
THE COSY INFINITY GRAPHICAL USER INTERFACE

SUBSYSTEM

MSU HEP REPORT #111101

ALEXANDER WITTIG, MARTIN BERZ, AND KYOKO MAKINO

Abstract. In this report, an extension of COSY INFINITY is described that
allows output to be sent to a graphical user interface (GUI) instead of a tra-

ditional text-based console. A GUI allows the development of user friendly

interfaces that can also be used by people unfamiliar with the COSY INFIN-
ITY programming environment, as well as experienced users.

We discuss in detail the design of both the application programming inter-

face (API) for COSY programmers, as well as the internal implementation of
the GUI within the COSY INFINITY source code.

1. Motivation

While COSY INFINITY provides various powerful numerical tools, their proper
use typically requires expert knowledge of the programming environment. It is
possible to write a user interface in the console based text mode of COSY, however,
these interfaces tend to be not very user friendly. Especially if long values have to
be entered, or many values are input repeatedly, a console based interface quickly
reaches its limits.

To provide the power of COSY INFINITY to non-expert users, we have designed
an application programming interface (API) from within COSYScript which allows
the developer of an application to easily and quickly provide the user with a power-
ful, platform independent graphical user interface to interact with the application.

We believe this effort is of great importance in fostering the application of the
tools developed by theorists to practical applications. The algorithms and methods
developed to simulate various physical systems are often very complex and are
developed by experts in the field. However, often these simulations cannot be run
efficiently by the users for whom they were made because of the steep learning
curve involved.

Having the ability to provide simple point and click interfaces to change parame-
ters of a simulation makes the underlying algorithms much more useful to the users.
This hopefully prevents powerful computational tools from being underused due to
hurdles in the user interface.

2. Application Programming Interface

The programming of GUI interfaces from within COSYScript fits in naturally
with the classic way of handling input and output in this environment, while pro-
viding a wide range of commonly used GUI elements, known from other programs.

Date: November 1, 2011.

1

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111012

Figure 1 shows a screen shot of an example showcasing all available GUI elements
on the Mac OS X platform.

To define the GUIs, COSY provides the special GUI unit numbers -201 ...-210,
each of which represents one window in the user’s graphical environment. COSY
programs define and read the content of a GUI window using standard READ and
WRITE calls.

Existing programs can be very easily converted to use a GUI with only minimal
modifications to existing code (see Section 2.1). This method provides a fast and ef-
ficient way to use the new GUI features in existing projects. For more sophisticated
GUIs, a variety of special GUI commands can be written to the GUI unit numbers
to define the elements in each window and to interact with them (see Section 2.2).

The GUI also allows input from and output to the traditional console units 5 and
6 in a GUI program. These calls are automatically routed to a separate terminal
window if COSY is run in a GUI environment. That means that the same COSY
program that runs in the console version will also run with a console in the GUI
version of COSY (see Figure X).

Similarly, a simple ASCII based GUI is shown instead of a GUI window when
a COSY program using the GUI is run in a non-GUI environment (e.g. directly
from the command line or via SSH). This allows “graceful degradation” in case the
optimal GUI system is not available without rendering the program useless.

2.1. GUI Basics. The main conceptual difference between a GUI and the tradi-
tional console based I/O is the concept of a delayed read. In a traditional console
based user interface the program prompts the user for each value in the order spec-
ified in the program, which are read one after the other. In a GUI window, on the
other hand, the user can enter values into various fields and modify them in any
order before pushing a button, which then causes all values to be read in at once.

This concept is integrated into COSY by making READ commands to the GUI
window units delayed. That means that COSY will not immediately read a value
and place it into the variable passed to the READ command. Instead, COSY will
associate each variable with a GUI input field, and only place values in the variables
once a delayed read is initiated. At what point in the code such a delayed read is
to be performed, is up to the programmer to specify.

2.1.1. Simple GUI. In order to write a simple GUI interface, or to convert an
existing program using traditional console based I/O to a GUI program, a developer
generally has to perform the following steps:

Instead of the usual WRITE 6 statements to write output to the console, WRITE
-201 statements must be used to output to a GUI window instead. Similarly, READ
5 statements are replaced by READ -201 to read input from a GUI window instead
of the terminal. Note that the GUI unit number is the same for both READ and
WRITE commands.

To initiate the delayed read, the procedure call GUIIO -201; must be initiated
at the correct places in the code. This command will automatically add an OK
button at the end of the window, show it to the user, wait for the button to be
pushed, and then fill in the values from each input field into the variables specified
in the preceding READ calls. The window content is discarded after this call.

The WRITE commands to the GUI unit will output each string it is passed as
a line of simple text (“label”) in the GUI, while all other data types will appear

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111013

Figure 1. Demonstration of available GUI elements in the COSY
GUI on Mac OS X.

in an embedded console in the GUI window the same way they would appear in a
terminal. The user can select and copy content out of an embedded console, and
scroll if the content is too long. Consecutive output into a console is appended to
an existing console until a string is written to the window, creating a label after
the embedded console.

For each READ from a GUI unit, COSY will insert an input field in a separate
line in the GUI. The variable to be read is associated with this input field, and
its value is placed in the variable once the window is shown to the user by calling
GUIIO. When converting programs to use the GUI, developers must make sure that
their code is ready for the delayed read concept. In particular, the variable being
read cannot be used anywhere in the code before the call to GUIIO. Furthermore,
all READ commands must read into different variables to be useful, otherwise the
variable will only contain the value of the last READ command.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111014

Figure 2. The GUI console on the Mac OS X operating system.

2.2. Advanced GUI. For more fine grained control over the appearance of the
GUI, the full GUI interface can be controlled through special GUI commands writ-
ten to the GUI window units. The COSY GUI operates with double buffered
windows, that is for each window number there is the currently displayed window
and a second hidden window. GUI commands defining GUI elements always act on
the hidden window, while some other GUI commands can be issued to manipulate
the currently displayed window (if any).

In general, the code structure to define a GUI window looks very much like the
traditional console based I/O code, where the user is prompted for some input
through a WRITE and the input is then read form the user by a READ. In COSY’s
GUI model, the GUI window is still constructed by issuing WRITE commands to
prompt the user for input, immediately followed by READ commands to read back
the actual input. The READs are automatically delayed by COSY until a delayed
read is initiated (see below).

GUI commands are issued by writing to the corresponding GUI window output
unit using WRITE. GUI commands are strings starting with the backslash character
(\), e.g. \ReadField, mimicking LATEX notation. Each GUI command can take a
number of arguments. Those are specified as additional arguments to the WRITE
call. Their type can be anything COSY can convert into a string using the ST
function. A single WRITE command may contain several GUI commands one
after the other.

To read back a value from a GUI element, a READ command is issued to the GUI
window unit. This associates the variable given to the READ command with the
most recently written GUI field that can return a value, provided it has not been

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111015

associated yet. If there is no such field, either because no GUI field that returns
a value has been written yet or because the last GUI field has been associated
(”read”) already, the READ command will instead insert a new text input field (via
\ReadField) on its own line into the GUI window, and associate the variable with
that field.

To initiate the delayed read into the thusly associated variables, the command
GUIIO is used. It can be used in two different ways, depending on how it is called:

GUIIO <unit> ; If called with only one argument, <unit> specifies the GUI
window unit to read from. The command adds an OK button at the
end of the window if no button was defined yet, shows the window,
waits for a button to be pushed, reads all values from the window, and
then closes the window.

GUIIO <unit> <button> ; If called with two arguments, <unit> specifies
the GUI window unit, and <button> must be a variable to receive the
text on the button that was pushed. In this more advanced form, GUIIO
only waits for a button to be pushed in the currently displayed window,
and then reads the values of all associated variables. The text on the
button that was pushed is stored in <button> (note that this string
is subject to COSY’s usual READ processing). It does not modify the
window in any way (e.g. showing it, adding buttons, or closing it). If
there is no window currently displayed, all variables are filled with zeros
immediately and the number −1 is returned in <button>. If there is a
window displayed, but it does not have a button, all variables are read
immediately and the number 0 is returned in <button>.

2.2.1. GUI Layout. Components in the GUI are arranged based on the order in
which they are added and the natural size for each element as determined by the
GUI program. Each element is added at the end of the current line in the GUI.
A line can be ended using the \NewLine GUI command, which causes all further
elements to be added at the beginning of the next line.

The size of the window is determined by the width of the longest line, and the
total number of lines. If a line is shorter than the width of the resulting window, it
is aligned according to the alignment specified by one of the GUI commands \Left,
\Center, \Right, or \Just. \Just will cause the elements in the line to be resized
such that they fill up the entire line. By default, if none of the alignment commands
was issued, lines are left justified.

Alignment commands can be called at any time, before or after writing elements
to a line. It always applies to the current line and if called multiple times within
the same line, the last call carries.

For more sophisticated layouts, the COSY GUI specification supports the \New-
Cell GUI command. With this command, it is possible to lay out elements in a
tabular grid, where each cell behaves much like the lines described above. Each
cell can have its own alignment, and the size of each row and column in the table
is determined by the largest cell in the row or column. A row of cells is ended by
calling the \NewLine GUI command.

By providing an integer argument to \NewCell, the current cell can be made to
span multiple cells. The last cell in each row is automatically expanded to the end
of the window, so it is not necessary to provide a cell span for the last cell. If this

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111016

behavior is not desired, an empty cell can be inserted after the last occupied cell
by simply calling \NewCell.

2.2.2. Passthrough Unit. The special unit number -999 can be used for both reading
and writing. This unit represents the passthrough unit, which passes input and
output without modification to the standard input and output of the GUI program
if COSY is running with a GUI program attached (otherwise it is equivalent to
units 5/6).

That way, it is possible to connect the GUI program’s input and output streams
to yet another program which in this way can communicate with the COSY pro-
gram.

A READ command from unit -999 will read a line from the GUI program’s stan-
dard input. A WRITE command to unit -999 writes its arguments to the GUI
program’s standard output.

2.3. GUI Command Reference. Table 1 lists all available GUI commands cur-
rently implemented in COSY. These commands are issued by writing them to a GUI
unit as described in the previous section. The first column gives the name of the
command and any arguments to the command, if applicable. Commands are case
insensitive, the spelling used here is by convention but not required. Commands
starting with ”Read” insert a GUI element that can be read by a subsequent READ
call. Optional arguments are indicated by a default value in parenthesis, if they
are omitted, this value is used. Optional arguments can only be omitted beginning
with the last argument.The second column specifies which of the two windows at
the given unit the command acts on (either the hidden or currently displayed one).
The third column indicates whether a command returns a value when a delayed
read is executed using the GUIIO call.
In the following we give some further remarks on specific GUI commands:

\Console:
All arguments are output in the same form as on a regular terminal. An
embedded console is inserted into the GUI window on a separate line. Out-
put is appended to this console until another GUI component is added, or
one of \NewLine, \NewCell, or \Show are called. The user can select and
copy text in an embedded console, scroll if the text is too long, but cannot
change the content.

\Image:
Image file names are specified with forward slashes (/) as path separa-
tors or as file:/// URLs for full paths. Any fully qualified URL can be
given to load images over the internet (if the computer has an internet con-
nection). The Java GUI shipped with COSY INFINITY comes with some
commonly used icons built in which can be accessed using URLs of the form
cosy://yes.png, where instead of ”yes.png” any one of the built in icons
(”ask.png”, ”clock.png”, ”cosy.png”, ”info.png”, ”msu.png”, ”msupa.png”,
”no.png”, ”star.png”, ”warn.png”, ”wrench.png”, ”yes.png”) can be used.

\ReadNumber:
When editable, this will display an input field with adjoining up and down
buttons. Only numeric input is allowed in this field. When not editable,
a slider is shown which can be dragged by the user to indicate a numeric
value. When read, this field always returns a number in COSY.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111017

\ReadOption:
Options are a group of GUI elements of which only one can be selected
at a time (typically displayed as round buttons). In order to designate
which option belongs to which group, the name of an option group can be
specified. Of all options in a group with the same name, at most one is
selected at each time.

\ReadList:
Presents the user with a list of options from which to select one. If the list
is set to editable, the user is allowed to enter a value that is not on the list,
otherwise the user must select a value on the list.

\ReadProgress:
This element can either display a progress bar with the given percentage
of completion, or a bar with an indeterminate state to indicate that a
computation is ongoing but the total time is not known. When read, this
element will simply return the value it is currently set to. This is mostly
so that it can have its value changed while the window is displayed using
\Set.

\NewLine,: \NewCell, \Left, \Center, \Right, \Just
See Section 2.2.1 for information about the layout of GUI elements.

\Deactivate,: \Activate
These commands make the currently displayed window either inactive or
active. In an inactive window, the user cannot interact with the elements
of the window any more, they are often shown in gray. This command does
not change window visibility, the window remains visible all the time. By
default, windows are active, i.e. the user can interact with the elements in
the window.

\Show:
This command closes and destroys the currently displayed window, if any,
and replaces it by the hidden window, which is made visible to the user.
If no arguments are given, the new window is shown where the previously
displayed window was, otherwise it is centered on the screen. If both co-
ordinates are given, the window’s top left corner is positioned accordingly,
with (0, 0) being the top left corner of the screen, and (1, 1) the bottom
right.
All subsequent calls to create GUI elements will act on a newly created, ini-
tially empty hidden window. This command returns immediately, to wait
for user input use GUIIO.

\Set:
To update the value of a component in the currently displayed window,
this command can be called. The number of the element is determined by
the order in which GUI elements were added to the window counting only
elements that return a value starting with 1.

\Debug:
Set the debug level for the GUI. Integer between 0 and 3, with 0 (the
default) meaning no debug output, 1 meaning errors are logged to the Ter-
minal, 2 also outputting diagnostic messages, and 3 echoing the entire GUI
protocol read from COSY. Can be called several times to turn debugging
of certain parts of the GUI on or off.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111018

Command & Arguments Window Value
\Console: Write to embedded console hidden No
Any number of arguments of any type
\Text: Static text hidden No
String to be inserted
\Image: Static image hidden No
Image filename
\Line: Vertical line hidden No
\Spacer: Transparent element hidden No
Width in pixels
Height in pixels (0)
\Button: Push button hidden No
Text on button
1 - default button, 0 - otherwise (0)
Tooltip (none)

\ReadCheckbox: Checkbox hidden Yes
Text next to checkbox (none)
1 - selected, 0 - not selected (0)
Tooltip (none)
\ReadOption: Radio button hidden Yes
Text next to radio button (none)
1 - selected, 0 - not selected (0)
name of button group (none)
Tooltip (none)
\ReadField: Unformatted input field hidden Yes
Initial value (none)
Tooltip (none)
\ReadNumber: Numerical input hidden Yes
Current value
Minimum value
Maximum value
Increment ((Max-Min)/100)
1 - editable, 0 - not editable (1)
Tooltip (none)
\ReadList: Selection from list hidden Yes
List of entries separated by |
Initially selected value
1 - editable, 0 - not editable (0)
Tooltip (none)
\ReadFileName: File selector hidden Yes
Initial value (none)
\ReadProgress: Progress bar hidden Yes
Progress in % or -1 (-1)

Table 1. Available GUI commands in COSY INFINITY.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #1111019

Table 1 (continued)
Command & Arguments Window Value
\NewLine: Jump to next line hidden No
\NewCell: Jump to next cell hidden No
Width of cell (1)
\Left: Set current cell’s alignment to left hidden No
\Center: Set current cell’s alignment to center hidden No
\Right: Set current cell’s alignment to right hidden No
\Just: Set current cell’s alignment to justified hidden No
\Title: Set window title hidden No
Window title

\Deactivate: Make non-interactive displayed N/A
\Activate: Make interactive displayed N/A
\Show: Display window hidden N/A
x coordinate (center)
y coordinate (center)
\Close: Close and destroy window displayed N/A
\Set: Set value of interactive element displayed N/A
Number of element
Value to be set
\Focus: Make this the active window displayed N/A
\Debug: Set GUI debug level all N/A
Debug level between 0 – 3
\Finish: Add a button if none is there yet hidden No
Text on the button (’OK’)

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110110

2.3.1. Examples. The following examples illustrate the use of these commands in a
COSY program:

• WRITE -201 ’\NewLine’ ’\NewLine’ ’\NewLine’;
Inserts three empty lines in window number -201.

• WRITE -201 ’\ReadNumber’ tax 0 100;

Inserts a slider with its initial value taken from variable tax and minimum
value 0 and maximum value 100 in window number -201.

• WRITE -201 ’\ReadField’ name ’\NewLine’;
Inserts an input box with initial text taken from variable name followed by
a new line in window number -201.

• WRITE -208 ’\ReadList’ ’Ra|Zeus|Jupiter|Other’ ’Zeus’ 0 ’Select yours!’;

Inserts a non-editable list with the options ”Ra”, ”Zeus”, ”Jupiter”, and
”Other”, with ”Zeus” initially selected and a tooltip of ”Select yours!” in
window number -208.

• WRITE -201 ’\Show’; GUIIO -201 button;

Show window number -201 and wait for a button to be pushed in this
window. The name of the button is stored in variable button.

A more complete set of example programs for the use of the COSY GUI is dis-
tributed with COSY INFINITY. A demonstration of a full GUI program is given
in the program gui.fox (also included in the Appendix of this report). An overview
over all available GUI elements and what they look like is given in the program
elements.fox. For an example of how to covert an existing program into a GUI
program, see the brief COSY demo in the program briefdemo.fox, or the COSY
beam physics demo in demo.fox.

3. Implementation

On the COSY internal side, the GUI interface is implemented as a separate
program. The main COSY process communicates with this program through its
standard input and output channels using a special ASCII based GUI protocol
(see Section 3.2). The GUI program then interprets the output based on this
protocol and assembles the GUI windows, manages user interaction, and handles
their display.

The GUI program also executes the COSY command line executable after the
user has selected the program to run. From a user’s point of view, the GUI program
is the single point of interaction with COSY. The distinction between the actual
COSY executable that performs the actual computations and the GUI program is
fully transparent to the user.

This separation of the actual COSY executable and a controlling GUI program
has several advantages. The COSY source code itself remains simple and without
dependencies on external GUI libraries. There are no platform dependent parts in
the COSY executable, since all communication is done by writing to the FORTRAN
default units 6 and 7. This allows the compilation of the very same COSY source
code on a wide range of machines, with or without a graphical user interface,
including high performance computing clusters which are typically only available
via SSH.

Furthermore, this approach allows various GUI front ends to be developed for
different purposes. We have implemented a reference implementation of a GUI
program in Java which we call the Java GUI. This program is shipped with the

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110111

COSY INFINITY installer packages. However, if for some reason a different GUI
interface is needed, it can be swapped out transparently as long as the new interface
adheres to the same GUI protocol as described in Section 3.2.

Lastly, since the communication between the actual COSY process and the GUI
program happens through an ASCII based protocol, it is easy to redirect the input
and output streams to different machines e.g. using SSH. This allows the execution
of COSY on a remote machine while displaying the GUI locally, much like tunneled
X11 sessions.

3.1. Java GUI. We chose Java[?] as the language to implement our reference GUI
program in. The main advantage of Java is its platform independence and relatively
wide reach. By going this route, the same GUI program is available on Windows,
Mac OS X and Linux platforms without any changes or needs to recompile the
program.

Our implementation supports the full extend of all features described in the GUI
protocol, and it is available in the default COSY INFINITY installer packages. In
order to run the Java GUI program distributed with the COSY INFINITY installer
packages for Windows and Mac OS X, at least Java 5 is required.

A typical user will run the Java GUI through the file association set up by the
installer package. In Windows and Mac OS X, any FOX file should provide an
entry ”Run COSY” (Windows) or ”Open With → Run COSY” (Mac OS X) in its
context menu. Alternatively, the GUI can be started by selecting ”Run COSY”
from the Start Menu (Windows) or Applications folder (Mac OS X). The Java GUI
will then prompt the user to navigate to a FOX file to run.

For Unix users and advanced users, as well as GUI debugging, the GUI can also
be run manually from the command line. The basic command line to start the GUI
this way is java -jar COSYGUI.jar <options> <foxfile> where <options>
indicates one or more of the command line options (see below) and <foxfile> is the
name of the FOX file to run. If no file is specified, the GUI will prompt the user
for a file at startup.

The following options are available:

-d: Can be specified up to 3 times, each one provides more debugging output
on the Java console.

-C: If specified, <foxfile> is not interpreted as a file name, but as a command
to run that will provide an interface to a COSY process. Can be used to
run COSY on a remote machine via e.g. ssh. If no command is provided,
the GUI will prompt the user for a command.

The Java GUI program tries to locate the COSY executable to execute by searching
the following locations for ”cosy.exe” (Windows) or ”cosy” (Mac OS X, Unix) in
order, using the first find:

(1) Location of the FOX file being run
(2) Location of the COSYGUI.jar file
(3) Operating system dependent location where COSY was installed
(4) Default operating system search path for executables

In order to use a custom built COSY executable (e.g. because of memory require-
ments or other special changes), one can simply copy the executable into the same
directory as the FOX files being run. Then the GUI can be run by the means
described above, and will automatically pick up the correct COSY executable.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110112

3.1.1. Remote GUI Execution. As mentioned above, the -C option can be used to
execute arbitrary commands in order to obtain access to COSY input and output
streams. This is particularly useful for remove execution, where the actual COSY
process runs on some remote machine, while the GUI output is displayed on the
users local machine. This can be done by the following commands on Mac OS X /
Unix using an SSH connection.

First, public key authentication for the remote host must be set up for the
user used to connect to the remote machine. There must not be any password
prompts during the login phase for the remote connection to succeed. Furthermore,
the COSY executable must be available on the remote machine, as well as the
COSYScript program to be executed.

A suitable SSH command used to connect to the remote server and start COSY
there is e.g. ‘‘ssh USERNAME@www.example.com cosy -gui path/to/my/program.fox’’.
Of course the proper path to the COSY source and executable on the target machine
must be specified.

3.2. GUI Protocol Description. The GUI protocol describes the internal format
of the ASCII data stream used to communicate between the COSY executable and
the GUI program. This data stream consists of the usual COSY output interspersed
with special GUI protocol commands and is read line by line. GUI commands are
lines marked in a special way to indicate that they are not part of the output. The
GUI command marker is <*%GUI%*> at the beginning of a line, and </*%GUI%*>
at the end.

Anything between these two markers is considered to be a special GUI protocol
command to be interpreted by the GUI program. Other lines are regular output,
to be redirected to a window, console or the passthrough unit in some way by the
GUI program depending on the output redirect mode (see REDIRECT command
below).

The format of a GUI command loosely follows the format of Unix command line
parsing. A GUI command is parsed into several arguments, the separation occurs
at blank spaces. Arguments containing spaces can be enclosed in double quotation
marks. Any character to be included verbatim in an argument can be preceded by
a backslash. The character following the backslash is added to the argument as is,
without any special meaning for the parsing.

The following examples show how a GUI command string is parsed into its sep-
arate arguments:
2 text "’\\ReadFileName’ ’elements.fox’" is parsed into 3 separate arguments:
2, text, and ’\ReadFileName’ ’elements.fox’ (the last is one single argument).

The GUI program then inspects the GUI protocol command argument by ar-
gument. Every GUI command is preceded by a GUI unit number in the first
argument. The GUI protocol command is said to be sent to this GUI unit. In the
above example this GUI unit number is 2. This unit number is followed by the case
insensitive name of the GUI protocol command to be executed, “text” in the above
example. All following arguments are parameters to the GUI protocol command,
possibly affecting its behavior depending on the GUI protocol command.

The GUI protocol numbers GUI windows from 1 through 10, with 10 being
an arbitrarily set upper limit on the number of windows available. Unit number 0
represents the GUI console window, and GUI number −1 indicates the passthrough
unit (see Section 2.2.2).

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110113

3.2.1. Output Redirection. Lines not identified as GUI commands are to be dis-
played either in a GUI window, the GUI console window, or passed to the passthrough
unit (see Section 2.2.2). The determination of which unit to send this output to is
done by the currently set output redirection unit in the GUI program. When the
GUI starts, initially the output redirection unit is 0, meaning any line not identified
as a GUI protocol command is written to the GUI console window.

The GUI protocol command REDIRECT is used to change the output redirection
unit in the GUI to any other valid unit number. To do so, the REDIRECT command
is sent to the GUI unit to change the output unit redirection to. All subsequent
output will then be written to that GUI unit number. To change the output
redirection unit to GUI window 5, the GUI protocol command to be issued would
be 5 REDIRECT.

Output to a GUI window is collected and added to an embedded console within
the GUI window. Output to the passthrough unit is written to the standard output
stream of the GUI program. Output to the GUI console is written to the GUI
console window.

3.2.2. List of GUI Protocol Commands. Table 2 shows all GUI protocol commands
currently supported by the GUI protocol. These commands are similar to the
GUI API commands shown in Table 1, however note well that these GUI protocol
commands do not start with a \ (backslash character). Furthermore, there are
additional GUI protocol commands used to control internals of the GUI process
that are not exposed to the user (such as redirection handling).

Each command is listed with its name and its arguments, if any, on the following
lines. If an argument has a default value, it is given in parenthesis. Such arguments
may be omitted and the default will automatically be used. Omitting required
arguments without default values is an error and the GUI program will ignore such
commands, possibly issuing a warning to the user.

The unit column identifies which GUI units the command can be applied to. −1
indicates the passthrough unit, 0 the GUI console, and 1+ means any of the GUI
window units.

For a description of the GUI protocol commands controlling the content of the
GUI windows, see the descriptions in Section 2.3. In the following, only the addi-
tional commands controlling GUI internal functionality will be described.

DEBUG:
The debugging level indicates how much additional information the GUI
should output. This is mostly to help developers debug their GUI code.
In normal operation, the debug level is 0, meaning the GUI program will
silently ignore any invalid or incomplete GUI protocol commands. Debug
level 1 will issue warnings if unknown, invalid or incomplete GUI protocol
commands are encountered. Debug level 2 will output additional informa-
tional messages at the digression of the GUI program programmer. Debug
level 3 will echo the entire communication between the GUI program and
the COSY executable. Furthermore, it may display additional borders in
the GUI windows helping in debugging alignment issues. All debug output
is written into the GUI console.

REDIRECT:
Sets the GUI output redirection unit. See Section 3.2.1.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110114

READ:
The READ GUI protocol command is used to read from a GUI unit. If the
GUI unit is the passthrough unit (−1), or the GUI console unit (0), the
READ GUI protocol command reads a single line from the GUI programs
standard input or the GUI console input respectively and writes this line
to the COSY executables standard input. The argument to the READ call,
if any, is ignored in this case. If the READ GUI protocol command is issued
to a GUI window unit (1+), the GUI program will first write the number
of values it will return as an integer to the COSY executables standard
input. A value of 0 is given if there will be no values returned. This is
followed by exactly the given number of values, each on a separate line. If
no argument is given for the READ call, the value of every interactive GUI
element in the window is returned. If an argument is given, only the value
of this specific GUI element is returned. Counting starts with 1 and is in
the order in which interactive GUI elements are defined in the window. If
no such element exists, or the argument is invalid, 0 is returned and no
values are written to the COSY executable.
To maintain synchronization between the GUI program and the COSY
executable it is crucial that always exactly the number of values (i.e. lines)
is written that is announced in the very first line.

WAIT:
Instructs the GUI program to wait for a button to be pressed in the given
window. While the GUI program is waiting, other GUI protocol commands
may still be issued and the GUI program should interpret them, i.e. the
GUI program should not block while waiting for a button to be pressed.
Once a button is pressed, the GUI program writes the text on the button to
the COSY executables standard input in a single line. If at the time of the
WAIT GUI protocol command the window at the given unit number is not
visible, or does not contain a button, an empty line or the value 0 is written
to the COSY executable’s standard input immediately. The GUI program
should cache users clicks, so that if the user clicks a button while the GUI
program is not waiting at the given window unit, the last button pressed is
stored and immediately returned on a WAIT GUI protocol command issued
at a later time.
If the WAIT command is issued to a GUI unit number not representing a
GUI window, the value−1 is immediately written to the COSY executable’s
standard input.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110115

Command & Arguments Unit
TEXT: Insert static text 1+
String to be inserted
IMAGE: Insert static image 1+
Image filename
LINE: Insert vertical line 1+
SPACER: Insert transparent element 1+
Width in pixels
Height in pixels (0)
BUTTON: Insert push button 1+
Text on button
1 - default button, 0 - otherwise (0)
Tooltip (none)

READCHECKBOX: Insert checkbox 1+
Text next to checkbox (none)
1 - selected, 0 - not selected (0)
Tooltip (none)
READOPTION: Insert radio button 1+
Text next to radio button (none)
1 - selected, 0 - not selected (0)
name of button group (none)
Tooltip (none)
READFIELD: Insert unformatted input field 1+
Initial value (none)
Tooltip (none)
READNUMBER: Insert numerical input 1+
Current value
Minimum value
Maximum value
Increment ((Max-Min)/100)
1 - editable, 0 - not editable (1)
Tooltip (none)
READLIST: Insert selection from list 1+
List of entries separated by |
Initially selected value
1 - editable, 0 - not editable (0)
Tooltip (none)
READFILENAME: Insert file selector 1+
Initial value (none)
READPROGRESS: Insert progress bar 1+
Progress in % or -1 (-1)

Table 2. Available GUI protocol commands in COSY INFINITY.

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110116

Table 2 (continued)
Command & Arguments Unit
NEWLINE / NL: Jump to next line 1+
NEWCELL / NC: Jump to next cell 1+
Width of cell (1)
LEFT: Set current cell’s alignment to left 1+
CENTER: Set current cell’s alignment to center 1+
RIGHT: Set current cell’s alignment to right 1+
JUST: Set current cell’s alignment to justified 1+
TITLE: Set window title 1+
Window title

DEACTIVATE: Make non-interactive 1+
ACTIVATE: Make interactive 1+
SHOW: Display window 1+
x coordinate (center)
y coordinate (center)
CLOSE: Close and destroy window 1+
SET: Set value of interactive element 1+
Number of element
Value to be set
FOCUS: Make this the active window 1+
FINISH: Insert button if none defined yet 1+
Text on the button (’OK’)
WAIT: Wait for a button to be pressed 1+

DEBUG: Set GUI wide debug level −1, 0, 1+
Debug level between 0 – 3
REDIRECT: Set GUI output redirection unit −1, 0, 1+
READ: Initiate read from GUI unit −1, 0, 1+
Element number to read (all elements) (1+)

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110117

4. Appendix

The following code listing is a fully functional demonstration program for a
COSY INFINITY graphical user interface. The same code is included in the COSY
INFINITY distribution package as the file GUIDemo.fox.

1 {
2 GUIDemo. fox

3 ∗∗∗∗∗∗∗∗∗∗∗
4

5 This example shows a f u l l blown GUI program making use

o f a l l o f the

6 advanced GUI programming methods that are a v a i l a b l e in

COSY INFINITY 9 .1

7 }
8 begin ;

9 va r i ab l e i 1 ; v a r i ab l e j 1 ;

10 va r i ab l e temp 100 ;

11 va r i ab l e button 100 ;

12 va r i ab l e people 5000 ;

13 va r i ab l e dr ink 25 ;

14 va r i ab l e who 30 ;

15 va r i ab l e shot 1 ;

16 va r i ab l e smal l 1 ;

17 va r i ab l e medium 1 ;

18 va r i ab l e l a r g e 1 ;

19 va r i ab l e bucket 1 ;

20 va r i ab l e apple 1 ;

21 va r i ab l e muff in 1 ;

22 va r i ab l e bag le 1 ;

23 va r i ab l e yoghurt 1 ;

24 va r i ab l e banana 1 ;

25 va r i ab l e pay 1 ;

26 va r i ab l e tax 1 ;

27 va r i ab l e p i c 100 ;

28

29 f unc t i on s s s i j ; subs t r s i j s s ; endfunct ion ; { ex t r a c t

sub s t r i ng }
30

31 { To see the COSY e r r o r handl ing in the GUI uncomment one

o f these }
32 { openf 44 ’ does−not−ex i s t ’ ’ old ’ ; { produces a FORTRAN

runtime e r r o r }}
33 { i := TM(1) ; { produces a COSY runtime e r r o r }}
34 { qu i t 1 ; { j u s t qu i t s }}
35

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110118

36 { Set d e f au l t va lue s }
37 dr ink := ’Cocoa ’ ; who := ’Lupo ’ ; shot := 0 ;

38 smal l := 0 ; medium := 1 ; l a r g e := 0 ; bucket := 0 ;

39 apple := 1 ; muff in := 1 ; bag le := 0 ; yoghurt := 0 ;

40 banana := 1 ; pay := 2 . 5 ; tax := 6 ; p i c := ’ c o f f e e . png ’ ;

41 people := ’ Totoro | Aster ix | Obel ix |Goofy ’ ;

42 button := ’Yes ’ ;

43

44 { The main program loop }
45 whi le button=’Yes ’ ;

46 { Def ine and show the main GUI }
47 wr i t e −201 ’\ Tit l e ’ ’ Alex Cof f ee House ’ ;

48 wr i t e −201 ’\Center ’ ’\ Image ’ ’ c o f f e e . png ’ ’\NewLine ’ ;

49 wr i t e −201 ’\Center ’ ’\Text ’ ’ He l l o and welcome to Alex

Cof f ee House ’ ’16 ’ ’\ Spacer ’ 0 50 ;

50 wr i t e −201 ’\NewLine ’ ’\ Just ’ ’\ Line ’ ’\NewLine ’ ;

51 wr i t e −201 ’\Text ’ ’What would you l i k e to dr ink : ’ ’\
NewCell ’ ;

52 wr i t e −201 ’\ Just ’ ;

53 wr i t e −201 ’\ReadList ’ ’ Co f f ee |Tea |Cocoa |Milk |Water |
Beer |Wine |Magic Potion ’ dr ink ;

54 read −201 dr ink ;

55 wr i t e −201 ’\NewLine ’ ;

56 wr i t e −201 ’\Text ’ ’Who’ ’ s t h i s dr ink f o r ? ’ ’\NewCell ’ ;

57 wr i t e −201 ’\ Just ’ ’\ReadList ’ people who 1 ;

58 read −201 who ;

59 wr i t e −201 ’\NewLine ’ ’\Text ’ ’What s i z e would you l i k e

: ’ ’\NewCell ’ ;

60 wr i t e −201 ’\ReadOption ’ ’ Shot ’ shot ;

61 read −201 shot ;

62 wr i t e −201 ’\NewLine ’ ’\NewCell ’ ;

63 wr i t e −201 ’\ReadOption ’ ’ Small ’ smal l ;

64 read −201 smal l ;

65 wr i t e −201 ’\NewLine ’ ’\NewCell ’ ;

66 wr i t e −201 ’\ReadOption ’ ’Medium ’ medium ;

67 read −201 medium ;

68 wr i t e −201 ’\NewLine ’ ’\NewCell ’ ;

69 wr i t e −201 ’\ReadOption ’ ’ Large ’ l a r g e ;

70 read −201 l a r g e ;

71 wr i t e −201 ’\NewLine ’ ’\NewCell ’ ;

72 wr i t e −201 ’\ReadOption ’ ’ Bucket ’ bucket ;

73 read −201 bucket ;

74 wr i t e −201 ’\NewLine ’ ’\NewLine ’ ’\ Just ’ ’\ Line ’ ’\
NewLine ’ ;

75 wr i t e −201 ’\Text ’ ’ Extras : ’ ’\NewLine ’ ;

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110119

76 wr i t e −201 ’\ReadCheckBox ’ ’ Apple ’ apple ’A hea l thy

cho i c e ! ’ ;

77 read −201 apple ;

78 wr i t e −201 ’\ReadCheckBox ’ ’ Muffin ’ muff in ’Very ta s ty

! ’ ;

79 read −201 muff in ;

80 wr i t e −201 ’\ReadCheckBox ’ ’ Bagle ’ bag le ’A c l a s s i c ! ’ ;

81 read −201 bag le ;

82 wr i t e −201 ’\ReadCheckBox ’ ’ Yoghurt ’ yoghurt ’Are you

on a d i e t ? ’ ;

83 read −201 yoghurt ;

84 wr i t e −201 ’\ReadCheckBox ’ ’Banana ’ banana ’Monkey see ,

monkey do ! ’ ;

85 read −201 banana ;

86 wr i t e −201 ’\NewLine ’ ’\NewLine ’ ’\ Just ’ ’\ Line ’ ’\
NewLine ’ ;

87 wr i t e −201 ’\Text ’ ’How much are you w i l l i n g to pay : ’ ;

88 wr i t e −201 ’\NewCell ’ ’\ Just ’ ’\Text ’ ’ $ ’ ;

89 wr i t e −201 ’\ReadNumber ’ pay 1 .5 10 0 .1 1 ;

90 read −201 pay ;

91 wr i t e −201 ’\NewLine ’ ’\Text ’ ’Your Sa l e s Tax (in %) : ’ ;

92 wr i t e −201 ’\NewCell ’ ’\ Just ’ ;

93 wr i t e −201 ’\ReadNumber ’ tax 0 100 1 0 ;

94 read −201 tax ;

95 wr i t e −201 ’\NewLine ’ ’\Text ’ ’Your f a v ou r i t e p i c tu r e

: ’ ;

96 wr i t e −201 ’\NewCell ’ ’\ Just ’ ;

97 wr i t e −201 ’\ReadFileName ’ p i c ;

98 read −201 p i c ;

99 wr i t e −201 ’\NewLine ’ ’\NewLine ’ ’\Center ’ ;

100 wr i t e −201 ’\Button ’ ’ Errr , no . ’ ’\NewCell ’ ’\Center ’ ;

101 wr i t e −201 ’\Button ’ ’ Place order ! ’ 1 ;

102 wr i t e −201 ’\Show ’ ;

103

104 { wait f o r button and read from GUI }
105 GUIIO −201 button ;

106 i f button#’Place order ! ’ ; qu i t 0 ; end i f ;

107

108 { Write the r e s u l t s to next window }
109 people := people & ’| ’&who ; { append input to l i s t o f

people f o r next time }
110 wr i t e −201 ’\ Tit l e ’ ’ Alex Cof f ee House : Review Order ’ ;

111 wr i t e −201 ’\Text ’ ’Thank you f o r your order : ’ ’\
NewLine ’ ;

112 wr i t e −201 ’\Console ’ ’ Here i s your order f o r ’&who ’ ’ ;

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110120

113 i f dr ink=’Coffe ’ ; wr i t e −201 ’\Console ’ ’Our most

awesome Coffe ’ ;

114 e l s e i f dr ink=’Tea ’ ; wr i t e −201 ’\Console ’ ’ Splendid ,

o ld chap ! A n i c e cup o f tea ’ ;

115 e l s e i f dr ink=’Cocoa ’ ; wr i t e −201 ’\Console ’ ’Yummy hot

cocoa ’ ;

116 e l s e i f dr ink=’Milk ’ ; wr i t e −201 ’\Console ’ ’A g l a s s o f

f r e s h milk ’ ;

117 e l s e i f dr ink=’Water ’ ; wr i t e −201 ’\Console ’ ’ Just water

’ ;

118 e l s e i f dr ink=’Beer ’ ; wr i t e −201 ’\Console ’ ’ Fresh

German beer ’ ;

119 e l s e i f dr ink=’Wine ’ ; wr i t e −201 ’\Console ’ ’Wine i t i s

’ ;

120 e l s e i f dr ink=’Magic Potion ’ ;

121 i f who=’Obelix ’ ;

122 wr i t e −201 ’\Console ’ ’No Obelix , you know you

can ’ ’ t have magic pot ion ! ’ ;

123 e l s e i f l o (1) ;

124 wr i t e −201 ’\Console ’ ’ Getaf ix ’ ’ Magic Potion ’ ;

125 end i f ;

126 end i f ;

127 i f shot=1; temp:= ’ Shot ’ ;

128 e l s e i f smal l =1; temp:= ’ Small ’ ;

129 e l s e i f medium=1; temp:= ’Medium ’ ;

130 e l s e i f l a r g e =1; temp:= ’ Large ’ ;

131 e l s e i f bucket=1; temp:= ’Bucket ’ ;

132 end i f ;

133 wr i t e −201 ’\Console ’ ’ S i z e o f your beverage : ’&temp ;

134 temp := ’ ’ ;

135 i f apple=1; temp := temp&’apple , ’ ; e nd i f ;

136 i f muff in=1; temp := temp&’muffin , ’ ; e nd i f ;

137 i f bag le =1; temp := temp&’bagle , ’ ; e nd i f ;

138 i f yoghurt=1; temp := temp&’yoghurt , ’ ; e nd i f ;

139 i f banana=1; temp := temp&’banana , ’ ; e nd i f ;

140 wr i t e −201 ’\Console ’ ’On the s ide , you w i l l get the

f o l l ow i ng : ’& s s (temp , 1 , l ength (temp)−2) ’ ’ ’ ’ ;

141 wr i t e −201 ’\Console ’ 1&2&3&4&5&6&7&8 ’ This vec to r was

a t e s t o f the vec to r emergency broadcas t ing network

. ’ ;

142 wr i t e −201 ’\NewLine ’ ’\Center ’ ’\ Image ’ p i c ’\NewLine

’ ;

143 wr i t e −201 ’\NewLine ’ ’\NewLine ’ ’\Text ’ ’ P lease stand

by whi le we f r e s h l y prepare your order ! ’ ;

144 wr i t e −201 ’\NewLine ’ ’\ Just ’ ’\ReadProgress ’ ’ 0 ’ ;

THE COSY INFINITY GRAPHICAL USER INTERFACE SUBSYSTEMMSU HEP REPORT #11110121

145 wr i t e −201 ’\Show ’ ; { i m p l i c i t l y c l o s e s the prev ious

window }
146

147 { waste some time , l i k e in a r e a l r e s t au rant }
148 temp := 1000 ;

149 j := 0 ;

150 loop i 1 30000000;

151 temp := sqr (sq r t (l og (exp (temp)))) ;

152 i f j#in t (100∗ i /30000000) ;

153 j := in t (100∗ i /30000000) ;

154 wr i t e −201 ’\ Set ’ 1 j ; { s e t va lue o f the

p rog r e s s bar }
155 end i f ;

156 endloop ;

157

158 { Present the b i l l }
159 RECST pay∗(1+tax /100) ’ (F5 . 2) ’ temp ;

160 wr i t e −202 ’\Text ’ ’Your order i s ready now . This w i l l

be $ ’&temp& ’ . ’ ;

161 wr i t e −202 ’\NewLine ’ ’\Text ’ ’Thanks f o r stopping by ! ’

’\NewLine ’ ’\NewLine ’ ;

162 wr i t e −202 ’\ Image ’ ’ cosy :// ask . png ’ ;

163 wr i t e −202 ’\Text ’ ’ Would you l i k e to p lace another

order ? ’ ;

164 wr i t e −202 ’\NewLine ’ ’\Center ’ ’\Button ’ ’Yes ’ 1 ’\
Button ’ ’No ’ ;

165 wr i t e −202 ’\Show ’ ;

166 wr i t e −201 ’\Deact ivate ’ ;

167 { wait f o r button }
168 GUIIO −202 button ;

169 wr i t e −202 ’\Hide ’ ;

170 wr i t e −201 ’\Hide ’ ;

171 endwhi le ;

172

173 end ;

	1. Motivation
	2. Application Programming Interface
	2.1. GUI Basics
	2.2. Advanced GUI
	2.3. GUI Command Reference

	3. Implementation
	3.1. Java GUI
	3.2. GUI Protocol Description

	4. Appendix

