBVP. The initial
time is chosen to be zero, whereas the landing duration
is set to 31 min. A simple shooting technique is used to
solve the TPBVP and to compute the reference trajectory
reported in Fig. 14. Fig. 15 illustrates the corresponding
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reference control profile in terms of histories of its com-
ponents. Due to the symmetry of the problem, the refer-
ence trajectory lies on the x–y plane. Similar to the
rendezvous test case, within the dynamics of Eq. (23),
Eq. (13) yields u¼�λ4;5;6, where λ4;5;6 are the last three
components of the costate vector. Thus, Fig. 15 is also
representative of the reference profile for λ4;5;6. For the
sake of completeness, Fig. 16 illustrates the reference
profile of the remaining three components of the costate
vector, λ1;2;3, which can be shown to equal the first
derivative of the control profile [16].

The initial probe position and velocity, ri and vi,
respectively, are now supposed to be affected by errors.
The high order optimal feedback control algorithm intro-
duced in Section 5 is applied to optimally correct the
control law in order to reach the reference final state. More
specifically, the reference trajectory in Fig. 14 is used as
reference solution for the Taylor expansions. The algorithm
is then applied to compute the polynomial map (21) for
the problem at hand using third order expansions. Thus,
given any perturbation δri and δvi, the polynomial map is
evaluated by setting δxi ¼ ðδri; δviÞ and δxf ¼ ð0;0Þ. The
corresponding optimal value of λi is computed.

The performances of the procedure are studied here-
after. A maximum position error of 1 km and a maximum
velocity error of 5 m/s are supposed to affect each compo-
nent of the initial lander position and velocity, respec-
tively. The final dispersion at landing is then investigated.
First of all, for the sake of a more complete analysis, given
any perturbed initial conditions, no corrections to the
nominal costate variables (and, consequently, to the con-
trol) are applied. In particular, 100 samples are randomly
generated within the initial uncertainty box with uniform
distribution. Each sample is then propagated using the
nominal guidance law. The resulting maximum and mini-
mum lander altitudes at each integration time are com-
puted over the propagated set. Fig. 14 shows the resulting
altitude dispersion throughout landing. The figure illus-
trates how initial conditions corresponding to both impacts
on Moon's surface (lower area of the strip) and trajectories
moving away from the landing site (higher area of the strip)
are included in the initial error box.
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Fig. 16. Lunar landing: reference λ1;2;3 profile.
The high order optimal feedback is then applied. The
third order corrections are computed using Eq. (21): for
the same random samples of Fig. 14, the errors on the
initial state are computed and the map is evaluated to
correct the reference λ0i . The resulting set of trajectories is
reported again in Fig. 14 for the sake of comparison. The
corrected optimal control laws take the probe to the final
desired conditions and the resulting final dispersion is
drastically reduced. This is better illustrated in Figs. 17
and 18, where the fulfillment of the requirements on the
final state vector is investigated. For each sample, the error
of the corresponding trajectory with respect to the refer-
ence one is evaluated in terms of displacements of the
position and velocity vectors from their reference values.
More precisely, at each integration time, the position and
velocity errors are computed as maximum norms of the
associated difference vectors. Thus, the maximum position
and velocity errors are evaluated at each integration time
over the propagated set. The resulting curves are used
to identify the areas reported in Figs. 17 and 18. The
maximum errors for the uncorrected reference control
law (light gray) are compared with those achievable using
the corrected costate variables (dark gray). Using the
control corrections, the final position error is reduced to
a maximum value of about 0.5�10�1 m, to compare to a
maximum value of about 20 km without corrections.
Similar results hold for the velocity error, which is reduced



Table 1
Lunar landing: performance index and mass fraction range over all
samples.

Parameter Nom. value Min. value Max. value

Performance index (m2/s3) 1124.300 1122.828 1126.148
Mass fraction mf =mi 0.48126 0.48045 0.48210
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to a maximum value of about 1�10�4 m/s instead of a
maximum value of 23 m/s. It is worth observing that,
despite the small final errors, the displacements along
the maneuver turn out to be large. This is a fair result, as
constraints are imposed only on the final conditions.

The control corrections are analyzed in Fig. 19. For each
component of the control vector u, the maximum control
correction is evaluated among the random samples, and
the resulting curves are reported in figure. A maximum
control correction of about 0.016 m/s2 is required for the
given error box. The same approach is used to assess the
maximum corrections to the reference values of λ1;2;3. The
resulting profiles are reported in Fig. 20.

Despite the optimality of the feedback strategy, the
value of the performance index in Eq. (12), as well as fuel
consumption, varies depending on the control profiles.
Table 1 compares the reference value of the performance
index with its minimum and maximum values assumed
over all the samples. The same comparison is carried out
on the mass fraction

mf

mi
¼ exp �

R tf
ti ∥u∥ dt
Isp g0

 !
; ð24Þ
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Fig. 20. Lunar landing: maximum λ1;2;3 corrections.
where mi and mf are the initial and final probe mass,
respectively; g0 is the standard gravity; Isp is the specific
impulse of the thrusters, which is assumed to equal 317 s.

6.3. Earth–Mars transfer

The last test problem concerns a low-thrust Earth–Mars
transfer. The transfer is designed in the frame of the
controlled two-body problem. Consequently, the space-
craft motion is modeled in the inertial ecliptic reference
frame by the six first order ODEs

_x ¼ vx; _y ¼ vy; _z ¼ vz

_vx ¼� μ

r3
xþ ux

_vy ¼� μ

r3
yþ uy

_vz ¼� μ

r3
zþ uz; ð25Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, μ is Sun's gravitational para-

meter, u¼ fux;ux;uzg is the control acceleration. Boundary
constraints are imposed at the beginning and the end of
the transfer. Specifically, the spacecraft is constrained to
leave the Earth with Earth's velocity at time ti ¼ 1213:789
MJD2000 and to match Mars' position and velocity at time
tf, where the transfer time tf�ti is set to 513.210 days.
Similar to the previous test cases, the dynamics (25) is
affine in the control. Thus, the optimal control problem can
be reduced to a TPBVP with fixed initial and final states.

A reference optimal transfer is first identified by solving
the TPBVP with a simple shooting technique. The resulting
optimal transfer is illustrated in Fig. 21 in terms of a two-
dimensional projection of the optimal trajectory on the
ecliptic plane. The reference optimal control magnitude
profile is reported in Fig. 22.

The problem of targeting a perturbed final state is now
addressed. The third order Taylor expansion of the solution
of the optimal transfer problem with respect to the
final state is computed with the algorithm introduced in
Section 5 to obtain a third order polynomial map (21).
Then, the final position of the transfer is supposed to be
affected by a maximummeasurable error of 0.1 AU on each
component. Thus, given any perturbation δrf of the final
position from its reference value, the polynomial map (21)
is evaluated at δxf ¼ ðδrf ;0Þ and δxi ¼ ð0;0Þ. The corre-
sponding optimal value of λi is computed. Then, starting
from the reference initial spacecraft state and the new
initial costates, a forward point-wise integration of the
state and costate dynamics delivers the optimal control
law and transfer trajectory from the reference initial state
to the perturbed final target position.

The performances of the procedure are studied here-
after. A maximum perturbation of 0.1 AU is imposed on the
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Fig. 23. Earth–Mars transfer problem: trajectories for third order corrections.
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Fig. 24. Earth–Mars transfer problem: detail of Fig. 23 at arrival.
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x and y components of the final target position. The
boundary of the corresponding square is sampled uni-
formly. For each sample, the associated δrf is computed
and the map (21) is evaluated to obtain the new optimal
trajectory. The resulting transfers are reported in Fig. 23:
starting from the reference initial position, the new
trajectories move away from the reference one along the
transfer and reach the imposed position on the final
square (see Fig. 24 for a detail at arrival). Fig. 25 plots
the resulting optimal control magnitude profiles. Once
again it is worth highlighting that, thanks to the third
order optimal feedback, the computation of each optimal
control law is reduced to the evaluation of a polynomial.
Similar to the lunar landing case, the perturbed solutions
are studied in Table 2 in terms of performance index and
mass fraction mf =mi. More specifically, the table compares
their reference values with the minimum and maximum
values assumed over all the samples.

The dependence of the accuracy of the polynomial
map (21) on the order is investigated in Figs. 26–28. More
specifically, the imposed square at arrival is compared
with the actual final positions obtained with first, second,
and third order control corrections. The figure shows
the evident inaccuracy of first order corrections, which is



Table 2
Earth–Mars transfer problem: performance index and mass fraction range over all samples.

Parameter Nom. value Min. value Max. value

Performance index (m2/s3) 1.48390�1013 1.43055�1013 2.80070�1013

Mass fraction mf =mi 0.80655 0.74538 0.81984
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positions from first order corrections.

Fig. 27. Comparison between imposed square at arrival and actual final
positions from second order corrections.
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typical of classical linear feedback control algorithms.
Higher order corrections drastically reduce the final error.
7. Conclusion

A method for the computation of optimal feedback
control laws based on differential algebra has been intro-
duced, with applications to lunar landing, rendezvous
maneuvers, and Earth–Mars transfers. The method relies
on the high order expansion of the solution of the optimal
control problem about a reference trajectory. Thus, it
improves the results of classical techniques based on
the linearization of the dynamics. Moreover, the method
reduces the computation of new optimal control laws to
the mere evaluation of polynomials. This is a valuable
advantage over the conventional nonlinear optimal control
strategies, which are mainly based on iterative procedures.
However, the method is not free of limitations. More
specifically, it is only applicable to the class of optimal
control problems in which the system equations are
affine in the control vector. In addition, it cannot include
control saturation constraints in the version presented
in this paper. Finally, this work focused on the problem
of transferring a spacecraft from an initial fixed state
to a final fixed state, thus omitting the imposition of
soft constraints on boundary conditions. Ongoing work is
focused to address such limitations.
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