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Abstract

In this paper, we review the features in the newly released version of COSY INFINITY, which currently has a base of more than 1000

registered users, focusing on the topics which are new and some topics which became available after the first release of the previous

versions 8 and 8.1. The recent main enhancements of the code are devoted to reliability and efficiency of the computation, to verified

integration, and to rigorous global optimization. There are various data types available in COSY INFINITY to support these goals, and

the paper also reviews the feature and usage of those data types.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since the previous versions 8 and 8.1, the main
enhancements of the code COSY INFINITY were focused
on computational reliability and speed. Interval arithmetic,
which serves as a stepping stone to guaranteed computa-
tions, is performed with fully verified software rounding in
COSY INFINITY. The method is connected to the
Differential Algebraic (DA) technique to provide a further
efficient method of reliable computation, the Taylor model
method, by utilizing the capability of high order computa-
tion of the DA technique. Both of these methods benefit
from enhanced sparsity support including the ability to
treat different variables to different orders.

Besides such basics to support the quality of the
computation, there are several particle optical elements,
analyzing tools and beam physics concepts newly added in
the code since the last version. In particular now there are
various ways to treat the dynamics of particle beams
traveling in matter.

Through the changes of versions, emphasis has been
placed on backwards compatibility and portability of the
code to different platforms as well as transparent
e front matter r 2005 Elsevier B.V. All rights reserved.
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portability to four separate language platforms, namely
F77, F90, C and Cþþ.

2. Verified computations

2.1. Data types

COSY INFINITY supports various data types, starting
from RE (double precision REal number), DA (Differen-
tial Algebra vector), and the GR (GRaphics) data type.
Table 1 lists all the data types supported in the standard
version of COSY INFINITY Version 9. Since the code is
object oriented, new data types and the associated
operations can be easily added and removed [1]. As some
of the readers may have noticed, the Ordered Interval (OI)
and Ordered interval Vector (OV) data types are not
supported anymore. Besides the STring (ST), LOgical (LO)
and GRaphics (GR) data types, all others are numerical
computation objects based on double precision real
numbers. If any higher precision computation environment
like quadruple precision computation mode is available, all
these numerical computation objects can be straightfor-
wardly ported to the higher precision mode.
A REal number (RE) data type object corresponds to a

double precision number; a CoMplex number (CM) data
type object occupies two double precision numbers for the
real and imaginary parts. A real number VEctor (VE) data
type object consists of several double precision numbers in
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Table 1

Data types supported in COSY INFINITY

RE Real Number

ST String

LO Logical

DA Differential Algebra Vector

VE Real Number Vector

CM Complex Number

IN Interval

IV Interval Vector

GR Graphics

CD Complex Differential Algebra Vector

TM Taylor model (Remainder-enhanced Differential

Algebra Object)
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a vector form, in a similar fashion as a one dimensional
double precision array. The VE data type object is created
by concatenating two RE data type objects using the
operator ‘‘&’’, and more components can be added by
further concatenating RE data type objects and/or VE data
type objects; its advantage lies in enhanced performance in
vectorizable operations.

A DA data type object carries all the non-negligible
coefficients of the differential algebra nDv with order n and
dimensionality v [2], where vanishing coefficients and
coefficients below the cutoff threshold ec in magnitude
are not retained. The value of the cutoff threshold ec can be
specified via the COSY intrinsic procedure DAEPS, its
default is set to 10�20. The sparsity handling is particularly
important for beam physics applications where usually half
of coefficients vanish due to symmetry, and we have been
striving to realize and keep superb performance of DA data
type objects by the efficient sparsity handling algorithms
[3]. A Complex Differential algebra vector (CD) data type
object turns DA data type objects to be complex by
carrying a set of DA coefficients for the real part and a set
for the imaginary part. DA and CD data type objects
truncate small coefficients below cutoff threshold, on the
other hand, the TM (Taylor model, Remainder-enhanced
Differential algebra object) data type objects keep errors
associated to order truncation, cutoff and round-off in the
data structure. It is worth noting that among various
numerical algorithms in the code, those based on the DA-
fixed point theorem [2] are particularly powerful, by
achieving an nth order DA solution in at most ðnþ 1Þ
iterations of the DA-fixed point operation.

The newly implemented feature of weighted order
computation enables to carry different variables xi to
different orders wi, which can account for the fact that
certain variables are more important than others. This fact
is particularly helpful for the problem of integration of
transfer maps for time-dependent systems with or without
verification, where the length of the time step typically
significantly exceeds the range of initial conditions, i.e.
beam coordinates. This is achieved by simply ‘‘seeding’’
original variables as xwi

i instead of xi. In all subsequent
operations, only multiples of wi appear as powers of xi.
Using the feature, optimal reduction of speed can be
achieved by sparsity.

2.2. Data types for verified computations

The other data types INterval (IN), Interval Vector (IV)
and TM are objects for verified computation. An IN data
type object consists of two double precision numbers; one
for the lower bound and one for the upper bound of an
interval, and an IV data type object describes a vector with
interval components. The concept of the IV data type is
similar to that of the VE data type, except for that each
component is an interval consisting of two double precision
numbers. Interval methods for numerical computations
express a set of numbers by an interval, and through
various computational operations, interval arithmetic
rigorously keeps all the possible outcomes in the resulting
interval. (Refer to, for example [4] as well as references
therein, and many more.) Floating point rounding errors
are unavoidably associated with numerical computations,
thus a correct implementation of interval methods requires
proper handling of these rounding errors. The interval
library in COSY INFINITY, which is the base for the
verified computations for the data types IN, IV and TM,
supports the directed rounding to assure the verification
[5]. The COSY ASCII output of intervals is further
rounded outward to avoid confusion caused by system
dependent output truncation. To facilitate interval-related
applications, some utility procedures are newly available.
Particularly, INTSEC, INTUNI and INTINC are used for
intersection, union and inclusion check, respectively.
The data type TM represents Taylor model objects. The

DA data type objects truncate Taylor power series at order
n, but the TM data type objects keep the contribution from
the Taylor remainder term in an interval, the so-called
remainder bound interval. The bulk amount of the
functional dependency is kept in the polynomial part that
has the same data structure as the DA data type objects.
Thus, this data type is also called the (R)emainder-
enhanced (D)ifferential algebra type. The remainder
bound interval part is used conveniently to absorb
other errors like floating point rounding errors and
coefficient cutoff errors. This allows us to use floating
point numbers for polynomial coefficients, while assuring
verified computations.
The utilization of floating point number coefficients has

numerous benefits. First, a Taylor model implementation
can utilize a big part of the DA library code by mere DA
subroutine calls. This helps to reduce the code implementa-
tion and maintenance effort as well as the size of the code,
but it requires special care to properly handle floating point
rounding errors and cutoff errors. Secondly, as summar-
ized in an exhaustive paper on the method of Taylor
models [6], this idea is one of key points to enable the
suppression of the dependency problem. This is one source
of overestimation often observed in interval based compu-
tations, and it limits the applicability of many verified
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computations. Thirdly, the concept of DA-fixed point
theorem can be extended straightforwardly to various
Taylor model algorithms, allowing them to achieve the
same level of computational efficiency to that of DA fixed
point based algorithms. One superb example of this is the
Taylor model algorithm for verified ODE (ordinary
differential equation) integrations [7].

The arithmetic on Taylor models is introduced for
binary operations and intrinsic functions. The implementa-
tion of Taylor models in COSY INFINITY utilizes the
COSY DA and the COSY interval libraries optimally so
that the efficiencies achieved for the DA and IN data types
can be carried over to the TM data type. Refer to [6] for the
theoretical background and implementation details.
Furthermore, a binary output/input capability is newly
added to COSY INFINITY to avoid any error growth
associated to Taylor model file input and output. The
binary I/O capability is supported for the RE and TM data
types.

The Taylor model method provides sharp estimate while
guaranteeing the result, and even only low-order Taylor
models often perform better than sophisticated methods
like the centered form and the mean value form [6,4].
Details can be found in Ref. [6], which also summarizes
various Taylor model based algorithms and discusses some
practical problems. The various Taylor model operations
and intrinsics have been independently analyzed for rigor
based on IEEE floating point standards [8] and subjected
to extensive and challenging execution-based testing [9,10].

2.3. COSY-VI and COSY-GO

Verified integration of ODEs and global optimization
require efficient computational methods with verification,
and the method of Taylor models can be applied
effectively. Based on the Taylor model implementation in
COSY INFINITY, packages for those important applica-
tions are now available for release.

COSY-VI is the COSY Taylor model package for
verified integration of ODEs, and the package offers
various state of the art Taylor model algorithms for the
task. The package also can be used for other types of
problems like differential algebraic equations by reducing
them to the form of ODEs [11]. Besides the general concern
of controlling the dependency problem in verification
problems, verified integrations of multidimensional ODEs
exhibit a severe asymptotic overestimation problem of
geometric nature, called the wrapping effect [4]. The
striving for suppressing the wrapping effect has as long a
history as the computer implemented interval method
itself. The naive concept of Taylor models with multi-
variate polynomials allows not only the high-order Taylor
expansion in time t, but also the high-order expansion in
space variables ~x. This feature enables a solution set at each
integration time step to be enclosed by an nth order Taylor
model, i.e. the set is approximated by an nth order
polynomial while the approximation error is kept in a
small remainder bound interval. Combined with precondi-
tioning techniques, this approach much reduces the
devastating wrapping effect. The COSY-VI package is
further equipped with higher level algorithms like the
method of shrink wrapping and various types of blunting
for tighter control of error growth, details about which can
be found in an exhaustive paper on the Taylor model ODE
integrations [7]. In summary, the key features and
algorithms of COSY-VI are
�
 High-order expansion not only in time but also in
transversal variables.

�
 Capability of weighted order computation, allowing to
suppress the expansion order in transversal variables.

�
 Shrink wrapping algorithm including blunting to con-
trol ill-conditioned cases.

�
 Pre-conditioning algorithms based on the Curvilinear,
QR decomposition, and blunting pre-conditioners.

�
 Resulting data is available in various levels including
graphics output.

COSY-GO is the COSY Taylor model package for
global optimization. Different from intervals, Taylor
models carry the information on local slope and convexity
in the data structure. Utilizing the readily available
information, various range bounding algorithms have been
developed. The linear dominated bounder LDB provides
fast multidimensional Taylor model range bounding,
utilizing the linear part as a guideline on range enclosing
and reducing the corresponding domain area. The quad-
ratic dominated bounder QDB provides a thorough
quadratic bounding of a multidimensional Taylor model
by carrying out the convexity tests of the quadratic part. A
v dimensional box has 3v surfaces, consisting of 2v one
dimensional corner points, various higher dimensional
surfaces, and finally the v dimensional box interior. Thus, a
complete examination of stationary points for a v dimen-
sional quadratic polynomial requires 3v � 2v tests if
conducted naively, which becomes impractical quickly as
v increases. The QDB bounder reduces the required efforts
by utilizing the LDB and the efficient surface list handling,
making high dimensional problems practically solvable. To
facilitate the task of quadratic bounding for global
optimization, a limited purpose quadratic bounder, the
fast quadratic bounder QFB, is more practical. QFB is
designed for a multidimensional Taylor model whose
quadratic part is convex, which is characteristic of the
most crucial bounding task, namely that of a Taylor model
in the proximity of a local minimizer. This enables to
eliminate the pure quadratic terms from the bounding task.
The COSY-GO package is equipped with those state of the
art Taylor model range bounding algorithms [12]. Since
those quadratic bounders solve an infamous problem in
global optimizations with verified methods, the so called
cluster effect, COSY-GO makes various global optimiza-
tion problems practically solvable, among them the long-
term stability estimate of storage rings using Normal Form
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analysis, which is the original motivation of the develop-
ment of Taylor models. The core features and algorithms
of COSY-GO can be summarized as follows:
�
 List management of boxes not yet determined to not
contain the global minimizer. Loading a new box.
Discarding a box with range above the current threshold
value. Splitting a box with range not above the threshold
value for further analysis. Storing a box smaller than the
specified size.

�
 Application of a series of bounding schemes, starting
from mere interval arithmetic to naive Taylor model
bounding, LDB, then QFB. A higher bounding scheme
is executed only if all the lower schemes fail.

�
 Update of the threshold cutoff value via various
schemes. It includes upper bound estimates of the local
minimum by corresponding bounding schemes, the mid
point estimate, global estimates based on local behavior
of function using gradient line search and convex
quadratic form.

�
 Box size reduction using LDB.

�
 Resulting data is available in various levels including
graphics output.

3. Particle optical elements and analyzing tools

COSY INFINITY offers various methods for particle
trackings via transfer maps that relate the initial condition
~zi to the final condition ~zf via ~zf ¼Mð~ziÞ: In the code,
transfer map M is represented by the DA data type. For
the purpose of gaining speed in computations, the VE data
type is employed to represent the particle coordinates ~z in
the tracking algorithm. Tracking can be performed not
only in regular particle coordinates that provide intuitive
understanding of the dynamics, but also in normal form
coordinates that provide a means of quantitative analysis
of the dynamics. When studying the dynamic aperture, it is
important to be able to utilize appropriate symplectifica-
tion. In the current version of COSY INFINITY, mere
particle tracking without symplectification is performed by
specifying the tracking mode TY ¼ �21 for the command
TR [13]. The symplectic tracking modes with generating
functions of types F1 to F 4 require the user to find the
optimal generating function by trial and error for each
problem. A new approach, the EXPO (The EXtended
POincare generating function type), employs the optimal
generating function for symplectification [14,15]. COSY
INFINITY offers this method to promote the easy usage of
symplectic trackings, and the feature is performed by
specifying the tracking mode TY ¼ 0. Another minor but
useful tool is the command TRT, which allows the user to
incorporate bookkeeping information in a tracking picture
produced by the command TR. It is also possible to mark a
specific particle in tracking pictures by coloring the particle
via the command SR. Due to the additional memory
consumption, this feature is turned off by default. To
activate the feature, a few lines in the file cosy.fox have to
be altered, which can be easily identified by searching a
string ‘‘color.’’
Some of modern particle optical devices have large

acceptance, for example those to be used for the various
muon accelerator scenarios, where the difficulty and
expense of cooling require the ability to manipulate a
beam of unusually large emittance. This naturally has led
to the usage of COSY INFINITY for such systems,
because of the necessity of high-order nonlinear computa-
tions. As a result, several new algorithms and tools have
been developed. This includes an extensive collection of
solenoidal elements, efficient propagation of beams with
tremendously large emittance, and treatment of dynamics
of particle beams traveling through matter while experien-
cing scatterings. Refer to [16,17], for details.

4. Standard features and supported languages

With the rapid expansion of computer techniques in
recent years, it is not a simple task to maintain a scientific
computation code like COSY INFINITY with numerous
users and a variety of computer environments, to adjust to
newly emerging techniques and the disappearance of
others. To efficiently confront this situation, we have
strived to keep backward compatibility and portability of
the code COSY INFINITY as much as possible in order to
protect users from additional effort due to sudden code
changes based on syntax modification.
There are some items worthwhile to mention in this

paper about the current official distributions at the COSY
web site cosy.pa.msu.edu. For the interactive graphics
output purpose, the PGPLOT graphics library has been
stable in the last years, and thus we keep the PGPLOT
graphics drivers in COSY as the standard interactive
graphics package [1]. On the other hand, the GKS graphics
library is quickly becoming obsolete, so we demoted the
GKS graphics drivers. The GKS drivers are merely
commented in the code, so they are still easily available
for the user. We keep the VGA graphics drivers for Lahey
Fortran and the graPHIGS graphics drivers in the same
commented form. The long swing between MicroSoft
Windows PCs and Linux/UNIX for the COSY Fortran77
sources seems to be settled into ‘‘UNIX’’ version. It is
because the COSY ‘‘PC’’ version was meant mostly for
Lahey Fortran, and popular Fortran compilers lately
available for MicroSoft Windows PCs are compatible with
the COSY ‘‘UNIX’’ version.
Finally, for the increasing population and demand of

non-Fortran77 languages, COSY INFINITY provides
interface packages for Fortran90 and Cþþ to enhance
portability. All the data types and the associated opera-
tions, functions and intrinsic procedures in COSY IN-
FINITY are accessible via the interface packages as Cþþ
classes for the Cþþ user, and as Fortran90 modules for
the F90 user. These COSY interface Cþþ classes and
Fortran90 modules outperform independent attempts of
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creating DA packages in Cþþ and Fortran90. Refer to
[1,5] for details on the interface packages.
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