
Survey of FORTRAN Compiler Options and

Their Impact on COSY INFINITY

Ravi Jagasia and Alexander Wittig

MSUHEP - 090422

Abstract

Compiler options are different not only for different compilers, but even

among versions of a given compiler. Several options control the mechanism

used in generating the code, including optimizations for speed, size and

standard compliance. Many of those options affect the speed, accuracy

and correctness of the resulting executable.

In this survey we present the options relevant for building COSY IN-

FINITY with the GNU and Intel Fortran compilers. We build executables

with several options on different hardware, comparing the accuracy of the

result as well as the runtime using three different test cases. As a result

of our testing, we suggest a set of command line options to use in order

to get correct results, while minimizing the impact on the speed of the

resulting executable.

1 Compilers

Compiler options are different not only for different compilers, but even among
versions of a given compiler. To this extent, we outline the following options that
we either require or would like to have working from a performance perspective.

1.1 Intel Fortran Compiler Version 9.2 and 11.0

This compiler is invoked by the command:

ifort

Detailed documentation for the options of this compiler can be found in
[2] for Intel Fortran 9.2 and for Intel Fortran 11. A quick overview of the
optimization options of Intel Fortran 11 can be found in [3].

The optimization flags used in our tests are (descriptions taken from ifort

--help):

-O0

Disable optimizations.

1



-O1

Optimize for maximum speed, but disable some optimizations which increase
code size for a small speed benefit.

-O

-O2

Enable optimizations (default).

-O3

Enable -O2 plus more aggressive optimizations that may not improve perfor-
mance for all programs.

-fp-model strict

Controls the semantics of floating-point calculations.

• strict - enables -fp-model precise -fp-model except, disables contractions,
enables property to allow for modification of the floating point environ-
ment

• except - enable floating point semantics

• precise - allows value-safe optimizations

The following option only works on Intel Fortran version 11:

-m32

Tells the compiler to generate code for IA-32 architecture.

1.2 GNU Fortran Compiler, GCC Version 4.3.2

This compiler is invoked by the command:

gfortran

A listing of the primary flag optimizations to be tested will be given below.
The options that these flags invoke can be found on the online documents for
GCC. However, options particularly important to the compilation of COSY will
be given with descriptions.

The optimization flags used in our tests are (taken from [4] and [5]):

-O0

Reduce compilation time and make debugging produce the expected results.
This is the default.

-O

-O1

2



Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function. With this, the compiler tries to reduce code size
and execution time, without performing any optimizations that take a great
deal of compilation time.

-O2

Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to -O, this option increases
both compilation time and the performance of the generated code.

-O3

Optimize yet more. -O3 turns on all optimizations specified by -O2 and also
turns on the -finline-functions, -funswitch-loops, -fpredictive-commoning,
-fgcse-after-reload and -ftree-vectorize options.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifing ”a = 1. / 0”. With this option, no error will be given and ”a” will
be assigned the value ”+Infinity”. If an expression evaluates to a value outside
of the relevant range of [”-HUGE()”:”HUGE()”], then the expression will be re-
placed by ”-Inf” or ”+Inf” as appropraite. Similarly, ”DATA i/Z’FFFFFFFF’/”
will result in an integer overflow on most systems, but with -fno-range-check

the value will ”wrap around” and ”i” will be initialized to -1 instead.

-ffloat-store

Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the
68000 where the floating registers (of the 68881) keep more precision than a dou-
ble is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use -ffloat-store for such programs, after
modifying them to store all pertinent intermediate computations into variables.

2 Testing

In the following we describe the test that were run, the machines and the envi-
ronments those tests were run in, as well as the results of the tests.

3



2.1 Machines

We ran these tests on several different machines in order to cover a broad spec-
trum of different processors. Also, not all compilers are available on all machines.

Vivaldi Pentium 4 2GHz, 512 MB RAM
Ubuntu Linux 8.10
Intel Fortran 11, gfortran 4.3.2

bt.pa.msu.edu Pentium 4 2GHz, 512 MB RAM
FreeBSD 7.2
gfortran 4.3.4 (prerelease)

MacMini Core Duo 1.66GHz, 2 GB RAM
Mac OS X 10.4.11
Intel Fortran 9.2, gfortran 4.2.3

MacBook Core 2 Duo 2GHz, 2GB RAM
Mac OS X 10.5.6
Intel Fortran 11

Due to limitations of the FreeBSD operating system, bt.pa.msu.edu is not
able to run executables with the default memory size of COSY. In order to
create working executables, we have scaled down the stack size by a factor of
5 on this machine. Also note that, since bt.pa.msu.edu is our web server, it
is running several other processes in parallel to COSY as we did not want to
disrupt service for our speed tests. This may impact the results.

From here on we will reference the machines by the names given in the above
list.

2.2 Compiler Options

We selected several compiler options based on the manual for each compiler.
We tried to select the default options, options that seem to produce IEEE 754
compliant output, and options that turn off all optimization.

2.2.1 Intel Fortran compiler options

We compiled the sources with the following 6 different settings, which work on
Intel Fortran 9.2 as well as Intel Fortran 11.

-O0

-O1

-O2

-O3

4



-O0 -fp-model strict

-O2 -fp-model strict

Specifically on the 64bit capable MacBook, we also ran each of the above
command lines with an added -m32. This is because we found odd behavior
on 64bit machines in conjuction with the -O0 optimization. Also in some cases
there are noticeable differences in the execution speed between 64bit and 32bit
executables.

2.2.2 GNU Fortran compiler options

We compiled the sources with the following 6 different settings.

-O0 [-fno-range-check]

-O1 [-fno-range-check]

-O2 [-fno-range-check]

-O3 [-fno-range-check]

-O0 -ffloat-store [-fno-range-check]

-O2 -ffloat-store [-fno-range-check]

In the case of the high precision COSY code, the additional flag -fno-range-check
is required to compile the code for the built in tests. We did not use that flag
for the standard COSY sources in the demo and VI tests.

2.3 Consistency

In this test we wanted to determine the compliance with IEEE 754. This testing
is done using the Alex’s hpCOSY code, compiled without graphics support and
MPFR/MPFI bindings. This code relies heavily on strict IEEE 754 adherence.
Since in the long run this code will be included in the main distribution version
of COSY, it will be useful to have that information available.

Of course passing in this test also should ensure that the currently used built
in intervals work.

2.3.1 Test Case

The test code for the high precision intervals is derived from the code in [1].
It is an analytic expression for the transfer map of x and a in a homogenous
magnetic segment. The problem calculates 12 consecutive 30 degree segments.
This, of course, adds up to the identity.

To speed test the intervals, the above computation is performed 5000 times.
All computations are done with 44 valid digits, that is 3 limbs.

The code for this problem is in the file hptest.fox of the supporting material
(see Appendix).

5



2.3.2 Test Results

We documented the results of our tests in table 1. If the compiled version ran
and reproduced the reference results bit by bit (see Appendix), we put down the
time for the timing test in seconds. Note that the times are only comparable
between different compilers on the same machine. If the compiled binary refused
to run due to failure in the internal testing mechanism, we put don ”SF” (soft
failure). If the compiled binary did run, but produced output different from the
reference output, we put down ”HF” (hard failure). If a compiler or test was
not available on a given machine, we put down ”-”. We only ran the special
cases of generating 32bit executables by explicitly specifying -m32 on the 64bit
machines. On purely 32bit architectures, this switch has no effect.

Vivaldi bt.pa.msu.edu MacMini MacBook

gfortran -fno-range-check ...

-O0 HF 113 118 -
-O1 SF 113 89.5 -
-O2 SF 105 86.6 -
-O3 SF 109 86.5 -
-O0 -ffloat-store HF (177) 394 139 -
-O2 -ffloat-store HF (131) 283 107 -

ifort ... (Version 9.2)
-O0 - - 68.76 -
-O1 - - SF -
-O2 - - SF -
-O3 - - SF -
-O0 -fp-model strict - - 68.57 -
-O2 -fp-model strict - - 40.35 -

ifort ... (Version 11.0)
-O0 90.3 - - HF
-O0 -m32 - - - 59.28
-O1 SF - - SF
-O1 -m32 - - - SF
-O2 SF - - SF
-O2 -m32 - - - SF
-O3 SF - - SF
-O3 -m32 - - - SF
-O0 -fp-model strict 87.8 - - HF (54.55)
-O0 -m32 -fp-model strict - - - 58.71
-O2 -fp-model strict 50.2 - - 22.66
-O2 -m32 -fp-model strict - - - 25.31

Table 1: Results of the consistency tests

6



Remarks Code compiled for 64bit machines with Intel Fortran and -O0 on
Mac OS X (the MacBook in our test) produces wrong results. Note that even
with -fp-model strict the results did not match the reference results. In
the case of only -O0, the results were not rigorous (i.e. the intervals did not
include the correct result). In the case of -O0 -fp-model strict, the results
did include the mathematically correct result, but had smaller error terms than
the reference output. In both cases the errors were not detected by the built in
tests.
Turning off the 64bit support, and producing 32bit executables resulted in the
same behavior as on all other tested platforms.

Running gfortran on Vivaldi produced no correct output at all. In most
cases, the internal tests caught errors before the test was run. In the case of
-O0, however, the tests passed, but the resulting output was mathematically
incorrect. With -O0 -ffloat-store, the result only differed in the size of the
error terms from the reference output. The results produced were mathemati-
cally valid. Using -O2 -ffloat-store, produced the exact same results.

2.4 Speed

In this test we want to measure the speed impact of the different compiler
options. The testing is done using the stock COSY sources given on the web,
compiled with PGPLOT on Vivaldi, and without graphics support on other
machines.

2.4.1 Test Case

In this test case we test the old COSY Verified Integrator as it applies to an
object moving in the gravitational field of 10 bodies. The position of the bod-
ies themselves are calculated via conversion of ellipse orbital parameters. The
object is far from the asymptotic regions of the pointwise gravitational bodies
and the integration time is cut down to make the test run in a manageable time
frame. Regardless of this, it still requires many Taylor Model operations.

2.4.2 Test Results

We documented the results of our tests in the following table. If the compiled
version ran, we put down the time for the timing test in seconds. Note that the
times are only comparable between different compilers on the same machine.
If a compiler was not available on a given machine, we put down ”-”. For the
integrator test, the error in TMNOT, Variable exhausted, occurs sometimes and
will be marked as an ”Err”.

7



Vivaldi bt.pa.msu.edu MacMini MacBook

gfortran ...

-O0 162.13 248.78 107.43 -
-O1 60.12 61.71 55.33 -
-O2 Err Err 50.80 -
-O3 Err Err 50.48 -
-O0 -ffloat-store 202.16 509.36 118.93 -
-O2 -ffloat-store 111.73 319.81 70.61 -

ifort ... (Version 9.2)
-O0 - - 108.38 -
-O1 - - 39.59 -
-O2 - - 39.84 -
-O3 - - 40.81 -
-O0 -fp-model strict - - 108.37 -
-O2 -fp-model strict - - 47.98 -

ifort ... (Version 11.0)
-O0 109.85 - - 78.36
-O0 -m32 - - - 80.00
-O1 43.81 - - 29.41
-O1 -m32 - - - 23.08
-O2 43.97 - - 30.38
-O2 -m32 - - - 24.40
-O3 43.87 - - 28.82
-O3 -m32 - - - 24.98
-O0 -fp-model strict 211.99 - - 77.41
-O0 -fp-model strict -m32 - - - 81.19
-O2 -fp-model strict 56.02 - - 36.06
-O2 -fp-model strict -m32 - - - 31.02

Table 2: Results of the speed tests

8



2.5 Consistency of Non-High Precision Code

2.5.1 Test Case

In this test we examine the consistency of output being created from the stan-
dard package of COSY with it’s included demo.fox. The file demo.fox has been
modified in order to do one runthrough of all demos in ASCII output which
is then stored in a file to be cross checked with other compiler options using
the diff program. The modifications were primarily done to remove any user
interactivity and for the program to terminate after completing all the demos.

2.5.2 Test Results

We make a table corresponding to identical program output. It should be noted
that the only differences in output observed are numerical in nature, rather than
anything structural regarding output such as new lines or spaces. Two entries
in the table have the same letter assigned in the case that they have identical
output and different letters otherwise. In the case that nothing matches, a slash
/ is given. The letters are given in order of their occurance.

For purposes of completeness, we again note the speed of completion of all
the demos in demo.fox (in seconds). However, since the test produces close
to ten thousand lines of text and examines another five thousand lines of data
from SYSCA.DAT, it is likely that the speed reported here also includes some
dependence of read write speeds, which is hardware dependent.

Primary differences occur in demo files where fit loops are being employed.
e.g. the value of the objective function as it is being fitted for the design of a
storage ring, or in ’Fitting a Four Cell Third Order Achromat’.

9



Vivaldi bt.pa.msu.edu MacMini MacBook

gfortran ...

-O0 / D C -
-O1 / / C -
-O2 H D C -
-O3 H D C -
-O0 -ffloat-store E G C -
-O2 -ffloat-store E G C -

ifort ... (Version 9.2)
-O0 - - A -
-O1 - - F -
-O2 - - B -
-O3 - - B -
-O0 -fp-model strict - - A -
-O2 -fp-model strict - - A -

ifort ... (Version 11.0)
-O0 A - - /
-O0 -m32 - - - A
-O1 A - - A
-O1 -m32 - - - A
-O2 B - - B
-O2 -m32 - - - B
-O3 F - - B
-O3 -m32 - - - B
-O0 -fp-model strict A - - A
-O0 -fp-model strict -m32 - - - A
-O2 -fp-model strict A - - A
-O2 -fp-model strict -m32 - - - A

Table 3: Results of the demo consistency tests

10



Vivaldi bt.pa.msu.edu MacMini MacBook

gfortran ...

-O0 13.90 23.06 10.99 -
-O1 9.04 13.69 5.86 -
-O2 9.14 13.58 5.84 -
-O3 8.41 13.14 5.70 -
-O0 -ffloat-store 16.02 33.92 11.76 -
-O2 -ffloat-store 11.26 27.36 6.76 -

ifort ... (Version 9.2)
-O0 - - 11.60 -
-O1 - - 5.28 -
-O2 - - 4.51 -
-O3 - - 4.66 -
-O0 -fp-model strict - - 11.60 -
-O2 -fp-model strict - - 5.50 -

ifort ... (Version 11.0)
-O0 14.25 - - 8.14
-O0 -m32 - - - 8.68
-O1 7.24 - - 3.58
-O1 -m32 - - - 3.77
-O2 6.78 - - 3.19
-O2 -m32 - - - 3.14
-O3 6.79 - - 3.11
-O3 -m32 - - - 3.40
-O0 -fp-model strict 13.53 - - 8.18
-O0 -fp-model strict -m32 - - - 8.71
-O2 -fp-model strict 8.34 - - 3.68
-O2 -fp-model strict -m32 - - - 4.00

Table 4: Results of the demo speed tests

11



Appendix

2.6 Reference Results

These reference results for the consistency test were generated using ifort 9.2
with all optimizations turned off (”ifort -O0”) on the MacMini computer.

Testing precalculated constants:

IDELN2:

0.6931471805599453 | 6243314768165359b-53

0.2319046813846300E-16 | 7525737178955839b-108

0.5707708438416198E-33 | 1668365045630537b-161

+-0.1202192769595098E-45 | +- 6181917753585427b-205

IDEPI:

3.141592653589793 | 884279719003555b-48

0.1224646799147353E-15 | 4967757600021511b-105

-.2994769809718339E-32 | -8753721960665019b-161

+-0.2949765617711364E-46 | +- 6067315958716815b-207

Calculating map of a 90 degree homogenous dipole (r0=1m)

xi:

0.2500000000000000 | 1b-2

+- 0.000000000000000 | +- 0

ai:

0.5000000000000000 | 1b-1

+- 0.000000000000000 | +- 0

Calculating map of 12 30 degree homogenous dipoles (r0=1m)

xf:

0.2500000000000000 | 1b-2

+-0.4078579247830823E-29 | +- 727642852623119b-147

af:

0.5000000000000000 | 1b-1

+-0.2595024536356237E-29 | +- 7407485564059585b-151

Difference xf:

0.000000000000000 | 0

+-0.4078579247830829E-29 | +- 45477678288945b-143

12



Difference af:

0.000000000000000 | 0

+-0.2595024536356240E-29 | +- 7407485564059595b-151

2.7 Source Code

The complete source code, makefiles, and test cases used in these test is tem-
porarily available at http://bt.pa.msu.edu/~alex/tests.zip. It includes the
source code and Makefile to build hpCOSY, the official sources downloaded from
the COSY website, and the fox files including the test code.

References

[1] A. Wittig and M. Berz. Computation of high-order maps to multiple machine
precision. International Journal Modern Physics A, in print, 2008.

[2] Intel Fortran Compiler User and Reference Guides,
http://www.intel.com/software/products/compilers/docs/flin/main_for/index.htm.

[3] Quick-Reference Guide to Optimization with Intel Compilers version 11,
http://www.intel.com/software/products/compilers/docs/qr_guide.htm.

[4] Using the GNU Compiler Collection, http://gcc.gnu.org/onlinedocs/gcc.pdf.

[5] gfortran(1): GNU Fortran 95 compiler - Linux man page,
http://linux.die.net/man/1/gfortran

13

http://bt.pa.msu.edu/~alex/tests.zip
http://www.intel.com/software/products/compilers/docs/flin/main_for/index.htm
http://www.intel.com/software/products/compilers/docs/qr_guide.htm
http://gcc.gnu.org/onlinedocs/gcc.pdf
http://linux.die.net/man/1/gfortran

	Compilers
	Intel Fortran Compiler Version 9.2 and 11.0
	GNU Fortran Compiler, GCC Version 4.3.2

	Testing
	Machines
	Compiler Options
	Intel Fortran compiler options
	GNU Fortran compiler options

	Consistency
	Test Case
	Test Results

	Speed
	Test Case
	Test Results

	Consistency of Non-High Precision Code
	Test Case
	Test Results

	Reference Results
	Source Code


