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Section V. Theoretical optics

Arbitrary order description of arbitrary particle optical systems
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The differential algebraic approach for the design and analysis of particle optical systems and accelerators 1s presented. It allows
the computation of transfer maps to arbitrary orders for arbitrary arrangements of electromagnetic fields, including the dependence
on system parameters. The resulting maps can be cast into different forms. In the case of a Hamiltonian system, they can be used to
determine the generating function or Eikonal representation. Also various factored Lie operator representations can be determined
directly. These representations for Hamiltonian systems cannot be determined with any other method beyond relatively low orders.

In the case of repetitive systems, a combination of the power series representation and the Lie operator representation allows a
nonlinear change of variables such that the motion is very simple and its long term behaviour can be studied very efficiently.
Furthermore, it is now possible to compute quantities relevant to the study of circular machines like tune shifts and chromaticities
much more efficiently. Besides these aspects, the ability to compute maps depending on parameters provides analytical insight into
the system. In addition, this approach allows very efficient optimization, to the extent that in many cases it 1s almost completely

analytic.

1. Introduction

Optical systems can be represented by a map relat-
ing final phase space coordinates z; to initial coordi-
nates z, and system parameters & in the following way:

=HM(z,, 8). 1)

Depending on the problem, the phase space varia-
bles can be sets of two or three positions and momenta,
and can contain other quantities like the spin. The
system parameters can include certain multipole
strengths, and in the two-dimensional case, the energy
deviation of the particle. Note that the distinction be-
tween variables and parameters is somewhat arbitrary;
we consider any quantity of interest a parameter if it
stays constant throughout the system.

The transfer map is the (unique) flow of certain
differential equations describing the evolution of the
variables:

= 8), @

The partial derivatives of the transfer map (1) with
respect to the phase space variables are called aberra-
tions, and the ones involving system parameters are
called sensitivities. The task of optics is to find the
aberration coefficients and sensitivities to a certain
order, and to try to modify them in such a way that the
map has certain desirable properties.
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Transfer maps are infinitely often differentiable
functions in several variables, and so are the equations
of motion determining them, and the fields and poten-
tials that affect the motion. The class of infinitely often
differentiable functions in v variables is usually denoted
by C®(R").

In a very broad sense, deriving statements about
optical systems strictly speaking means manipulating
various such functions. For example, the derivation of
analytic formulas for the image aberrations [1,2] of a
certain element is a formal algorithm involving oper-
ations on these functions. Unfortunately, the operations
required in this process tend to become tremendously
complex, and only relatively low orders were accessible
with human endurance levels (see refs. [3—-12], to name
just a few of the relevant papers).

The last years have seen a steady growth of non-
numerical computer applications, and formula manipu-
lators are getting better and better. These formula
manipulators are very helpful in answering important
questions that would take much longer or be simply
impossible to answer with paper and pencil. Unfor-
tunately, for most applications in optics, the commer-
cial formula manipulators are still not satisfactory.

It took a special purpose formula manipulator writ-
ten in Fortran [2,13] to obtain closed formulas for the
image aberrations of regular beamline elements to fifth
order. Higher orders seem impossible to achieve using
this technique because of the enormous growth in com-
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plexity for the analytical formulas describing the aber-
rations. The Fortran code for certain elements in the
code COSY 5.0 [14,15] that was generated using this
approach exceeds 30000 lines, and still there are no
explicit formulas for the sensitivities.

By looking at the analytical algorithms to determine
aberrations, we recognize an important pattern: to de-
termine the map to a certain order, it suffices to know
the fields to the same order, to know the differential
equations to the same order, etc. The higher orders,
both of the transfer map and all the intermediate func-
tions, are irrelevant. It turns out that it is a rigorous
understanding and studying of the algebraic implica-
tions of this phenomenon that eventually will allow us
to determine the desired transfer maps in a way that is
analytic enough to be accurate and fast, yet numerical
enough to be usable in practice.

2. Differential algebras

Let us again consider the above function space
C*®(R"). Roughly speaking, this is an incredibly large
structure, much larger than even the space of all the
functions that can be represented by a formula manipu-
lator. Indeed, C*(R") is an infinite-dimensional vector
space.

On this space, we now introduce a relation. For two
functions a, b € C*(R"), we say a=, b if a(0) = b(0)
and if all the partial derivatives of a and b agree at 0
up to order n. Note that our choice of 0 as the point of
comparison is merely a matter of convenience, and any
other point could be chosen as well.

One readily infers that a =, a, that a =, b entails
b=, a and finally a=, b, b=, ¢ entails a =, c. So the
relation “ =, ” is an equivalence relation. For any a, we
now look at all the b that satisfy b=, a. This set is
called [«],, the equivalence class of a with respect to

n

Indeed, the concept of the equivalence classes de-
scribes exactly what we mean by asking for the image
aberrations. We are not interested in the transfer map
proper, but only in its derivatives up to order #, i.e., the
class in which it falls. The set of all equivalence classes
introduced by =, on C*(R") we denote by , D,. It will
be this set that will soon allow us to compute aberra-
tions.

We now note that a,=, a, and b, =, b, implies
a; + b, =, a, + b,; for the derivatives up to order n of a
sum of functions, only the derivatives of up to order n
of the summands matter. This means that independent
of the choice of elements in two classes, the sum of the
elements is always in the same class. In a similar way
one observes that for any real ¢, a; =, a, implies ¢ q,
=, ¢-d,. So we can introduce an addition and a scalar

multiplication on the set of classes ,D, in the following
way:

lal, +[b].=[a+b],;
c-[a],=[c-al,. ()

The expressions are well defined because, according to
the above reasoning, any representant from [a] or [b]
yields the same result. It is rather simple to show that
with the above addition and scalar multiplication, , D,
is a vector space.

But we can introduce more operations on the struc-
ture. We observe a; =, a, and b, =, b, also implies
a,- b, =, a, - by; for the derivatives up to order n of a
product of functions, only the derivatives of up to order
n of the summands matter. Similar to above, we thus
can also introduce a multiplication on the structure:

[a]n'[b]n:=[a'b]n' (4)

Thus we have a vector space with a multiplication,
which can be shown to be distributive. So , D, is an
algebra. We want to introduce one more operation here,
which is based on the partial derivative. We note that
a=, b implies 3 /9x,a=,_,9/9x,b, and thus we can
introduce an operation d, on , D,:

alal= |5 5)

We note that 9 maps , D, into ,_,D,. It is relatively
easy to show that

3,([a]-[b]) =a-(3,[p]) + (3,[a]) - [5]. (6)

An operation of this type is called a derivation, and
an algebra with a derivation is called a differential
algebra. We note that a differential algebra with at least
two derivations contains a Lie algebra. The Poisson
bracket is constructed in the obvious way using the
derivations.

It turns out that our differential algebras are exten-
sion of the real numbers, much like the complex num-
bers. We identify any real number r with the class [r]
containing the constant function a(xy,..., x,) =r. Then
we obtain that

[r].+[s]l.=[r+s],,

[r]n'[s]n=[r's]n’ (7)
such that the “identification” is indeed a homomor-
phism from the reals into ,, D,. From now on we write r
for the class [7], similar to writing r instead of (r, 0) in
the complex case.

We also introduce special names for the following v
classes:

d,=[x). (8)

As we will see below, these elements are infinitely
small, and the d is chosen to mean a differential.

V. THEORETICAL OPTICS
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The monomials d, allow us to write the elements of
the differential algebra in a rather compact form. First
consider all the functions that have only one partial
derivative, namely the one with respect to 3 /0x{'... x}",
and let the value of the derivative be ¢. Then these are
the functions in the same class as the monomial c-
x{*...xJ:. But from egs. (3), (4) and (8), we infer that

this is the class ¢-d{"- ... - d}".
Now suppose a function a has all the derivatives
¢, ,=0"" Tra/dx{r... x}. Then by eq. (3) it can

be written as a sum

[a] = ZCJI,

The vector space , D, thus has the d{'-...-d}» as a
basis. It can be shown [16] that there are exactly (n +
v)!/(n'v!) such monomials, so our differential algebra
has finite dimension (n + v)!/(n'v!).

Eq. (9) stresses a very central property of the dif-
ferential algebras: It is possible to compute more com-
plicated classes from simpler ones. In terms of the
underlying functions, it means that we are able to
arithmetically compute their derivatives from the de-
rivatives of simpler functions.

So far we only have addition and multiplication
available in the differential algebras, and thus we can
use this property only for the computation of polynomi-
als, which are not very interesting. In the following
sections, we will develop the algebraic properties of the
differential algebras and discuss inverses and roots, and
we will discuss convergence problems which allows the
treatment of power series. After this is done, the class of
functions that we can compute derivatives of will have
grown substantially. It then includes almost all func-
tions that can be represented in finitely many steps by
additions, multiplications, subtractions, divisions, roots,
and power series. This is a very large set of functions: it
includes almost all functions that can be represented on
a computer.

Lodf L dp (9)

".1. Ordering and nilpotent elements

It is a rather interesting and important result that the
differential algebras discussed here can be ordered. To
each nonzero DA vector, we consider the subset that
has the lowest sum of exponents of the d, that occurs.
From all combinations of these exponents, we find the
one with the highest number of d;, and from these the
highest number of d,, etc. The coefficient of the result-
ing monomial in the d, we call the leading coefficient.
We say
x € ,D, is positive if its leading coefficient is positive,
x € D, is negative if its leading coefficient is negative.
It directly follows that either x =y, x <y, or x > y. We
further conclude that if x and y are positive, so is

x + y. This follows directly from the fact that the lead-
ing term of x + y is either the leading term of x or the
leading term of y, and if they are equal, the leading
coefficients cannot add up to zero since they are both
positive.

We also conclude that if x and y are positive, so is
x -y. This follows directly because the leading term of
x -y is the product of the leading terms of x and the
leading term of y, and the leading coefficient is the
product of the leading coefficients of x and y.

We now say that x>y, if x -y is positive, and
x <y, if x —y is negative. As an example, we have

1>2d, >d,>10d,>d, > d? > 10d,d;
>di+2d3>di>0. (10)

Using the definition of ordering, it is rather easy to
show that
xX<y—=x+z<y+z,

x<y, z>0-x-z<y-z. (11)

Thus the ordering is compatible with addition and
multiplication in the usual way. Hence the differential
algebras ,D, are well ordered. We call the ordering
lexicographic because to compare two numbers, one
begins with the “left most” term, working further and
further to the right, until a term is found in which the
two numbers disagree.

It is a striking property of the ordering that there are
infinitely small elements in the differential algebras.
Consider the elements 4,, and let r and s be positive
reals. Then we infer from the ordering

0<s-d,<r (12)

for all ». Thus, regardless of how large we choose s,
s-d, can never exceed r, but it is always positive. A
structure in which this is possible is called non-Archi-
medean. We say that 4, is infinitely small or alterna-
tively that d, is a differential. Note that there are no
infinitely small numbers in the reals, and that not only
the individual 4, are infinitely small or differentials,
but indeed every element whose real part vanishes.

We conclude another interesting property of dif-
ferentials. If a differential in , D, is raised to a power
greater than n, the result vanishes. Such elements are
called nilpotent; note again that there are no nilpotent
elements in the real numbers.

Nilpotent elements have other important properties
that entail considerable practical simplifications. In case
we multiply two nilpotent elements in ,D,, their value is
even determined in , ., D,. This is because all contribu-
tions to the (n + 1)th order contain the zeroth order of
either of the factors, which both vanish.

This fact entails an interesting consequence for the
Lie algebras generate by the differential algebra: If we
restrict ourselves to elements that vanish up to order 2,
so-called double differentials, then there is no loss in
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order for Poisson brackets among them, and the result
is also a double differential.

Finally, differentials are very important for the prob-
lem of composing maps. It follows directly that the class
of the composed map is only defined by the classes of
the individual maps if the first map is a differential, i.e.
the underlying function preserves the origin.

To conclude this section, we want to introduce an
absolute value and a norm on the differential algebras.
Similar to the real number case, we define the absolute
value by

X
.| =
x1={ %

So the absolute value is always positive, and it is an
element of the differential algebra. The usual rules for
the absolute value hold, for example |x-y| = |x|-|y]|
and [x+y|<|x|+|y|.

The norm || || is defined as follows:

if x>0
>0, 1
otherwise. (13)

k

Ea- T4

=1

k
= la,l (14)

=1

So the norm is just the maximum norm in the basis of
the ['17_,d}, and is a real number.

2.2. Algebraic properties

In this subsection we want to study certain algebraic
properties of the differential algebras we have intro-
duced. In particular, we will answer the question of the
existence of inverses and roots. This will eventually
allow us to use algebraic manipulations to compute
derivatives of algebraic functions, i.e. functions built up
using finitely many additions, multiplications, subtrac-
tions, divisions and roots.

A very important theorem for our future study is the
following fixed point theorem. let f be a function on
.D,, so f maps one equivalence class into another one,
and let f be contracting with infinitely small contrac-
tion factor k, i.e. | f(x)—f(¥)| <k-|x—y| forall x,
y in ,D,. Then f has a unique fixed point z such that
f(z)=1z.

The proof is similar to that classic Banach space case
of the fixed point theorem: begin with any element x in
.D,, and iterate f. Since the contraction factor is in-
finitely small and infinitely small elements are nilpo-
tent, after v steps the difference of x, and x,,, is less
than k°. Since k is a differential and thus nilpotent,
X,4+1 = X,, and thus x, is the desired fixed point.

Compared to the Banach space case one here obtains
the computational advantage that the sequence x,, actu-
ally reaches the fixed point after finitely many steps and
does not merely approach it as a limit. As we shall see,
the fixed point theorem is a rather powerful tool and

will considerably simplify many arguments about our
differential algebras.

We now address the question of multiplicative in-
verses in the differential algebra. We first note that
infinitely small elements cannot have inverses; because
regardless of which number we multiply them with, the
result always stays infinitely small and can never be 1,
the multiplicative unit.

This already tells us that the differential algebras are
no fields: certain nonzero elements do not have multi-
plicative inverses. This is not surprising: the famous
theorem of Zermolo tells us that there are only two
finite-dimensional vector spaces over the reals that are
fields: the complex numbers, and the quaternions (in
which multiplication is not commutative).

Now suppose that we are given an element of , D,
that is not an infinitesimal. We write this element as
x-(1+r), where x is a real and r is infinitesimal. For
the inverse we try x~! - (1 + s). The goal is now to find
s such that

d+r) - Q+s)=1le
r+s+r-s=0e
s=—r—r-s=f(s). (15)

Since r is infinitely small, the function f(s) is contract-
ing, and thus there is a unique fixed point. Furthermore,
this fixed point can be obtained by iterating f only n
times.

Thanks to the framework of infinitesimals and the
fixed point theorem, we are provided with a very rugged
and computationally simple algorithm to compute in-
verses. Note that we could infer the existence of the
inverse to the class [a] if a(0) is nonzero simply from
the fact that the reciprocal of a function that is nonzero
at a point is as often differentiable as the function itself.
However, this is merely an existence proof and of little
practical value because the direct computation of the
derivatives of the inverse is rather cumbersome, and for
higher orders often next to impossible.

It is worthwhile to point out that using the fixed
point theorem arguments, we actually have derived a
formula to compute the derivatives of the inverse. To do
this, we have only used algebraic properties of differen-
tial algebras, and no calculus knowledge. This replace-
ment of calculus knowledge by algebraic reasoning is
typical for many differential algebraic arguments.

We will proceed in a similar way for the computa-
tion of roots of elements of the differential algebras. We
consider only the case of positive finite elements, and
again write them as x-(1 +r). For the root we try
x1/2.(1 + 5), and obtain

A+sY¥=01+r)e
s= =53 =f(s). (16)

V. THEORETICAL OPTICS
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Again we are confronted with a fixed point problem.
By restricting s to infinitely small numbers, we infer
that f is contracting, and thus a fixed point can be
found in finitely many iterations of f. Again we have a
very robust and efficient way to compute the derivatives
of roots. It is rather obvious how the reasoning can be
extended to cube roots, etc.

2.3. Power series on differential algebras

To continue our study of the algebraic structure of
.D,, we want to investigate the convergence of power
series on the differential algebras. This will prove useful
in practice because it allows the computation of deriva-
tives of functions containing power series like sin and
exp, and again shows that the abstract theory of the
differential algebras leads to practical results and con-
venience.

Let £, a,x' be a power series in the real numbers
with a radius of convergence o. Then we will show that
this power series converges componentwise for all ele-
ments of , D, whose real part is smaller than o.

To prove this, we write x = X + r, where X is real
and r is infinitesimal. Suppose we are interested in the
coefficient belonging to d{" - ... -dJ». Noting that r' =0
for 1 > n, we obtain

oo

Ya, (X+r)

v=1

n

= Za,~(X+r)V+ Y a,,-(X+r)V

= v=n+1

n

=Ya (X+r)

r=1

n

- V! v—i 1
+ Z a"'zll-(v—i)!x o

v=n+1 =1

n

Ya (x+r)

r=1

o0
+ Y a, v...-(v-n+1)-X*

v=n+1

n ‘

)»

Soxa-(v—n)y- - (v-0) )

(17)

The first sum in the last expression is finite and thus
poses no problem. The first factor in the second term is
an infinite sum of real numbers which converges inside
the radius of convergence despite the factor v- ... - (v —
n + 1). The second factor is again finite and thus does
not represent a problem. Altogether, for » > n, the
contributions to any one coefficient consist of the un-
changing contribution of the first term plus the un-

changing contribution of the second factor, multiplied
with the changing but converging real number sequence.

Thus we have learned that indeed all real power
series can be extended to DA within their radius of
convergence. In practice, it turns out that we often can
simplify the computation considerably by exploiting
certain addition theorems that also hold in DA. In this
case, it suffices to evaluate the series at infinitesimals,
where they converge in finitely many steps because
infinitesimals are nilpotent.

We illustrate this with the sine function. Suppose we
are given a DA number which we write as X=r, X
being its real part and r being the infinitely small rest.
Then we obtain

sin( X+ r) =sin( X) -cos(r) + cos( X) - sin(r) —

—sin(x)- ¥ (D'

=0

2i+1

+cos(X)-’§O(—1) m—)

—sin(X)+ ¥ (-1 oy

=0

r21+1

cos . G | R A 8
reos(X)- £ ()7 Gy ()

So the addition theorem allows us to compute the
sine of an element of the differential algebra in only
finitely many steps.

Having power series available means that readily a
large class of functions can be extended from real
numbers to differential algebras. Altogether, we are now
able to compute the derivative classes of all functions
that can be expressed in finitely many steps in terms of
elementary operations, divisions, roots, and power series.

2.4. Algebraic completions

In the previous subsection it became apparent that
the differential algebras do have some algebraic de-
ficiencies in that not all elements have inverses and not
all positive elements have roots. This is a very real
problem, and it even occurs in practical examples for
the computation of derivatives. For example, the direct
computation of the derivative of the electric field of a
Gaussian at the origin,

1 —exp(r?/a?)
E(ry={ "5 for r #0, (19)
0 otherwise,

which is perfectly well defined, requires to divide by the
infinitesimal &, which is not defined in ,D,.
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In such a case, parts of the computations have to be
done in larger structures, and only at the end does
everything collapse back to the familiar ,D,. So the
situation is perhaps comparable to the computation of
real number results using complex numbers for inter-
mediate work.

This larger structure, which among other things al-
lows us to remedy many of the algebraic problems in
«D,, is an infinite-dimensional vector space over the
reals and contains negative and rational powers of the
d, as well. Indeed, formally it is given by the set of all
functions on QV that are zero except for a set that, for
any given number M, has only finitely many points
(415---59,) € QF such that ¢, + ... +g, < M.

We do not want to dwell on details here, but refer
the reader to ref. [17]. As one might guess, this new set
contains also infinitely large quantities, and has beauti-
ful algebraic properties. For example, it can be shown
that every odd-ordered polynomial has a root in the
extended structure with one differential, i.e. the struc-
ture is real-closed.

We want to note that these new structures among
other things allow a completely rigorous treatment of
delta functions. But they are not only of academic
interest: we do indeed need them for the computation
of the derivatives of certain special functions.

In these new structures, the relationship to the equiv-
alence classes of C* functions is lost, and the reasoning
is from now on completely algebraic. So it again pays to
not tie oneself too closely to the equivalence class view
of differential algebra, but to assume a more algebraic
view.

2.5. A short survey of calculus on differential algebras

To conclude our brief discussion of the special dif-
ferential algebras discussed here, we want to present a
very interesting result that sheds light on one of the
fundamental problems in the creation of calculus. When
the concepts of calculus as we now know them were
unearthed by Newton and Leibniz, the concept of the
derivative was a “differential quotient”, i.e. a quotient
of an infinitely small ordinate difference and an in-
finitely small abscissa difference.

This intuitive view was then abandoned in the rigor-
ous definition of derivatives using epsilons and deltas,
even though the terminology of the differential quotient
is alive until today in the symbol d f/dx. We here now
want to show that in our structures in which we have
differentials at out disposal, the modern and the intui-
tive views can be merged.

We say a function is differentiable at x,, if there is a
¢ such that for every e there is a § with

(%) = f(x0) _

X — X,

c| <e, (20)

for all x with |x — x| < 8. All this terminology makes
sense in the algebraic extension of ,D,. If we now
demand in addition that the 8 can always be chosen to
be of the same order as the € (i.e. 8/¢ is neither
infinitely small nor infinitely large), then we can indeed
infer rather directly that

f(x) = f(x0)

’ a—

£y = BT (21)
where r is an infinitely small rest if x — x, is infinitely
small. So the differential quotient represents the deriva-
tive up to an infinitely small error. If all we are inter-
ested in is the exact real derivatives, we can obtain it by

taking the real part of the above expression.

3. The computation of maps

In this section we will discuss how the differential
algebraic methods can be used in practice to compute
the transfer map of arbitrary optical systems to arbi-
trary order, including the dependence on system param-
eters.

3.1. Numerical integration

We note that, except for very special cases, it is not
possible to derive analytical formulas for transfer maps
of optical systems. But obviously it is still possible to
computationally relate final coordinates to initial coor-
dinates through numerical integration. In essence, a
numerical integration algorithm represents a function
that consists of finitely many elementary operations and
functions. Usually this function is incredibly complex
and it would be very hard to analytically write it down,
let alone differentiate it to very high orders with respect
to phase space coordinates or system parameters.

However, using the differential algebraic approach,
it is conceptually rather straightforward how these high
order maps can be computed. One simply has to replace
each and every one of the individual operations and
functions in the whole algorithm by the corresponding
ones in the differential algebras. In this context it is
very important that the differential algebraic computa-
tion of derivatives is rather independent of the complex-
ity of the function that is to be differentiated, which is
in sharp contrast to a formula manipulator approach to
the problem. In fact, the computer time that is required
is just determined by the number of elementary oper-
ations and functions, similar to the original numerical
integration.

When replacing the operations in the integration
process, the only conceptual subtlety is that of the
proper norm required for the numerical integrator. One

V. THEORETICAL OPTICS
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has to choose a norm that meets the requirement of the
special user. In particular, if all aberrations are to be
known with equal accuracy, the maximum norm (14) is
the proper choice. Note that the norm, being different
from the real number norm used in the regular integra-
tion process, now usually entails smaller step sizes.
Indeed, the higher the order becomes, the smaller the
step sizes get because the norm of any given DA vector
increases with the order.

In many cases, however, one can choose a weighted
L™ norm. This reflects the fact that, while we want to
know low order aberrations to many digits, the higher
order aberrations are not as critical because of their
reduced influence on the map.

While conceptually these very few paragraphs are
sufficient to explain the computation of arbitrary order
maps of arbitrarily many variables, a lot of computa-
tional effort is required to make the strategy as trans-
parent as it is presented here.

The first problem is that Fortran, the most
widespread language for optics and accelerator codes,
does not allow the direct substitution of real numbers
by differential algebraic numbers. There are very few
languages that do, and probably the most promising
will turn out to be C + +. There are also rumors that
Fortran 8X, the contemplated next FORTRAN release,
will have such object oriented features.

To circumvent this problem, we wrote a precompiler
[18,19] that allows the use of a new DA data type in
regular Fortran and turns formulas containing oper-
ations with this new type into calls to subroutines. This
precompiler is particularly helpful for the conversion of
existing numerical integration codes to DA map extrac-
tion.

The precompiler has been used for a variety of codes
including TEAPOT [20], THINTRACK [21] and a de-
scendent of THINTRACK by the name of SIXTRACK
[22]. Usually the modifications required to allow the
extraction of arbitrary order maps were very limited,
and in the above cases the task could be finished within
a few hours. Furthermore, this precompiler has been
used to create an integrator to compute fringe field
transfer maps [23] for COSY 5.0 [14] and space charge
effects [24].

A much more general approach is presented in a
companion paper in these Proceedings [25]. It is based
on a powerful object oriented programming language
that allows a very efficient use of DA operations as well
as other data types. This approach was used to create a
very flexible new generation particle optics code.

The other difficulties associated with the use of the
differential algebraic map computation lie in an effi-
cient implementation of the elementary operations. This
1s a highly nontrivial computer science problem if it is
not restricted to a specific low order DA with a fixed
number of variables. For details we refer to ref. [25].

3.2. DA-based numerical integrators

In the last section we saw that using DA techniques,
the computation of aberrations and sensitivities is mostly
reduced to a software problem and can be considered
solved conceptually. In many cases, however, speed is
an important issue in simulation codes, and in this
respect any approach based on numerical integration
suffers inherent defects. In this section we will show
that even this problem can be overcome using DA
techniques; indeed, the resulting codes are comparable
in speed to the conventional library-based codes
[1,14,26-28].

Suppose we are confronted with a differential equa-
tion

L=tz 1) (22)

that has to be solved numerically. Numerical integrators
usually attempt to approximate the function f by a
polynomial in ¢ and thus obtain an approximation of x
at the next step whose accuracy depends on the step size
to a certain power. Typical numerical integrators use
orders of four to eight, but there are also integrators
going as high as eleven. To avoid confusion, we would
like to stress that the order of the integrator has nothing
to do with the order of the map. Indeed, very high order
maps can be computed with low order integrators and
vice versa.

In order to estimate the derivatives of f, several
evaluations of f at different positions are required; for
example, the eighth order Runge—Kutta algorithm used
in ref. [23] requires thirteen evaluations of the function
per time step. Doing integration with DA, these evalua-
tions of the right hand side of the differential equation
are very costly, and they are indeed the limiting factor
for the speed. It turns out that using DA in a slightly
different way as before, we can readily obtain all the
required higher order behavior of f with only one
evaluation of f.

Suppose we are interested in the behavior of a func-
tion g of phase space, i.e., we want to now g(x(?)),
where x(¢) is a solution of the equations of motion.
Then we can infer

d o, 4,98
GAETVE G T N

a
=vg-f+38
=L,g. (23)
The operator L, is usually called the Lie derivative

of g, honoring Sophus Lie, whose work affects optics
also in the Lie algebraic methods discussed below. Using
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the operator L, also higher derivatives of g can be
computed:

d2

T

d3

E;g=L}g, etc. (24)

This approach is well known [29] and in fact is even
sometimes used in practice to derive analytical low
order integration formulas for certain functions f. The
limitation is that unless f is very simple, it is usually
impossible to compute the repeated action of L, ana-
Iytically, and this is why this approach has not been
very useful in practice. However, using DA, and in
particular the operation d,, which distinguishes the dif-
ferential algebra from an ordinary algebra, we are able
to perform the required operations painlessly. To this
end, one just evaluates f in DA and uses the E)‘l to
compute the gradient.

We have to carefully consider only the possible loss
of information by the operators d,. We first consider the
case that both g and f do not depend on time, and that
f is infinitesimal. This will always be the case when
describing the motion in coordinates relative to a refer-
ence trajectory [25]. In this case, the product Vg - f can
be extended back to ,D,, even though Vg is only known
in ,_,D,. This entails that arbitrary order time deriva-
tives of g can be computed without loss of order. On
the other hand, if g or f are time dependent, the
situation is different. In this case, losses of order due to
9, cannot be avoided, which limits the order to which
the technique can be used.

4. Representation theory

In this section, we will develop the connection be-
tween the aberration representation of the map, which
is the natural representation obtained in the differential
algebra picture, and other representations that are used
to describe maps of optical systems and that have
certain merits of their own.

We will see that all representation changes that are
relevant can be cast into relatively compact algorithms
using differential algebraic tools. Thus also in this sense
the differential algebraic techniques prove very fruitful,
and we do not only obtain a complete, order indepen-
dent method to compute image aberrations, but for the
first time we will be able to do the same for Eikonals
and Lie operator factorizations as well.

4.1. The inversion of transfer maps

At the core of many of the operations that follow is
the need to invert transfer maps in their DA representa-

tion. Though at first glance ihis appears to be a very
difficult problem, we will see that indeed there is a
rather elegant and closed algorithm to perform this
task. Similar to before, it will prove essential that the
maps are origin preserving and thus the corresponding
differential algebra vectors are nilpotent.

We begin by splitting the map [A4], € ,D;) into its
linear and nonlinear nilpotent parts:

(4], =[41].+ [42].- (25)
Furthermore, we write the sought for inverse in , D

as [M],:

[47],=[M],. (26)

Composing the functions, we obtain

([AI] + [AZ]n) ° [M]n = [E]n -
(4] [M],=[E],~[4], ° [M].~

[M],=[A47] o ([E], = [45], ° [M].-1).  (27)

Here o stands for the composition of maps. In the
last step use has been made of the fact that knowing
[M],_, allows us to know A,, c[M], in ,D;. The
necessary computation of A; ! is a linear matrix inver-
sion and is performed by an off-the-shelf Gauss
eliminator. If the map is symplectic, the linear inverse
can also be determined directly as discussed below.

Eq. (27) can now be used in a recursive manner to
compute the M, order by order.

4.2. Eikonals and generating functions

Historically, many important questions in optics have
been answered using the Eikonal or generating function
representation of the map. Similar to the Lie algebraic
representation, it allows a redundance-free representa-
tion of Hamiltonian maps.

Hamiltonian maps satisfy the symplectic condition
[30]:

M-J - M=J,

or alternatively
M-J=(M-J), (28)

where M is the Jacobian matrix of partial derivatives of
A, and J has the form

(29)

SO OO
O=OoOOOO
- OoOOOoOoOo
Coocoo
SCooOo-O
COoOO=OO

Such symplectic maps can be described in a more
compact way using the so-called generating functions

V. THEORETICAL OPTICS
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[30] 1n mixed coordinates:

F(q.. q/).

F(q, P/),

E(p.a,),

F(p, py)s (30)
which satisfy the following conditions:

(p.. p;)=J VF,

(p-4q;)=J VE,

(¢.» ps)=J VE,

(Q.a‘lf)=J‘VF4~ (31)

In optics, these various generating functions have
historically been named Eikonals. Similar to the trans-
fer map case, the theory of Eikonals centers on their
partial denvatives. These we will determine now from
the transfer map.

To obtain the “mixed” relations which are the gradi-
ent of the generating function, we proceed as follows.
We denote with .#, the part of the transfer map
describing the final positions, and with .#, the part
describing the final momenta. Thus, we have .#=
(M, #,). We do the same with the identity map:
&= (&), &,). In order to obtain the “mixed” relations
4y P.)=F(q,, p;), we start by setting A= (&, M 5).
Then,

(q.- p;)=H(q, p,)- (32)

It turns out that the generating function exists if and
only if " is invertible. In case A is invertible, we
obtain

(4, p)=#""(q.. P;) (33)

Composing the map (.#,, &) and the map A4 !, we
finally obtain the desired “mixed” relations:

(4, p)=((A,, &) o ¥ '), py) =F (4., py)-
(34)

Now going to the respective equivalence classes, 1t is
again required that the transfer map .# be origin pre-
serving. Altogether, the whole process of obtaining the
gradient of the generating function can be performed to
arbitrary order using only composition and inversion of
differential algebraic transfer maps. The determination
of the generating function itself is only an integration.

As it turns out, the ease of computing a generating
function with differential algebra is one of the strong
points of the power series representation of the map. In
the Lie representation, the computation of the gener-
ating function cannot be done in a straightforward
pattern and gets increasingly cumbersome with high
orders.

We note that it is also possible to solve for the
generating function directly, without first using the
equations of motion. This has been demonstrated in ref.
[31]. While not quite as robust and direct as the power
series integration technique, this approach potentially
allows for savings in computer time in that the number
of parameters that are computed is smaller.

4.3. Lie operator factorizations

In this section we will show how it is possible to
compute certain Lie operator factorizations of the trans-
fer map. These will include the Dragt—Finn factoriza-
tion first presented in ref. [32] as well as others that
have other merits; in particular, we will discuss a super-
convergent factorization that requires significantly fewer
operators for the factorization of maps of very high
order.

It was first shown in ref. {32} that a Hamiltonian
particle optical system can be described by a combina-
tion of Lie operators

. S
exp(:f) =1+ :fi+ 5+, (35)

where the colon denotes a Poisson bracket waiting to
happen, ie. :f: g={/f, g}. The map describing the
system 1s given by the action of the operators on the
vector (qy, P1. 92, Pas---»4, Py)- The factorization
proposed by Dragt has the form

M (x)=,(L exp(:f3:) exp(:fa:) ... exp(:fy417))

(36)

where each of the f, is a homogeneous polynomial in
the phase space vanables of exact order 1, and L is a
linear matrix.

An extensive theory has been developed by Dragt
and co-workers how such a representation can be de-
termined for a large class of Hamiltonians. However,
the effort required for this process increases rapidly
with the order, so that results could only be obtained
through third order and in some simple cases to fifth
order.

Besides the analytical computation of the f, it is also
possible to numerically compute them in a large number
of circumstances [33]. In these cases, the higher orders
can be more easily obtained, but the algorithms are still
not order independent and are relatively slow. Besides
the mere computation of maps, it is important to be
able to combine two maps into one. This is also far
from trivial and not yet extended to arbitrary orders.

While the Lie algebraic view thus has certain defects
as far as the computation and manipulation of maps 1s
concerned, it has a very beautiful application discussed
in section 5. In order to make this Lie algebraic normal
form theory accessible in practice, it is very important
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that one can extract Lie algebra representations from
the map.

We now show how the Dragt factorization into Lie
operators can be obtained from the map. First we note
that the linear map L in the Dragt factorization is just
the linear part of the transfer map. Next we introduce
the map

'/”1 =IJ"1 ° J/[’ (37)

which is symplectic as a composition of symplectic
maps. We now observe that the operator [exp(:f;:)] is
nilpotent in any differential algebra. in particular,
[: £3:]> =, 0. Looking at eq. (36) through order 2, we find

Mx=x+{f;, x} >
(M, —¢)=VfJ > (38)
V= — (M, —&)J.

Hence, there is an f; if there is a potential to the
vector field — (.4, — &)J. Such a potential exists if and
only if the Jacobian of the field is symmetric. The
Jacobian here is M, J, where M, is the Jacobian of .#.
The identity map disappeared in the differentiation
process. Hence, we have to fulfill

M, J= (MIJ)t’ (39)

but this is simply one way to write the symplectic
condition (28) for .#;. Thus, there is an f; to satisfy the
equation, and it can be computed by integrating the
right hand side from an arbitrary point (we here choose
the origin) to the point of interest:

A (EARTESTES (40)

Now we set #,=exp(:—f;:) o L™ o #. Looking
at eq. (36) through order 3 and observing that : f,:* =, 0,
we obtain

Myx=yx+{f,, x}. (41)

Hence, we have the same situation as for the computa-
tion of f; in eq.(38). Proceeding in the same way as
above for f, and then for f;, f,..., we obtained a
recursive procedure to compute all f,. To conclude, we
have both proven Dragt’s factorization theorem and
presented a relative straightforward algorithm to obtain
the f, to arbitrary order.

By looking at the algorithm just proposed, it be-
comes apparent that we do not only have to compute
the f’s in an order by order manner. If we look at eq.
(41), it becomes apparent that it not only is correct
through order 3, but also through order 4, since even
:fa:2 =, 0. So instead of computing the traditional fa to
take care of order 3 effects, we can compute a poly-
nomial with order 4 and 5 terms, denoted fas, 1o take
care of order 3 and 4 effects of the map.

In the next step, we do not have to worry about
terms of order 4 anymore and can work on order 5
directly using a polynomial with nothing below order 6.
Since the Poisson bracket of such a polynomial with
itself has no contribution below order 10, the potential
equation for it is correct up to order 9, and thus we can
compute one grand total f;, to take care of all effects
through order 8 in the map.

Following this approach, we obtain a “superconver-
gent” factorization in which the number of Lie oper-
ators does not grow linearly with the order, but loga-
rithmically. The map then has the form:

M(x) =p+1 (L exp(:f35:) exp(:fys:) exp(:fyoi).-.
exp( :j.(2n+2)‘(2n+l+1))x. (42)

Note that the number of terms required to describe a
symplectic map in this way is exactly the same as in the
Eikonal representation or the original Dragt factoriza-
tion, it is given by the number of terms in a monomial
of order n+1 in v variables. Whether or not the
superconvergent factorization offers any practical ad-
vantages over the regular Dragt factorization depends
largely on the problem.

Often it is advantageous to have the Dragt factoriza-
tion or the superconvergent factorization in reverse
order. Note that the order is relevant since the Lie
operators do not commute. This problem is also rather
straightforward using DA tools. We begin by inverting
the map as described in section 4.1. Then we factor the
inverse of the transfer map in the desired fashion. Then
we use that the inverse of a composed map is the
composition of the inverses in reverse order. Finally we
note that the inverse of each exp(: f:) is just exp(: — f2).
Thus we obtain the two reversed representations

() =, (exp(: i) exp(ifs:) exp(:fid)

exp(:fy:)L)x (43)
and
M (x) =1 (eXp(: frn g anerq)-e exp(:foot)
exp(:fas:) exp(:fy5:) L) x. (44)

We note that again within the Lie algebraic frame-
work alone it is very difficult and so far not practically
possible to perform such changes in representation.

To conclude this section, we note that the reverse
process of the problem discussed here, namely the com-
putation of the maps from the various Lie operator
factorizations discussed here, is readily possible using
the techniques discussed in section 3.2. To this end, we
note that any factorization of the form

M(x)=,(Loexp(:fy:) oexp(:fy:) e ...)x (45)
can be viewed as a system consisting of pieces whose

Hamiltonians are just given by the f,, combined with a
linear transformation. The map of this system can thus

V. THEORETICAL OPTICS
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be computed using the automatic order control integra-
tor discussed in section 3.2. We note here that because
of the fact that all f, do not contain any terms of order
2 and lower, the automatic order control algorithm even
truncates after finitely many terms.

5. Canonical normal form theory for repetitive systems

In this section we want to address a very important
technique for repetitive symplectic systems. It is based
on an idea first proposed by Birkhoff and then by
Deprit [34-36] in a Hamiltonian concept. It was devel-
oped in the Lie operator view by Forest [37], first
implemented to low orders in Marylie [26,33], later
implemented to arbitrary orders using DA techniques
[38], and is in the process of being rewritten for COSY
INFINITY [25]. The technique will provide us with a
nonlinear change of basis to variables in which the
motion is much simpler than in the old variables. In the
best case, the motion will be just confined to circles in
phase space. Very important quantities for the study of
accelerators, like tune shifts and chromaticities, can
readily be read off in the new representation.

As we will see, the algorithm presented here is a very
fruitful blend of Lie algebraic and differential algebraic
techniques. it would be very difficult and probably
impossible to implement the algorithm using Lie alge-
bra techniques alone, at least with the current state of
the theory. On the other hand, the Lie algebraic picture
gives us the right guidance and theoretical insight as to
what to do.

We begin our discussion with the linear problem.
Ths is essentially a streamlined version of the famous
Courant Snyder theory {39], stressing the aspects that
are of particular significance for the higher order tech-
niques.

5.1. The linear problem

We begin our investigation of the change of basis
with the linear map. This will serve as a stepping stone
for the full nonlinear problem.

We first determine the eigenvalues and eigenvectors
of the linear map. The eigenvalues will in general be
complex numbers, and we here write them as re”'.

Since the linear map is real, with re*', also the
conjugate re *' is an eigenvalue. Note that if an eigen-
value has a nonvanishing imaginary part, so does the
corresponding eigenvector; because if the eigenvector
were fully real, then applying the real matrix would
leave it real, and it could not match the result of
multiplying eigenvalue and eigenvector, which would
have nonzero imaginary part. Furthermore, it directly
follows that eigenvectors of conjugate eigenvalues are
themselves conjugate.

Since the map 1s symplectic, with re”' also the in-
verse r e *' is an eigenvalue as we will show now. We
infer from eq. (28) that M -J - M' = J. Multiplying with
—J from the left and noting J?= —E, we obtain
M-(—J-M'-J)=E, thus having shown that M is
invertible, and

M =—J-M'J. (46)

Now let A be an eigenvalue of M. Then obviously
1/A is an eigenvalue of M~! and thus we have
det(M~1)—1/AE)=0. Noting that det(/)=1 and
using eq. (46), we obtain

O=det(—J~M'~J—%E)

=det<M‘-J—lJ)

X
= det| M* lE
- et( -5 )
1
=det(M—XE), (47)

such that 1/A is also a root of the characteristic poly-
nomial of M and thus an eigenvalue of M.

Now suppose that an eigenvalue has an absolute
value r different from 1. If r is greater than 1, then the
eigenvector belonging to it is magnified in amplitude,
and thus in a repetitive system there is exponentially
unstable motion. If it is less than 1, then the above case
holds for the inverse eigenvalue. So we can conclude
that a useful circular machine must have r=1, and we
restrict further discussion to this case.

Thus we are interested in the case where all eigenval-
ues have the form e* Since for these eigenvalues in-
verses are conjugates, our eigenvalues are e**' p=
1,...d. The p, are called the tunes.

Circular accelerators, like any technical device, can
never be built beyond a certain manufacturing accu-
racy, and thus we are interested in cases which within
limits do not change their characteristic behaviour un-
der errors. We observe that the eigenvalues depend
continuously on the elements of the transfer map, which
in turn depend continuously on all the parameters in
the system. So small changes in the parameters entail
only small changes in the eigenvalues.

Now suppose there is a complex conjugate pair of
eigenvalues. Under small perturbations, the tune be-
longing to this pair may change, but since they have to
be both inverses and conjugates, they usually cannot
leave the unit circle under perturbation and thus the
perturbation is uncritical.

There are only two ways in which the unit circle can
be left under perturbation. The first occurs when one
tune is identical to 0 or m or moves there under per-
turbation; from 0 or m, one can leave the unit circle as r
and 1/r with a real r. Then this pair is still conjugate
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and inverse, but since either r or 1/r has a magnitude
greater than unity, the motion is unstable.

The other case occurs when two pairs of eigenvalues
et et gre sufficiently close to each other. Under
perturbation the tunes can move such that they fall
together at p, and from there the eigenvalues can leave
the unit circle as r e*'* and 1/r e*'® still satisfying
that inverses and conjugates are also eigenvalues.

So we conclude that stability of the linear motion
can be preserved even under perturbations, if the fol-
lowing conditions are met:

— only eigenvalues with unity modulus occur;

~ the tunes are sufficiently far apart;

— the tunes are sufficiently distinct from 0, =;

where “sufficient” means that the change in tunes due
to the unavoidable errors is small compared to the
distances between the tunes themselves and 0 and .

These criteria guarantee stability of the linear mo-
tion. However, we can already guess here how to make
even nonlinear effects less critical. In order to not being
repeatedly affected by the same nonlinear effect, it is
advantageous to sample phase space as uniformly as
possible. This requires that the tunes are no divisors of
27, Furthermore, we do not want the same values of x
coincide with the same values of y. Thus we demand
altogether that

k-p,+1-p,+m-p, #2mn (48)

for all k, I, m, n. We note that the lines prohibited by
this condition lie dense in space, so all we can do is try
to avoid as many low order (small k, /, m, n) reso-
nance conditions as possible.

So far our reasoning has been valid for arbitrary
linear maps. To illustrate some of the results and shed
light on a particularly important case, we now study the
situation of a complete decoupling of the x and y
motions. In this case, each plane is described by a 2 X 2
matrix of the form

a b
M= (C d). (49)

Because of symplecticity, we infer the well known
fact [40] ad — bc =1, i.e. the matrix has unit determi-
nant. To determine the eigenvalues, we have to solve
det(M — AI) =0, which here gives

N-X-(a+d)+1=0, (50)

which can also be written as
A—(a+d)+=0. (51)

Because A and 1/A occur symmetrically, indeed with
A also 1/A is an eigenvalue. To exclude all eigenvalues
with non-unit modulus, we restrict ourselves to the case
A =e' and obtain
tr( M)

0=2R(e*) -z -(a+d)= cos(p) ——5—. (52)

Thus we obtain eigenvalues on the unit circle if and
only if the trace of the matrix lies between —2 and +2.
Furthermore, we obtain stability under perturbations if
the trace lies sufficiently far away from +2, and the
traces of the x and y matrixes are sufficiently distinct.

At this point, it is advantageous and customary [39]
to introduce new quantities to describe the map:

_a—d
“T 2snp’
b
B= sin p’
—c
Y=sinp,‘ (53)

Using these quantities, the so-called Twiss parame-
ters, the map can be written as

B sin(p)
cos(p) —asin(p)

_ cos(p) +asin(p)
—v sin(u)

. (54)

The eigenvectors assume the rather compact form
v12=(B, —ati). (55)

Indeed, they do occur in conjugate pairs.
5.2. Prerequisites

As the first step on our way to the advertized change
to new more suitable variables, we assume that the three
criteria for the eigenvalues of the linear motion dis-
cussed in the previous section have been satisfied. Thus
there are 24 mutually distinct eigenvalues e = '*+, The 2d
eigenvectors belonging to these eigenvalues span the
whole space R??, and they occur in conjugate pairs
Uk, Uy, k=1,...,d. From now on we write v =u,
and v, =1U,.

As a first step, we perform a linear change of basis
to the quantities ¢,, p, defined by

G =2(vy), Pe=F(vy), (56)
such that
U/:L =qeti-py. (57)

Then these gq,, p, k=1,...,d also span the whole
space. These variables are called the linear Floquet
variables.

We now derive commutation relations for the new

quantities v} with themselves. It follows very directly

that

{0F, v} =0,

{vd, 07} = —2i8,,

{od e, v} =vd {o, v} +or (ol o}

= —2ivt. (58)
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We now introduce a special polynomial in the v}:

f=X 5ot (59)

k

In the coordinates ¢, and p,, this polynomial has the
form

f=X -5(a2+pb).
k

From the relations in eq. (58) we directly obtain
hivE = Fipof. (60)

Thus, the v} are eigenvectors of the operator: f,: with
eigenvalues Fiu. Now let us look at the Lie transforma-
tion exp(:f,:) and its action on v;. We obtain

A YpE = S "f2:2 +
exp(: f,) v} —(1+.f2.+—2—+... g

(;;”)kai + ... (61)

=pf + FipoF +

F
et

So exp(: f,:) has the same effect on the v, as the
linear map M. Thus, the linear map M in the new
variables is just given by the Lie transform exp(: £;:).

After our nonlinear change of basis to the variables
v}, the transfer map is a polynomial in the v . Now we
study the action of the operator :f;: on such a poly-
nomial in v}. Since the operator is linear, it suffices to
study the action on all the monomials P(m, n)=
I, (v )™(vg )"~ Because of the derivation property of
the Poisson bracket, we obtain

foi(vE) = Fipdht,

S P(m,n)=(n—m)-(ip)-P(m, n). (62)
Thus the polynomials in the v;f are also eigenvectors of
:f,:. Using this fact, we can conclude that the poly-

nomials are even eigenvectors of exp(: f;:), the Lie oper-
ator describing our linear motion:

exp(:f:) P(m, n)
=P(m,n)+(n—m)-ip-P(m, n)

NIRRT

=exp{(n—m)-ip} P(m, n). (63)

As we shall see, this will considerably simplify the
following discussion.

We conclude this discussion of the tools required for
the normal form algorithm with a special property of
Lie operators. We do not prove the property here, but
refer to ref. [41]:

exp(: — a:) exp(:b:) exp(:a:)
= exp{:exp(:—a)b):}. (64)

5.3. The nonlinear normal form algorithm

Now we are ready for the full normal form al-
gorithm. As we saw in the first subsection, under the
restrictions necessary for stability against machine er-
rors, after a suitable change of basis the motion was just
given by a rotation. In this section we shall see that this
can be fully extended to higher orders in a very elegant
and simple way using the Lie operator formalism.

We try to determine a nonlinear symplectic change
of basis map & such that even the motion in the new
coordinates

N =AM A (65)

is given by rotations. We write the map & in the
following factored Lie operator form:

(x)= (L exp(: F;:) exp(: Fy:) exp(: F:) ... ) x.
(66)

Looking at the action of the map .4 on the variables
to second order, we obtain

A= exp(: Ey2) exp(: /) exp(:fs:) exp(— Fy:). (67)

Now we introduce an identity to the left of the left
hand side and use the property (64) to remove exp(: f,:)
in the exponent. Finally, we use the Campbell Baker
Hausdorff formula

exp(:a:) exp(:b:) =exp(:a+b:+:r:),

where r consists of multiple Poisson brackets in a and
b. We obtain

JV=2{exp(:f2:) exp(— 3f25)} exp(: F5:) exp(: f,1)
exp(: f3) exp(—: F3:)
= exp(: /) exp(:(exp(—:£2:) F3):)
exp(: f3:) exp(: — F:)

=,exp(: f,:) exp(:——(E —exp(:f,:)) B +f3:)~
(68)

In this form it is apparent that simplifying the expo-
nent is equivalent to making (£ — exp(: f,:)) F; as close
to f; as possible. Indeed, if E — exp(: f,:) were invert-
ible, then all of f; could be removed. We will postpone
the discussion of the removal of parts of f; a little and
discuss first how the algorithm extends to higher orders.
To this end, we assume we have already brought the
exponent (E — exp(: f,:))F; to the simpler form which
we call f; So to order 2, A" has the form

N = exp(: f,:) exp(:f;:). (69)

In the next step, we have to look at eq. (65) to order
3. First we perform the change of variable described by
A7 through order 2 by letting the various Lie operators
act on the map in the power senies picture. Then we
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extract from this the new Lie operator factorization
using the algorithms described in section 4.2. We obtain

A=y exp(: F;:) exp(: f5:) exp(:f;:) exp(:f;:)
exp(—: F;2). (70)
This looks very similar to the secoPd order case,
except now we have an additional exp(: f5:). This will be
brought outside using eq. (64) in the same way the
exp(: f,:) was brought outside; the only difference is
that, to third order, it does not affect the : F;: at all

because even the first Poisson bracket between f; and
F, already vanishes to order 3. We obtain

N = exp(:f,:) exp(:(exp(—:£5:) F4):) exp(:f;:)
exp(:fy:) exp(: — Fy:)
—yexp(c ) exp(: ox) exp(:(exp(~ /) F3):)
exp(:f;:) exp(: — F;:)
= exp(: f,:) exp(: f3:)
exp(:—(E —exp(: f:)) F, + f3:). (71)
So we have the same situation as in the order 2 case.
Now we simplify the new exponential as much as possi-
ble and then go to the next order. To fourth order, we
have the same situation as before and can remove two
terms which do not contribute. It becomes apparent
that again the whole algorithm is order independent.

The question that remains is how good we can do in
the removal of as much as possible from the terms

exp(:—(E—exp(: f,:))E, +1,1). (72)

Because the monomials of F, are eigenvectors of
exp(: f,:) (and of course also of E), it is particularly
simple to study the action on F,. From eq. (63) we
obtain that its effect on P(m, n) is

(E—exp(:£,:))P(m, n)
—(—exp(—i(n—m) W) P(nm). ()

There are two cases in which the eigenvalue belong-
ing to P(m, n) can become zero. They are
1) (n—m)-p=0,n+m
2y n=m.

The first case is of physical nature, it is characterized
by the resonances discussed in section 5.1. Prudent
accelerator design requires avoiding this case from the
beginning, and thus formally this case is irrelevant for
us.

The second case is of mathematical nature, and it is
at the core of the normal form transformation. It says
that it is impossible to remove terms of the form
(o) (o)™ ... (v7)"*(v7 )™ in which n, = m,, i.e., the
terms

(ol o)™ (o og) ™. (74)

But since vy vy = ¢} + pZ, we can obtain that these
are the terms

lg(qzwz)"‘. (75)

In the case of no resonances, the motion is then
described by Lie operators containing only p? + g: to
various powers. But since these terms all commute with
p} + g2, this expression is an invariant. So in the new
coordinates, the motion is just described by rotations
whose amplitudes depend on p? + g2. These depen-
dences are the tune shifts.

Even though most accelerators are built such that at
least low order resonances are avoided, going to higher
and higher orders one gets closer and closer to reso-
nances. Thus some of the terms 1 —exp(~(n—m)-p)
get closer and closer to 1, requiring larger and larger
factors in front of P(n, m) to compensate for the f;.
This entails that the algorithm naturally produces rela-
tively larger and larger terms when going to higher and
higher orders.

If the resonances that cause the difficulties can be
pinpointed and there are relatively few of them, one can
try not to remove the corresponding P(n, m) in the f,.
In this case, the f, does not assume its simple rotation-
ally invariant form but still contains nonrotationally
invariant terms.
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