Nuclear Instruments and Methods in Physics Research A298 (1990) 473-479 473
North-Holland

Computational aspects of optics design and simulation:
COSY INFINITY

Martin Berz

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory,
Michigan State Unwersity, East Lansing, MI 48824, USA, and
Exploratory Studies Group, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

The new differential algebraic (DA) techniques allow very efficient treatment and understanding of nonlinear motion in optical
systems as well as circular accelerators. To utilize these techniques in their most general way, a powerful software environment is
essential. A language with structure elements similar to Pascal was developed. It has object oriented features to allow for a direct
utilization of the elementary operations of the DA package. The compiler of the language is written in Fortran 77 to guarantee wide
portabulity.

The language was used to write a very general beam optics code, COSY INFINITY. At its lowest level, it allows the computation
of the maps of standard beam line elements including fringe fields and system parameters to arbitrary order. The power of the DA
approach coupled with an adequate language environment reveals itself in the very limited length of COSY INFINITY of only a few
hundred lines. Grouping of elements as well as structures for optimization and study are readily available through the features of the
language. Because of the openness of the approach, it offers a lot of power for more advanced purposes. For example, it is very easy

to construct new particle optical elements. There are also many ways to efficiently manipulate and analyze the maps.

1. Introduction

The quest for aberrations of optical systems is as old
as optics itself. In practice, however, it has so far been
possible to obtain accurate values for aberrations of
particle optical systems only to relatively low orders and
only for very special fields. There are several third order
codes [1-5] and one fifth order code [6] that allow the
computation of aberrations of optical systems. The DA
techniques discussed in another paper in these proceed-
ings [7] and in previous papers [8-10] for the first time
provide a concise and powerful framework that allows
the computation of arbitrary order maps depending on
arbitrarily many variables including system parameters.
So DA techniques are the tool to a general yet elegant
unified theory of optical aberrations.

The usefulness of the concept in practice is in-
timately related to the need for powerful new software
algorithms and strategies. In this paper, we want to
discuss some of the application oriented challenges as-
sociated with the DA method. In section 2, we shall
discuss briefly some efficient algorithms for DA oper-
ations, a problem which is at the core of practical
usability of DA and requires quite sophisticated pro-
gramming techniques. Section 3 contains general con-
sideration about efficient use of DA operations and new
generation beam dynamics codes. Section 4 discusses
the input language of COSY INFINITY, which is so
powerful that indeed all the physics of the code was

0168-9002,/90,/803.50 © 1990 — Elsevier Science Publishers B.V. (North-Holland)

written in it. The last section finally discusses the physics
aspects of the implementation.

2. The fundamental DA operations

In this section we will briefly outline the techniques
and algorithms used in the DA package. This package is
a collection of subroutines performing the elementary
DA operations addition, scalar multiplication, multipli-
cation and derivation. It also contains a large selection
of intrinsic functions for DA objects, including most
intrinsic functions usually available in a Fortran en-
vironment. Furthermore, there is a substantial collec-
tion of higher level DA tools. Altogether, the whole DA
package contains about 8000 lines of Fortran code, and
thus represents a major part of the whole investment of
writing COSY INFINITY.

2.1. The storage of DA vectors

In this section we will discuss the storage and coding
of DA vectors inside the package. The package contains
its own memory management, which stores all data in
one large common block, and refers to them by pointers.
The size of the block can be changed according to the
hardware environment, and this limits the amount and
size of DA vectors that can be used. Thus the whole
problem of the static memory allocation of Fortran is

V. THEORETICAL OPTICS

474 M Berz / COSY INFINITY

removed except for the need to adjust the parameter to
the maximum amount of regular or virtual memory
available.

In practice 1t turns out that many DA vectors are
almost empty in the sense that many of the derivatives
do not occur. For example, a system that has mid-plane
symmetry entails that right away half of the possible
derivatives do not occur. If in addition there are system
parameters, often many intermediate vectors do depend
on only one or two of these, further reducing the
number of terms.

For this reason, the storage of the DA vectors is
done in such a way that only nonzero information is
preserved. In the most general case of the algebraically
closed version of the DA, vectors are represented by
their support points in Q" (cf. ref. [7]) and the double
precision values that they assume there. This informa-
tion is coded in the following way:

For a given DA vector, first the smallest common
denominator iy of all the rational numbers in 1ts sup-
port points in QY (cf. ref. [7]) is determined and all the
fractions are expressed in terms of this denominator.
(Because of the nature of operations, denominators are
usually small in practice, for example 2, 3 or 4.) In the
second step, the smallest numerator z, is determined.
The other numerators are then expressed by their (posi-
tive) difference to i,. In the special case of elements of
the non-extended DA | D, (cf. ref. [7]), we would have
ig=1land i, =0.

Given 14 and 1, for a certain DA vector, the infor-
mation describing the vector at one support point is
thus described by a double precision number and v
integers. The v integers are stored in a bit-packed
representation and thus compressed into two coding
integers.

Altogether, a DA vector is described by 14, ¢, the
depth through which support points are known, and the
collection of support points, coded by one double preci-
sion number and two integers each. The collection of
coded support points is stored in a prespecified order
that is discussed in connection with the multiplication.
All these data are stored dynamically in the large com-
mon block and are managed by pointers.

2.2. The elementary operations

The addition of two DA vectors represented by the
above coding is a relatively transparent merging pro-
cess. First, the two vectors are expressed in terms of one
common denominator and one common offset. Then,
the entries in the vector are run through by two pointers,
at each step comparing the corresponding coding in-
tegers. If they match, the two double precision values at
the respective support point are added. Otherwise, the
double precision value of the support point and the two

coding integers of the support point coming first in the
ordering are copied.

The scalar multiplication is even simpler; it only
requires the multiplication of all the double precision
values with a constant. The derivations are also rela-
tively simple. They only require a change in the two
coding integers; not even a reordering is necessary
because of the particular choice of the ordering.

The major challenge regarding the elementary oper-
ations was the multiplication, and it required a highly
sophisticated algorithm to implement it efficiently. Due
to the particular, not very intuitive form of the ordering,
the total overhead for bookkeeping is limited to only
30% of the time for the required double precision multi-
plications. Other less sophisticated algorithms can easily
increase the time for a vector multiplication by a factor
of 10. For details, we refer to the code description.

2.3. Higher level utilities

After having discussed the four elementary DA oper-
ations, we now want to address higher level algorithms.
The most important and sophisticated of these oper-
ations is the concatenation of transfer maps. In essence,
this boils down to an optimum tree transversal problem
utilizing rebranching. Together with the multiplication
algorithm, this is the most difficult program in the code.
We note that using the object oriented features of the
COSY language discussed below, the concatenation
routine can also be used to push particles through a
transfer map in the most efficient way.

Using the concatenator, it is not very difficult to
construct routines that allow the partial inversion dis-
cussed in section 4.2 of ref. [7]. This readily allows the
computation of the various Eikonals, and the imple-
mentation of DA optimization algorithms using super-
convergent Newton—Raphson methods. It further al-
lows the implementation of various symplectic integra-
tion techniques. For details, we refer to ref. [11].

Furthermore, there is a whole Lie algebraic environ-
ment in COSY INFINITY. Since any multidimensional
DA is a Lie Algebra via a Poisson bracket based on the
derivations of the DA, this for the first time allows high
order and parameter dependent Lie algebraic oper-
ations. Because of the central role played by the Poisson
bracket, there is a direct Poisson bracket routine not
explicitly based on derivations and multiplications that
allows a savings of about 30%. Part of the Lie Algebraic
environment are routines that allow the computation of
potentials for DA fields to allow the computation of the
various Lie operator factorizations discussed in section
4.3 of ref. [7].

Finally, there is a large variety of other support
routines, including routines that simplify the interfacing
of other DA programs with different representations.
There are also routines for the efficient extraction of

M. Berz / COSY INFINITY 475

individual coefficients from a DA vector, and there are
input/output routines and various diagnostic routines.

In this section we have discussed briefly some of the
algorithmic problems associated with DA implementa-
tions. We have discussed algorithms for the important
operations to arbitrary order and in arbitrarily many
variables. The next sections will address the efficient
utilization of these tools for practical work.

3. The philosophy of COSY INFINITY

A modern tool that allows the design and simulation
of optical systems has to fulfil a wide variety of require-
ments. On the technical side, it should be widely porta-
ble. Portability should range from personal computers
for simple first order layout to supercomputers for long
term tracking in large hadron colliders.

Even though programming languages have come a
long way in the past decade, there still is only one
numerics oriented language that is truly portable: For-
tran. The choice for this language, with all its bad
reputation among serious computer scientists, is even
more obvious when considering the potential need to
interface with a variety of existing programs for various
special problems, which historically in our field have all
been written in Fortran.

The code itself should be both easy to use and learn,
yet allow the knowledgeable expert user utmost flexibil-
ity. There are various concepts that have evolved in the
past, beginning with TRANSPORT’s number tables,
continuing with second generation mnemotechnic com-
mand languages like in GIOS, MARYLIE and COSY,
and finally the third generation unification attempts of
MAD.

All of these languages have command structures for
various tasks, but are still often not as simple to use and
not as flexible as one might desire. However, what all
these approaches really boil down to is exactly what
computer scientists are attempting to streamline: the
interaction with a computer, preferably in a simple yet
powerful way. In this view, programming languages are
nothing but attempts to provide concepts of thinking
that allow a very concise yet powerful phrasing of tasks.
So computer science already has the answer to the quest
for the optimal command language: take a regular
programming language!

Using a regular language, it is very directly possible
to express very complicated tasks in a relatively com-
pact way; yet, if the syntax of the language is not too
complicated, it is easy to learn. Certain tasks in this
language would be expressed by procedure calls. Opti-
cal elements themselves would be procedure calls. New
optical elements can be written as new procedures.

The language of choice has to be modern and con-
cise, yet portable. Furthermore, it should allow the use

of DA in a direct way to allow the transformation of
conceptual simplicity of the DA approach into coding
simplicity.

4. The object oriented COSY language

Unfortunately, a language that satisfies the above
statements does not readilv exist. It would require the
portability of Fortran, the compactness and beauty of
Pascal, and the object oriented features of C + +. Fur-
thermore, it should not require time consuming linking
of the user input to the existing code.

So in order to provide the proper DA environment
for COSY INFINITY and the user commands, we
designed our own language system. The syntax is very
close to Pascal. This allows both a quick understanding
of the syntax for the user and limits the complexity of
the compiler for the programmer. Many features of
Pascal are very useful for the practical programming of
COSY INFINITY. In particular, the local and global
routines and variables allow a very clean and efficient
data management.

For compatibility, the compiler is written in Fortran,
and the language is not compiled into machine code but
into a metacode that is again interpreted by a Fortran
driver. So Fortran serves here merely as a machine
independent assembly language. Because of the simplic-
ity of the Pascal syntax, the programming of the com-
piler was not as difficult as it may appear. The code for
the compiler and the interpreter together have a length
of about 4000 lines. The code is also very efficient: In a
recent benchmark test against a commercially available
Pascal compiler, our compiler was only about 30%
slower.

The COSY language is object oriented; it is
straightforward to add new types to it, and in particu-
lar, we have DA now readily available. Also other types
like interval arithmetic that will prove valuable in the
future are available. Altogether, the COSY language
provides a very powerful environment for the handling
of DA vectors.

In the COSY language, types of variables are free
until runtime. This provides a very simple yet powerful
way to call the same procedure once with real argu-
ments and once with DA arguments. How valuable this
approach is for COSY becomes apparent in that all of
the chromatic effects can now simply be turned on or
off by making the rigidities real or DA variables. In a
very similar way, the freedom of types automatically
allows the computation of maps depending on system
parameters.

The procedure structures in the COSY language
allow the grouping of elements into beamlines in a
rather simple way. A line is nothing but a procedure
which contains calls to element procedures or other line

V. THEORETICAL OPTICS

476 M. Berz / COSY INFINITY

procedures. The logical structures including loops and
while and if statements allow the programming of com-
plicated optimization strategies.

The latter is also directly supported by one feature
with which the COSY language goes beyond normal
programming languages. It contains provisions for opti-
mization that are directly part of the language. There is
an optimization structure similar to the loop structure
that runs through a block of code over and over again
until a target variable has been minimized by varying a
set of specified free variables. A variety of optimization
algorithms are available, including the very rugged sim-
plex optimizer. The most elegant of these optimizers is
probably the superconvergent Newton’s method which
computes the derivatives of the objective function by
replacing the fitting variables with DA.

Using the COSY language combined with the DA
methods discussed in ref. [7] and the implementation of
the DA package discussed above, the implementation of
the arbitrary order code COSY INFINITY with all its
flexibility could be achieved with only a few hundred
lines of COSY commands.

This section can necessarily only give a limited im-
pression of COSY INFINITY and its power. More
detailed descriptions can be found in ref. [12], but the
best way is to play with it. The code is distributed by
the author, and requests for it should be sent to the
above address.

5. The physics in COSY INFINITY

In this section, we want to discuss the physics imple-
mented in COSY INFINITY. Using the DA techniques
and the powerful operating environment discussed in
the previous sections, it proved rather straightforward
to produce a very flexible code that allows map compu-
tation as well as particle tracking in a variety of ways.
The resulting code is very compact and relatively trans-
parent.

The power of this new approach allows us in particu-
lar to avoid many approximations in the physics part.
For spectrometers, this means that with limited extra
effort, we are able to treat fringing fields exactly and
not only in the perturbative fringing field integral tech-
nique. It also allows the computation of transfer maps
of very complicated field arrangement to very high
order.

For the accelerator physicist, it allows the use of the
proper Hamiltonian without any approximation of the
square root. Tracking through maps, it allows the use of
thick elements and even fringe fields instead of kicks.
At its simplest level, this can avoid the notorious refit-
ting of the linear tune, but in particular for small
machines, it may reveal important physical effects.

In the following subsection we want to discuss the
full relativistic equations of motion in the specific coor-
dinates used in COSY INFINITY. These equations of
motion are used for the numerical integration of maps
as well as particles, for the DA integration of maps, and
for the kick implementation.

5.1. The canonical equations of motion

The motion is described relative to the trajectory of a
reference particle. In these coordinates, the transfer
map is always origin preserving and thus nilpotent
(compare ref. [7]). While the reference trajectory is
allowed to bend, it is supposed to stay within a common
plane. A place in space is described uniquely by an arc
length position s, and the function #A(s), which de-
scribes the relative curvature, i.e. the reciprocal of the
radius of curvature p(s).

In particular, the total angle by which the trajectory
has been bent since s = s is given by

a=[hds. (1)

We now use this formula to determine the equations
of motion which in Cartesian coordinates have the
relativistic form

d d P

—P=F, —r=——er
ds)1 +P2/m2C2 (2)

dr

We transform the equations for the momenta to
integral equations by integrating with respect to the
independent variable s and obtain

P(s)=P(s;) + ft(’is‘))p(z) dt = P(s,) + f:F(s)t' ds,
(3)

where ¢t = d¢/ds. In the new local variables determined
by the reference trajectory, the momenta thus have the
form

5 . 5
cos('/;oh ds) 0 51n(£0h ds)

p= 0 1 0
_Sin(/;:h ds) 0 cos(j;:h ds)
.(P(s0)+j;:F(s)t/ds). (4)

Differentiating the expressions in eq. (4) with respect
to 5 now yields the differential equation for the new
momenta:

p’ =Ft'+ (0, h,0) xp. 5)

M. Berz / COSY INFINITY 477

Here the prime denotes differentiation with respect to
the new independent variable, the arc length s.

We note that for a particle at position s with coordi-
nate x, the slope is given by p./p,. Now suppose a
particle moves a small As. Then because of the curva-
ture of the optical axis, the actual distance it travels
parallel to the reference trajectory is (1 + hx) As to first
order in As, and hence its slope is also given by
Ax/[(1 + hx) As], from which we infer

x'=(1+hx)-f;—x

(6)

’ p)’
=(1+hx)—.
vy =(x)p,

The time Az it takes to travel from s to s+ As is
given by the distance divided by the velocity, and thus
to first order in As we obtain the relationship

Ar= —})—\/Asz(l +hx)’ +AxT+Ay?,

from which we conclude using egs. (6):

=010 +hx)—- \/

We now will derive the equations of motion for the
case of the motion in electromagnetic fields, for which
F=ze(E+vXB).

As coordinates describing the motion of a particle
we choose the following set:

5L 0

n=x, r,=a=p./po,

nB=Yy, ”4=b=Py/Po,
rs=1=vy(t 1), ro=8k=(K—Ko)/K,,
ry=8,=(m—mgy)/mq, rg=8.=(z-20)/z,

(8)

where x, y, p, and p, are the positions and momenta
in the moving frame of reference, K is the initial
energy, and m and z are the mass and charge of a
particle, respectively. The index 0 denotes the respective
quantity of the reference particle. Altogether, the coor-
dinates are such that the reference particle is described
by the origin, and furthermore the quantities are nor-
malized such that they are usually significantly smaller
than 1 in absolute value.

We note that the momentary kinetic energy K is
given by

K=K,(1+8,)—20(1+8,)eV(x, y, 5),)
where V is the electrostatic potential. It turns out to be

particularly advantageous to introduce the following
measure of relativity:

n-—. (10)

Because of K = mc?[(1 — v*/c*)™1/2 — 1), we obtain

(1 - vz/cz)_l/

and from this

v _ yn(2+n)] (11)

c 1+19

From eq. (11) and p =mov/(1 — 0?2 /c*)/? = mo(1 + 1),
we infer

%=\/n(2+n)- (12)

Egs. (11) and (12) allow a direct determination of
velocity and momentum from the quantity . Note that
contrary to many other relativistic relationships, the
evaluation of these formulas is always numerically sta-
ble since no differences of small quantities occur in the
limits n = 0 or n — 0.

From egs. (11) and (12), we also obtain

2
=1+,

p
E=m(l+n). (13)
We begin the derivation of the differential equations in
the new coordinates with the equation for /’. We obtain
from eq. (7) using eq. (13):

p/v Po

Po/ Y P:

1419 Po
1+710 pz'

I =vot’ = (1 + hx)

=(1+8,)(1+hx) 14)
Note that the coordinates in eq. (8) do not contain the
momentum in the z direction, but instead the energy
spread d. Using eq. (12), we determine p,/p, from the
other coordinates as

2

-;—Z= p—z—a —B?
0
2 12+m) 5, o,
\/(1+6 Vo)~ (15)

Using v/v=p/p (which merely says that velocity and
momentum are parallel) and eqgs. (7) and (14), we obtain
from eq. (5):

d (px py P)

ds " o’ Po
¢)4
=zeE— + XB(l+hx)—+h ~=,0, - =
Po P Po
E
- ———1’+—”—xi(1+hx)52)(1+82)
XE, Po Xwm, P:
+h(— 0, —&)
P Po

1+7] Po E
={a+s 20
((M)1+T’O P, XEO

V. THEORETICAL OPTICS

478 M. Berz / COSY INFINITY

+(L b— 1)X)(1+8)(l+hx)

+h(p—0 0, -ﬁ—o) (16)

Here the quantities

Pobo Po
ze and XM, = 2—08 (17)

XE, ™
have been used. These quantities depend on the refer-
ence particle and present scaling factors that determine
how strongly the electric and magnetic fields affect the
motion. They are usually referred to as the electric and
magnetic rigidities.

Thus we finally obtain the total set of equations of
motion:

x'=a(1+hx)%,

’ pO
=h(1+hx)—,
yi=b(l+hx)

'=(1+8,)(1+hx) 1+;’ 2o

1+ Opz’

1+UOEE_XMO P Xwm,

x(1+hx)(1+8,)+hZz,
Po

1+ E B, B,
a/=((l+8m) U Po X Y + £9)

=|(+s,) 1+ &i_'_i_a& B
" 1+710 pP. XEO XMO P: XMO

X(1+hx)(1+8,), (18)

where xu,, and xg, are the rigidities defined in egs.
(17), and the following expressions have been used:

=(K0(1+8k)-—zoe(1+82)V(x, y,s)>, (19)

mee*(1+3,)

L \/(1+8)2 mZEm) e (20)

Po Mo(2+ 1)

These equations of motion describe the pure Ham-
iltonian motion in the electromagnetic field. There are
two effects which are often relevant for particle acceler-
ators not included in these equations.

The first effect is synchrotron radiation which leads
to a gradual loss in particle energy. Even though radia-
tion is a quantum effect occurring stochastically, often
it suffices to only study the average radiation loss which
is simply proportional to the momentary curvature of
the trajectory.

The second effect that is relevant is the spin. While
the forces exerted on the particle due to the interaction
of the magnetic moment with a field gradient are usu-
ally small and can be neglected in a very good ap-
proximation, the dynamics of the spin itself, which is of

importance for the study of polarization, can be treated
in the same way as the other quantities.

It is probably one of the strongest points of the DA
approach that the whole computational effort to obtain
maps to arbitrary order is only limited by the program-
ming of the equations of motion. While we do not have
spin and radiation treatment in COSY INFINITY now,
it should be apparent that their inclusion is rather
straightforward.

5.2. The description of the fields

In order to utilize the equations of motion in particle
optical coordinates, we need to know the specific form
of the electric and magnetic fields in the curvilinear
coordinates. Since both the electric and magnetic fields
are rotation-free, there are scalar potentials V' for the
fields. We write V' as a power series expansion in the
curvilinear coordinates:

V(X y’s)_z Zalj()

=0 ;=0

o2y

,vjv

Since the electric and magnetic fields are divergence
free, we can conclude v 2V = 0. In the curvilinear coor-
dinates, this condition assumes the well-known form
[1,13,14]:

19 Wy 8%,
VZVB= 1+hxa((l+hx)a—.i)+wfi
1 8(1 Wy
+1+hx$(1+hx737)_0' (22)

Inserting eq. (21) into eq. (22), one obtains the
following recursion relation:

a, 2= — —iha]’y +ih'al_y —a,.,,
—(31+1)ha,+1,j—3zha,_1,j+2
—1(3i—1)h%a, = 3i(1—1)h%a, 5 >
_i(’_1)2h3‘1,+1./

-—i(i—l)(i—2)h3a,_3'j+2, (23)

where primes denote derivatives with respect to z, and it
is understood that all coefficients with negative indices
are zero.

This recursion relation allows us to compute all a, |
from the ones with ;=0 and j=1. So the potentials
are determined by their behavior in the plane of deflec-
tion and the first derivative with respect to y. In the
electric case, we obtain a,; =0, so the a,; and thus the
knowledge of E, in the midplane provide complete
information. In the magnetic case, we have @, ,—0,
such that the a,_; and hence the knowledge of B, in
the midplane provide complete information.

M. Berz / COSY INFINITY 479

In case of s independence, the relations considerably
simplify to

a, ,;+2= _al+2,/_iazfl,]_(i+1)al+l,j' (24)

In the equations of motion, these fields have to be
evaluated at (x, y, s). Because the transfer map in the
curvilinear coordinates preserves the origin, we obtain
that x and y are always infinitesimal (cf. ref. {7]), and
thus powers higher than v vanish. This entails that in
order to compute the map to order v, it is sufficient to
know the power series expansion of the fields to order v
only.

5.3. Numerical integration, DA integration and kicks

Using the differential equations and the fields given
in the last two sections, it is now possible to compute
transfer maps to arbitrary order. To this end, we pro-
grammed a seventh order Runge Kutta algorithm with
automatic step size control [15] in the COSY language.
This integrator is mainly used for special elements like
round lenses and for checking purposes.

There is also a DA integrator [7] for more standard
fields, including the main fields of standard beamline
elements and most fringe fields. This integrator uses a
fixed step size and adjusts the order to obtain the
requested precision. A typical element is transversed in
one step, using orders of about 25, which gives an
accuracy close to machine precision. Since this integra-
tor requires only one DA evaluation of the fields per
step, it is more than one order of magnitude faster than
the usual integration. In this case, the time it takes to
compute a map to third order is very similar to the time
required by TRANSPORT [1] or any other code.

The equations of motion are also used for a kick
environment, which is essentially a second order in-
tegrator. Even though the accuracy of this technique is
not very high, this approach has been used extensively
in the simulation of particle accelerators.

Because of the freedom of types in the COSY en-
vironment, the code for the integrators can be used both

for the computation of arbitrary order maps and the
numerical integration of trajectories. Using the special
vector data type, many particles can be tracked simulta-
neously, which entails perfect vectorization and is at-
tractive for long term tracking in hadron accelerators.

References

[1] K.L. Brown, The ion optical program TRANSPORT,
Technical Report 91, SLAC (1979).

[2] T. Matsuo and H. Matsuda, Mass Spectrom. 24 (1976).

[3] H. Wollnik, J. Brezina and M. Berz, Proc. AMCO-7,
Darmstadt, 1984, p. 679.

[4] H. Wollnik, B. Hartmann and M. Berz, AIP Conf. Proc.
177 (1988) p. 74.

[5] AJ. Dragt, LM. Healy, F. Ner1 and R. Ryne, IEEE
Trans. Nucl. Sci. NS-3 (5) (1985) 2311.

[6] M. Berz, H.C. Hofmann and H. Wollnik, Nucl. Instr. and
Meth. A258 (1987) 402.

[7]1 M. Berz, these Proceedings (3rd Int. Conf. on Charged
Particle Optics, Toulouse, France, 1990) Nucl. Instr. and
Meth. A298 (1990) 426.

[8] M. Berz. Part. Accel. 24 (1989) 109.

[9] M. Berz, IEEE Trans. Electron Devices ED-35 (11) (1988)
2002.

[10] M.Berz, AIP Conf. Proc. 177 (1988) p. 275.

[11] M. Berz, in: Nonlnear Problems in Future Accelerators
(World Scientific, 1990) in press.

[12] M. Berz, COSY INFINITY, a reference manual. Techni-
cal Report 28881, Lawrence Berkeley Laboratory, Berke-
ley, CA (1990).

[13] L.C. Teng, Expanded form of magnetic field with mid-
plane symmetry, Technical Report ANL-LCT-28, ANL
(1962).

[14] M. Berz, Verallgemeinerung der nichtlinearen Teilchen-
optik auf Bildfehler bis fiinfter Ordnung, PhD thesis,
Justus Liebig Universitit Giessen, 6300 Giessen, FRG
(1986).

[15] Ingolf Kiibler, Master’s thesis, Justus Liebig Universitit
Giessen, 6300 Giessen, FRG (1987).

V. THEORETICAL OPTICS

