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Isochronous beamlines for free electron lasers

Martin Berz
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The transport systems required to feed a beam of highly relativistic electrons mto a free electron laser have to satisfy very
stringent requirements with respect to isochronicity and achromaticity. In addition, the line has to be tunable to match different
operating modes of the free electron laser. Various beamlines emphasizing different aspects, such as quality of 1sochronicity and
achromaticity, simphcity of the design, and space configurations are shown and compared. Solutions are presented having time
resolution in the range of 2 to less than 0.5 ps for 1% of energy spread.

1. Introduction

In the framework of the proposed Combustion Dy-
namics Facility at Lawrence Berkeley Laboratory [1], a
tunable infrared free electron laser (FEL) is planned.
The energy of the electrons produced by the linac will
range from about 25 to 50 MeV, and they will occupy a
phase-space area of about 0.4 X 0.5 mmmrad in both
the vertical and the horizontal directions. The energy
spread of the system is about 0.5%.

These electrons have to be transported from the
linac to the undulator of the laser in which they have to
travel parallel to the light. In order not to interfere with
the optical mirrors of the laser, the beam has to be
offset horizontally from the accelerator axis to the light
axis. The schematic layout of a free electron laser is
shown in fig. 1.

Inside the optical cavity, the electron and light beam
bunches must overlap horizontally and vertically as well
as longitudinally. In order not to disturb the lasing
process, it is very important that overlapping does not
change over time. In particular, it should not be af-
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fected by the energy jitter of the linac, which is of the
order of 0.05%.

The horizontal independence of the bunch shape can
be achieved with an achromatic system. The longitudi-
nal stability requires isochronicity; in particular, the
flight time should not depend on the electron’s energy.
To be specific, linear time of flight effects should be less
than 2 ps per 1% relative difference in energy. This is
necessary because the 0.05% energy fluctuation must
not cause a time fluctuation greater than 0.1 ps.

Besides these boundary conditions, there are geomet-
ric limitations. The offset should be large enough not to
interfere with the optical mirrors. In addition, the length
of the transport system should not exceed about 7 m.
Furthermore, the high energy of the electrons, which
entails a maximum rigidity of 0.168 Tm, limits the
bending radii of the magnets to about 30 cm in order to
stay in the 0.5 T regime.

The high energy of the electrons entails that, since
the particles move essentially with the speed of light,
energy differences do not translate into velocity dif-
ferences, and thus drift regions and nonbending ele-
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Fig. 1. A schematic layout of a free electron laser.
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ments do not introduce time of flight effects. The only
time of flight terms come from bending elements and
later cross coupling.

2. Achromaticity and isochronicity

In this section we will discuss the achromaticity and
isochronicity requirements of the system. The study and
understanding of achromatic systems is almost as old as
particle optics [2,3]. A system is called achromatic if to
first order the final trajectories after the system do not
depend on the energy of the particle. Using the stan-
dard notation for transfer matrix elements, this means

(x,d)={(a,d)=0. §))

If only (x, d)=0 at a certain point, the system is
called dispersion-free at that point. Note that
achromaticity is a global property that holds over at
least a field-free region, while being dispersion-free is a
local property that holds at only one point.

There are numerous ways to design achromatic sys-
tems [2,3], and also higher-order achromats are known
[4,5]. One can easily see [2] that achromaticity in a
bending system requires at least two bending magnets.
They are arranged in such a way that their chromatic
effects cancel.

As discussed in the previous section, FEL beamlines
do not only have to be achromatic, but they also have to
preserve the timing of the bunches very accurately. This
means that, in addition to the requirements of
achromaticity, we must satisfy the first-order conditions

(¢, x)=0, (2)
(t,a)=0, 3)
(1,d)=0, (4)

or at least minimize the terms according to the above
requirements. Isochronous systems have also been
studied long ago, and it was soon concluded that an
isochronous bending system has to contain at least three
bending magnets [2]. An important fact for the design
of isochronous systems comes from the symplectic
structure of phase-space maps. In ref. [6] we showed
that symplecticity entails interconnections between ma-
trix elements. In particular, one obtains in the case of
midplane symmetry:

(1, x) =F[(x, x)(a, d) = (a, x)(x, )], %)
(¢, a) =F[(x, a)(a, d) = (a, a)(x, d)], (6)

where the factor F only corrects for the usual scaling of
the variables [7,8]. This entails that an achromatic sys-
tem automatically satisfies (¢, x) = (¢, @) = 0. Thus the
only time of flight term causing lack of isochronicity is

the term (¢, d). To second order, the situation is simi-
lar. Symplecticity entails that

(2, xx)=F[(x, x)(a, xd)— (a, x)(x, xd)
+(x, xx)(a, d) —(a, xx)(x, d)],
(¢, xa)=F[(x, x)(a, ad) — (a, x)(x, ad)
+(x, xa)(a, d)—(a, xa)(x, d)],
(1, xd)=F|[(x, x)(a, xd) — (a, x)(x, dd)
+(x, xd)(a, d) —(a, xd)(x, d)],
(t, aa) = F[(x, a)(a, ad) — (a, a)(x, ad)
+(x, aa)(a, d)—(a, aa)(x, d)],
(2, ad)=F{[(x, a)(a, dd) — (a, a)(x, dd)
+(x, ad)(a, d)—(a, ad)(x, d)],
(t, ) =F[(y, y)(b, yd) = (b, y)(y, yd)
+(x, wy)(a, d) = (a, yy)(x, d)],
(¢, o) = F[(y, y)(b, bd) = (b, y)(», bd)
+(x, yb)(a, d) = (a, yb)(x, d)],
(2, bb) = F[(y, b)(b, bd) — (b, b)(y. bd)
+(x, bb)(a, d) — (a, bb)(x, d)]. (7)

So the only “free” second-order time of flight term is
(¢, dd). Note that from these equations it follows that
all time of flight matrix elements from (#, xx) through
(¢, bb) vanish for a second-order achromat. Thus, a
second-order achromat that satisfies (¢, dd) =0 is iso-
chronous.

In the next section we will show three different
solutions for achromatic beamlines which meet the iso-
chronicity requirements presented in the previous sec-
tion. The systems differ in simplicity, geometric layout,
and degree of isochronicity. Note that the phase-space
volume is so small that most of the time higher-order
effects do not have to be corrected. Especially in the
case of the fully isochronous system, however, it is
necessary to choose the parameters of the systems such
that second-order effects stay within bounds.

The calculations have been performed with COSY
INFINITY [9-11] and COSY 5.0 [8,12,13]; because of
the phase-space parameters, the high-order features of
these programs are not needed, and any other design
code [14-18] could have been used. However, the
powerful input language of COSY INFINITY allowed
very efficient and flexible optimization strategies con-
sisting of nested optimizations and manual tuning
without ever leaving the program.

3. A simple four magnet achromatic beamline

In this section we will show a simple achromatic
beamline consisting only of four n =} bending mag-
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Fig. 2 A simple four cell combined-function magnet achromat without quadrupoles and with a remaining time of flight aberration of
about 2 ps.

nets. The system is not fully isochronous; the term
(¢, d) is not corrected. However, since the leftover term
1s quite small, the system can be used in practice. In the
next section we will present a system with the same
flavor, in which, however, the term (¢, d) is also cor-
rected.

The four cell system consists of identical combined-
function magnets that are placed in series like a double
S, where each of the magnets is preceded and followed
by an identical drift. The length of the drift is chosen
such that the subsystem drift-magnet—drift performs
paraliel-to-point imaging.

When two such cells are placed behind each other in
a mirror-symmetrical way, bending in opposite direc-
tions, the resulting two cell system is dispersion-free
and produces unmagnified x and y images. Further-
more, (7, a) vanishes automatically. When two of these
two cell systems are placed in series, the transfer matrix
becomes unity in the horizontal and vertical planes, and
in particular the system is fully achromatic. Thus, all of
the linear time of flight matrix elements but (¢, d)
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vanish. So we have to search parameters for the system
that make (¢, d) small enough.

It turned out that the value of (¢, d) is roughly
proportional to the total horizontal offset of the system.
So the smaller (¢, d) has to be chosen, the smaller the
total offset becomes. The following parameters describe
a system that produces a total offset of about 18 cm and
has an isochronous defect of almost 2 ps per percent of
energy spread:
drift, length of 1.702 m,
bending magnet, radius of 0.4 m, angle of 26°, in-

homogeneity of 0.5,
drift, length of 0.1 m.
This system has the following linear transfer map:

[ e R en T en el
OO O =N

0 0
0 0
2104 0 . (8)
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Fig. 3. The value of the total time of flight aberration as a function of position in the system of fig. 2.
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Fig. 4. A more advanced four cell first-order achromat which is also fully 1sochronous.

Fig. 2 shows some characteristic rays going through
the system, and fig. 3 shows the total time of flight
aberrations as a function of position in the system.
Unfortunately, the maximum total offset of about 18
cm for the required time of flight aberrations is very
tight, imposing restrictions on the fabrication and
mounting of the optical mirrors.

4. A fully isochronous beamline

In this section we discuss a system with a similar
flavor as the one discussed in the previous section.
However, by using additional quadrupoles, full first-
order isochronicity is achieved.

The general layout of the system is again a double S
arrangement. Furthermore, the second and fourth cells
are mirror images of the first and third cells. Instead of
a combined function magnet we here use a dipole. The
cell is point-to-parallel in the x direction, which means
that the matrix element (a, a) vanishes. There are no
special requirements for the y motion, except that it
should stay well contained. These two requirements can
be achieved easily by using two quadrupoles before the
bending magnet.

[ *1 onor-03

We also demand that, after two cells, the chromatic
time of flight term (¢, d) must vanish. This can be
achieved by placing a suitable quadrupole in the center
between the bending magnets.

Again, after four cells arranged as a double S, the
matrix in the x direction becomes unity, so the system
is fully achromatic to first order. Furthermore, because
(¢, d) vanishes for each double cell, it also vanishes for
the whole system. Thus the system is fully isochronous.
The linear matrix in the y plane is not unity; the
quadrupoles are merely chosen such that its elements
stay well contained. The parameters of the elements in
each cell are as follows:
drift, length of 100 cm,
quadrupole, length of 20 cm, aperture of 3 cm,

strength of 0.07946 T,
drift, length of 15 cm,
quadrupole, length of 20 cm, aperture of 3 cm,

strength of —0.07000 T,
drift, length of 15 cm,
bending magnet, radius of 0.04 m, angle of 45°,

homogeneous,
quadrupole, length of 20 cm, aperture of 3 cm,

strength of 0.05561 T.

The bending angle of 45° corresponds to a strength
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Fig. 5. The value of the total isochronicity as a function of position in the system of fig. 4.
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Fig. 6. A relatively simple two cell achromat that has a very small chromatic time of flight distortion and provides a large horizontal

of the central quadrupoles (located between the dipoles)
that is not excessive. The focal length of the cell is
chosen to be about 2 m to satisfy the geometrical
requirements. Given the bending angle and the focal
length, narrow bounds result for the bending radius and
therefore the strength of the dipole field. In our solution
the strength of a dipole field turns out to be moderate
with less than 0.5 T.

After the strength of the central quadrupole was
determined, the strengths of the quadrupoles upstream
from it were chosen such that the cell is point-to-paral-

—

— +5 O00E-04

lel and has an acceptable y displacement. The system
has the following linear transfer matrix:

1 11.035 0 0 0
0 1 0 0 0
0 0 0.54080 1.3362 01 %)
0 0 —~0.52952 0.5408 O
0 0 0 0 0

Fig. 4 shows the trajectories of several principal rays
through the system. It can be seen that the first bending
magnet introduces chromatic effects that disappear
again after the last bending magnet. Fig. 5 shows the
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Fig. 7. The value of the total time of flight aberration as a function of position in the system of fig. 6.
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sum of absolute values of the time of flight aberrations.
All of these aberrations vanish after the last dipole.

5. A more involved two magnet beamline

In this section, we will present an achromatic system
based on a different approach that is not fully isochro-
nous, but the remaining (z, d) is very small. It will turn
out that for the required offset, this system has a much
smaller (¢, d) than the one discussed in section 3. The
system has a rough similarity with the one proposed in
the FELIX study [19], but outperforms it as far as beam
sizes and time of flight aberrations are concerned.
The system consists of a mirror-symmetric arrange-
ment of two identical cells. The cell consists of a drift of
arbitrary length, followed by a bending magnet, and
another drift in the middle of which a quadrupole is
placed. The strength of the quadrupole is chosen such
that the cell is dispersion-free after the second drift, i.e.
(x, d)=0. It is easy to see that a system consisting of
two such cells placed in mirror symmetry and bending
in different directions is achromatic. In order to be able
to counterbalance the action of the two quadrupoles, a
third quadrupole is placed in the center between them,
and the strength of the two outer quadrupoles is read-
justed accordingly.
The cell of the system has the following parameters:
drift, length of 0.2 m,
bending magnet, radius of 0.5 m, angle of 25°,
homogeneous,

drift, length of 0.4 m,

quadrupole, length of 0.2 m, aperture of 3 cm,
strength of 0.10525 T,

drift, length of 0.3 m,

quadrupole, length of 0.1 m, aperture of 3 cm,
strength of —0.0850 T.

This system has the following first-order matrix:

3.0662 6.6469 0 0 0
1.2640 3.0662 0 0 0
0 0 1.1801 2.0575 O
0 0 0.19086 1.1801 O
0 0 0 0 0.0129

(10)

The remaining time of flight term is about 0.4 ps per
percent of energy spread, certainly much below the
requirement. Furthermore, the total offset of the system
is about 95 cm, avoiding interference of the electron
beam and the optical system.

6. Comparison of the three systems

In this section we summarize the details of the
previous three sections and provide a direct comparison

Table 1
Comparison of the three systems
System1  System2  System 3

Number of magnets 4 4 2
Number of

quadrupoles 0 10 3
Total offset [m] 0.19 1.46 0.95
Time of flight errors

[ps/1%] 2 0.1 0.4
Maximum beam

width [mm) 3 6 3

of the systems (table 1). The key quantities for the
analysis of performance are isochronicity and offset.
The price of the system is determined mainly by the
number of components, so we list the required number
of magnets and quadrupoles. We also give the maxi-
mum lo beam width which determines the size of the
tube; because of radiation it is advisable to contain up
to 40 inside the pipe.

7. Matching the beam to the FEL

Besides the transport of the beam, the beamline also
has to generate the proper shape of the beam inside the
undulator. The beam envelope in the x direction must
be focused to a waist at the center of the undulator. The
beta function at the waist, the ratio between the beam’s
size and its angular divergence, should be about 1 m,
i.e., half the undulator length. In the y direction, the
beam envelope is focused to a waist at the beginning of
the undulator, and then maintains a constant value due
to focusing by the alternating field of the undulator
magnet The value of the beta function in the y direction
should be adjustable between about 0.25 and 1.1 m.

This task is best decoupled from the rest of the
system, and performed by a quadrupole triplet placed
behind the beamline. Note that such quadrupoles have
no effect on the achromaticity of the system; they also
do not affect linear time of flight properties because the
electrons are highly relativistic.

The strengths of the three quadrupoles are varied to
achieve the different beta functions. For the second and
third systems, solutions have been found for a variety of
B, values between 0.3 and 1.1 m, requiring field
strengths between 0.02 and 0.08 T.

8. Beam diagnostics and transport to the beam dump

After the electron beam has passed through the
undulator of the free electron laser, it has to be trans-

I1. ACCELERATOR OPTICS
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ported to a beam dump. Furthermore, it is desirable to
be able to analyze the beam parameters. While the
determination of the beam position is easily done using
beam position monitors, it is important to have infor-
mation about the beam’s energy and time distributions.
In particular, 1t is helpful to have two-dimensional
information in the form of an energy-time plot.

To achieve this goal, we propose a system similar to
one used in Los Alamos [20]. It consists of a bending
magnet acting as an energy separator combined with a
fast deflector that deflects a beam bunch in the y
direction. By sweeping the field of the deflector while a
bunch travels through it, the vertical bending angle
produced by the deflector that an electron experiences
1s a measure for the time at which it passed the deflec-
tor. Using this scheme, one can put a quartz screen at
the image point of the separator magnet and read off
the requested two-dimensional picture with a camera.

The system we propose here has the following form:
fast and slow deflectors, total length of 0.8 m,
bending magnet, radius of 0.5 m, angle 90°,

n=0.5,
drift, length of 1.74 m,
dnft, length of 10 cm,
quadrupole, length of 0.2 m, aperture of 3 cm,

strength of 0.03 T,
dnft, length of 1 m.

This system produces a stigmatic image after the
1.74 m drift. At this point, the dispersion is such that a
beam energy spread of 0.5% corresponds to about 1 cm,
a value similar to the one in the Los Alamos setup. The
image point is followed by a short drift and a quadru-
pole which slightly focuses the off energy electrons.
About 1 m behind the quadrupole is a good place for
the beam dump. At this point, the beam has a diameter
of about 5 mm and is approximately round.
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