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ABSTRACT

A method for the nonlinear propagation of un-
certainties in celestial mechanics based on dif-
ferential algebra is presented. The arbitrary order
Taylor expansion of the flow of ordinary differen-
tial equations with respect to the initial condition
delivered by differential algebra is exploited to
implement an accurate and computationally ef-
ficient Monte Carlo algorithm, in which thou-
sands of pointwise integrations are substituted
by polynomial evaluations. The algorithm is ap-
plied to study the close encounter of asteroid
Apophis with our planet in 2029. To this aim,
we first compute the high order Taylor expan-
sion of Apophis’ close encounter distance from
the Earth by means of map inversion and com-
position; then we run the proposed Monte Carlo
algorithm to perform the statistical analysis.

Key words: Uncertainties Propagation; Monte
Carlo Simulation; Apophis Close Encounter;
Differential Algebra.

1. INTRODUCTION

The propagation of uncertainties in orbital me-
chanics is usually addressed by linear propaga-
tion models [1, 7, 17] or nonlinear Monte Carlo
simulations [14]. The main advantage of the lin-
ear methods is the simplification of the problem,
but their accuracy drops off for highly nonlinear
systems and/or long time propagations. On the
other hand, Monte Carlo simulations provide true
trajectory statistics, but are computationally in-

tensive. The tools currently used for the robust
detection and prediction of planetary encoun-
ters and potential impacts of Near Earth Objects
(NEO) are based on these techinques [8, 9, 15],
and thus suffer the same limitations. The effect
of the coordinate system on the propagated statis-
tics is analyzed by Junkins et al. [18, 19] and
used to develop an alternative approach to orbit
uncertainty propagation. However, this method
is based on a linear assumption and thus cannot
map nonlinearities. An alternate way to analyze
trajectory statistics by incorporating higher-order
Taylor series terms that describe localized non-
linear motion is proposed by Park and Scheeres
[20]. Their approach is based on proving the inte-
gral invariance of the probability density function
via solutions of the Fokker–Planck equations for
diffusionless systems, and by combining this re-
sult with the nonlinear state propagation to derive
an analytic representation of the nonlinear uncer-
tainty propagation. As a result, the method en-
ables the nonlinear mapping of Gaussian statis-
tics, bypassing the drawbacks of Monte Carlo
simulations. However, it is limited to systems de-
rived from a single potential.

Differential algebraic (DA) techniques are pro-
posed as a valuable tool to develop an alternative
approach to tackle the previous tasks. Differ-
ential algebra supplies the tools to compute the
derivatives of functions within a computer en-
vironment [4, 5, 6]. More specifically, by sub-
stituting the classical implementation of real al-
gebra with the implementation of a new alge-
bra of Taylor polynomials, any function f of n
variables is expanded into its Taylor polynomial
up to an arbitrary order k. This has an impor-
tant consequence when the numerical integra-



tion of an ordinary differential equation (ODE)
is performed by means of an arbitrary integration
scheme. Any explicit integration scheme is based
on algebraic operations, involving the evaluation
of the ODE right hand side at several integration
points. Therefore, starting from the DA repre-
sentation of the initial condition and carrying out
all the evaluations in the DA framework, the flow
of an ODE is obtained at each step as its Taylor
expansion in the initial condition [10]. The avail-
ability of such high order expansions is exploited
when problems with uncertain initial conditions
have to be analyzed. As the accuracy of the Tay-
lor expansion can be kept arbitrarily high by ad-
justing the expansion order, the approach of clas-
sical Monte Carlo simulations can be enhanced
by replacing thousands of integrations with eval-
uations of the Taylor expansion of the flow. As a
result, the computational time reduces consider-
ably without any significant loss in accuracy.

The algorithm is applied to the prediction of
Apophis planetary encounter and potential im-
pact, taking into account its measurement uncer-
tainties. The availability of high order maps in
space and time, and intrinsic tools for their in-
version, are exploited to reduce the computation
of the close encounter distance (CED) from the
Earth of all the asteroids belonging to the ini-
tial uncertainty cloud (commonly referred to as
virtual asteroids [16]) to the simple evaluation of
polynomials. Similar techniques exploiting high
order Taylor expansions of the flow of ODE and
their inverses obtained with DA techniques have
already been efficiently utilized in beam physics.
Two noticeable applications are the reconstruc-
tion of trajectories in particle spectrographs to-
gether with the reconstructive correction of resid-
ual aberrations [2], and the end-to-end simula-
tions of fragment separators [11]. This paper
presents an application to celestial mechanics.

2. DA INTEGRATION OF APOPHIS DY-
NAMICS

2.1. Dynamical Models

The study of the motion of a NEO in the So-
lar System with an accuracy sufficient to predict
collisions requires the inclusion of various rela-
tivistic corrections to the well-known Newtonian

forces based on the Kepler’s force law. Specifi-
cally, the full equation of motion in the Solar Sys-
tem including the relevant relativistic effects are
considered.

It is assumed that the object we are inte-
grating is affected by the gravitational attrac-
tion of k bodies, but has no gravitational ef-
fect on them; i.e., we are adopting the re-
stricted (n + 1)-body problem approximation.
The positions, velocities, and accelerations of
the k bodies are considered as given val-
ues, computed by cubic spline interpolations of
data retrieved from HORIZONS Web-Interface
(http://ssd.jpl.nasa.gov/horizons.cgi). These in-
terpolations are necessary as in the DA frame-
work the use of external code is not permit-
ted. The cubic splines are built so as to keep
the maximum error with respect to HORIZONS’
ephemerides of the order of 10−9 AU and 10−10

AU/day for bodies’ position and velocity, respec-
tively (see [3] for details). In our integrations k
includes the Sun, planets, the Moon, Ceres, Pal-
las, and Vesta. For planets with moons, with the
exception of the Earth, the center of mass of the
system is considered. The dynamical model is
written in the J2000.0 Ecliptic reference frame
and is commonly referred to as Standard Dynam-
ical Model [12]. To improve the integration ac-
curacy the dynamics are scaled by Earth semi-
major axis and Sun gravitational parameter (i.e.,
aE = 1 and µS = Gms = 1). We must mention
that, to obtain a full understanding of the dynam-
ics of a body in the Solar System, other effects
should be taken into account, such as: the forces
due to other natural satellites and asteroids, the
J2 (and higher order harmonics of the potential)
effect of the Earth and other bodies, Yarkosvsky
and solar radiation pressure effects [12].

When the asteroid approaches the Earth, a differ-
ent set of ODE are integrated to avoid cancella-
tion errors associated to repetitive subtraction of
Apophis’ and Earth’s position vectors occurring
across the flyby pericenter. In this case the equa-
tions of motion are written in the J2000.0 Earth-
Centered Inertial reference frame. The same
gravitational bodies of the heliocentric phase are
considered, whereas relativistic corrections are
neglected as their effect during a fast close en-
counter is negligible. In this phase the dynamics
are scaled by the radius of the Earth and by the
Earth gravitational parameter (i.e., RE = 1 and
µE = GmE = 1).



2.2. Flow Expansion

The high order expansion of the flow of ODE
can be straightforwardly obtained by evaluat-
ing any explicit numerical integration scheme
within the DA framework. The results presented
here are obtained by applying a DA-based 8-th
order Runge–Kutta–Fehlberg (RKF78) scheme
with absolute and relative tolerance of 10−12.
The integration window is June 18, 2009 to April
16, 2029, being April 13, 2029, the day in which
the close approach occurs.

The nominal initial state and the associated
σ of Apophis, expressed in equinoctial vari-
ables p = (a, P1, P2, Q1, Q2, l), are taken
from the Near Earth Object Dynamic Site (new-
ton.dm.unipi.it/neodys) and summarized in Ta-
ble 1. Apophis’ initial condition is initialized

Table 1. Apophis equinoctial variable at 3456
MJD2000 (June 18, 2009) and associated σ val-
ues. Units: a [AU] and l [deg].

Nom Value σ

a 0.922438242375914 2.29775× 10−8

P1 −0.093144699837425 3.26033× 10−8

P2 0.166982492089134 7.05132× 10−8

Q1 −0.012032857685451 5.39528× 10−8

Q2 −0.026474053361345 1.83533× 10−8

l 88.3150906433494 6.39035× 10−5

as DA variables [p
0
] = p

0
+ 3σδp

0
, where

3σ is used as a scaling factor. These variables
are converted into cartesian coordinates using the
relations given in Battin [1], evaluated in the
DA framework and then numerically propagated.
Note that the solution of the Kepler equation, re-
quired for the computation of the eccentric longi-
tude, is carried out by applying the DA-algorithm
introduced in Di Lizia et al. [10].

The nominal heliocentric trajectories of Apophis
and the Earth are shown in Fig. 1 by the solid and
dotted lines, respectively.

Figure 2 shows a zoom of Apophis’ close ap-
proach with the Earth in the geocentric reference
frame. It is worth mentioning that the maximum
norm of the difference between the computed tra-
jectory and Apophis’ HORIZONS ephemerides
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Figure 1. Apophis heliocentric phase trajectory.
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Figure 2. Apophis close encounter trajectory.

is less than 5 × 10−8 AU. The mismatch is due
to all different initial conditions, dynamical and
ephemeris model, and integration scheme.

An analysis on the accuracy of the flow expan-
sion is mandatory before introducing the DA-
based Monte Carlo algorithm. Figures 3 and 4
show the maximum position and velocity error of
the Taylor representation of the flow at the cor-
ners of the initial set, with respect to the point-
wise integration of the same points. Initial widths
of 3, 6, and 9 σ and expansion orders from 1 to
5 are considered. The expansion error decreases
when higher expansion orders are selected and
when smaller uncertain sets are considered. The
errors tend to decrease exponentially with the
expansion order, until reaching a lower limit of
approximately 5 × 10−11 [AU] on position and
3×10−10 [AU/day] on velocity. It is worth notic-
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Figure 3. Accuracy of the Taylor expansion of the
flow corresponding to different expansion orders
and initial uncertainty sets: position error.

ing that a fifth order expansion guarantees a gain
of approximately three order of magnitude in the
flow representation with respect to linear meth-
ods. This gain can be crucial when impact prob-
ability and/or resonant returns are studied. The
figure clearly shows that Taylor polynomial ac-
curacy is a function of both the expansion order
and domain width. The drawback for obtaining
the Taylor expansion of the flow with respect to
the initial condition is the computational time to
perform a single integration, as shown in Fig. 5.
In this figure the ratio between the computational
time of a k-th order DA integration and a sin-
gle pointwise integration is illustrated, underlin-
ing that a 5-th order integration is approximately
eight times slower. On the other hand, the avail-
ability of the flow expansion enables the develop-
ment of a computationally efficient Monte Carlo
method, as described in the next section.

3. DA-BASED MONTE CARLO

Within the dynamical models adopted and the
chosen integration scheme, the asteroid reference
solution has a close encounter distance from the
Earth center of mass of 38161.55420 km at epoch
10695.907094 MJD2000. In order to evaluate
the possibility of an Earth’s impact it is neces-
sary to accurately propagate the statistics of the
asteroid. The accurate computation of statistics
in nonlinear dynamical systems often relies on
Monte Carlo simulations. The algorithmic flow
of a Monte Carlo simulation is:
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Figure 4. Accuracy of the Taylor expansion of the
flow corresponding to different expansion orders
uncertainty sets: velocity error.
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Figure 5. DA integration computational time
compared to single pointwise integration.

1. Generate random samples based on the sta-
tistical distribution of the uncertainty to be
propagated.

2. Run a pointwise integration of each sample
in the fully nonlinear dynamics.

3. Perform the statistical analysis of the re-
sults.

There are three critical disadvantages when using
this approach:

• convergence of the statistics usually re-
quires a large number of sample trajectories
to be propagated,



• the simulation needs to be repeated for dif-
ferent initial distributions,

• it does not provide the user with analytical
information, useful for additional analyses.

These problems affect both the computational
burden associated to the Monte Carlo simula-
tion and its validity for different statistics [20].
The previous drawbacks become dramatic when
thousands of long-term integrations are required,
as for the analysis of possible NEO close en-
counter with the Earth [16].

DA integration delivers an arbitrary order Tay-
lor expansion of the flow of the ODE, which is
analytic. Furthermore, the accuracy of the map
expansion can be controlled by acting on the ex-
pansion order. For these reasons, it is possible
to substitute the thousands of pointwise integra-
tions required for classical Monte Carlo simula-
tions with an equal number of map evaluations,
i.e. fast polynomials evaluations.

The resulting DA-based Monte Carlo simulation
can be summarized as:

1. Perform a single DA integration selecting
the expansion order according to the de-
manded accuracy.

2. Generate random samples based on the sta-
tistical distribution of the uncertainty to be
propagated.

3. Evaluate the flow expansion map for all
the samples, requiring only fast polynomial
evaluations.

4. Perform the statistical analysis of the re-
sults.

The ratio between the computational time of a
DA-based Monte Carlo simulation and its point-
wise counterpart is given by

tn + nste
nst0

, (1)

where tn, te, and t0 are the computational times
of a k-th order DA integration, a flow map eval-
uation, and a pointwise integration, respectively;
and ns the number of samples of the Monte Carlo

simulation. The computational cost of a Taylor
map evaluation, depends on the expansion order,
but it is negligible compared to a pointwise in-
tegration. For this reason, expression (1) can be
approximated by m

ns
, in which m is the ratio be-

tween the computational time of a k-th order DA
integration and a pointwise integration (see Fig.
5). The value of m strongly depends on the ex-
pansion order, but it is few orders of magnitude
smaller than the number of samples required for
a good representation of the statistics. For this
reason, the ratio m

ns
is small, proving that the pro-

posed DA-based Monte Carlo simulation is com-
putationally efficient. As an example, in Sec. 5,
Fig. 10 will show that the computational time is
reduced by a factor of at least 100 for a typical
sample size of 10000 virtual asteroids.

In case new statistics need to be propagated, it is
not necessary to perform an additional DA inte-
gration as only steps 2–4 are required. Further-
more, if the statistical analysis is performed for
a different final time, the possibility of obtaining
Taylor expansions with respect to the final time
can be exploited (see Sec. 6.1). Moreover, as the
flow expansion is analytical, an analytic frame-
work is delivered. In conclusion, all the major
drawbacks of a classical Monte Carlo approach
are circumvented. These properties are better
highlighted in Sect. 6 by applying the algorithm
to the study of Apophis’ close encounter with the
Earth in 2029.

4. CED ALGORITHM

Let us suppose the close approach of the nominal
asteroid occurs at the epoch tf , and consider the
integration of the asteroid dynamics from t = t0
to t = tf . Initialize the initial state and the final
integration epoch as DA variables; i.e.,

[x0] = x0 + δx0

[tf ] = tf + δtf ,
(2)

where x0 is the initial condition corresponding
to the nominal asteroid. Using the DA-based
RKF78 integrator obtain the map

[xf ] = xf + Mxf
(δx0, δtf ). (3)

The map (3) is the k-th order Taylor expansion
of the flow with respect to the initial condition



and the final epoch about their nominal values x0

and tf . Based on a mere DA-based computation,
the final solution xf can be used to compute the
Taylor expansion of distance from the Earth

[df ] = df + Mdf
(δx0, δtf ). (4)

More specifically, map (4) describes how the dis-
tance varies depending on the virtual asteroid and
the final integration epoch.

Using the derivation operator available in the DA
framework, the Taylor expansion of the deriva-
tive d′f = d(df )/dtf can be obtained

[d′f ] = d′f + Md′

f
(δx0, δtf ). (5)

The constant part of the map (5), d′f , is the

derivative of the distance from the Earth of the
nominal solution at its close encounter; i.e., at
CED epoch. Consequently, this is a stationary
point for the nominal solution, and d′f = 0.

Then, the map (5) reduces to

δd′f = Md′

f
(δx0, δtf ), (6)

in which we omit the bracket operator for the
sake of a simpler notation. Consider the map

(

δd′f
δx0

)

=

(

Md′

f

Ix0

) (

δx0

δtf

)

, (7)

which is built by concatenating Md′

f
with the

identity map for δx0. Map (7) can now be in-
verted to obtain

(

δx0

δtf

)

=

(

Md′

f

Ix0

)

−1 (

δd′f
δx0

)

. (8)

This is a full nonlinear map inversion that is ob-
tained by applying the algorithm illustrated in
[5]. This algorithm reduces the map inversion
problem to the solution of an equivalent fixed
point problem, which can be solved with a fixed
amount of effort in the DA setting.

Map (4) is then concatenated to the identity map
for δtf to obtain

(

df

δtf

)

=

(

Mdf

Itf

) (

δx0

δtf

)

. (9)

Map (9) can now be composed with map (8) to
obtain
(

df

δtf

)

=

(

Mdf

Itf

)

◦

(

Md′

f

Ix0

)

−1 (

δd′f
δx0

)

,

(10)

which relates df and δtf to the displacements of
the derivative of the final distance δd′f and of the

state vector of the virtual asteroid δxi from their
values. As for the reference value d′f = 0, the

necessary condition for CED computation is

δd′f = 0. (11)

Substituting into (10) yields

(

df
∗

δtf
∗

)

=

(

Mdf

Itf

)

◦

(

Md′

f

Ix0

)

−1 (

0
δx0

)

.

(12)
Eventually, map (12) delivers the desired explicit
relation between the CED (df

∗) and the epoch
at which it is reached (tf + δtf

∗) with the dis-
placement δxi in terms of Taylor polynomials.
Given any virtual asteroid belonging to the ini-
tial set (which corresponds to a specific value of
the displacement δxi), the simple evaluation of
the polynomials in (12) delivers the CED and
the epoch at which it is reached. In this way,
the problem highlighted by Milani et al. [15] is
solved.

5. CED STATISTICAL ANALYSIS

The DA-based Monte Carlo simulation intro-
duced in Sec. 3 is run on map (12) to perform
the nonlinear mapping of the initial uncertainties
on the CED. More specifically, 10000 virtual as-
teroids are generated with a normal random dis-
tribution with mean value and standard deviation
as in Table 1. For each sample, the displacement
with respect to the nominal initial conditions is
computed and map (12) is evaluated to obtain its
CED and the associated epoch. The result is re-
ported in Fig. 6 in terms of probability distri-
bution for the CED. The analysis of the results
shows that the mean value is 38161.54 km with
a standard deviation of 492.1 km, thus the possi-
bility of having an Earth impact in 2029 is ruled
out.

For the same virtual asteroids, map (12) is also
evaluated to obtain the close encounter epochs.
The result is presented in Fig. 7 in terms of the
probability distribution of the displacement δtf

∗

from the nominal epoch tf . The maximum dis-
placement is of the order of 30 s. In Fig. 8 the
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10000 virtual asteroids are plotted in the CED-
δt∗f plane.

For the sake of completeness, an accuracy anal-
ysis of the results is presented in Fig. 9. Ten
virtual asteroids are randomly selected from the
initial set. For each virtual asteroid, the mini-
mum distance and the corresponding epoch, re-
sulting from map (12), are reported in the figure.
Then, a pointwise integration of the motion of
each asteroid is performed to obtain the profile of
Earth’s distances shown in the dotted lines. Al-
though the accuracy on the identification of the
epoch of the close encounter is not clearly visu-
alized, due to the very little displacement in tf

∗,
it is clearly shown that the algorithm is able to ac-
curately identify the CED values of the resulting
trajectories. Figure 10 concludes the analysis by
showing the ratio of the computational time be-
tween the proposed DA-based Monte Carlo sim-
ulation and its pointwise counterpart as a func-
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Figure 9. Accuracy of the CED algorithm:
virtual asteroids actual trajectories.

tion of the expansion order when 10000 virtual
asteroids are considered. It is apparent that the
drawback of the higher computational cost re-
quired by a DA integration is rewarded by the
significant time saving achieved by substituting
10000 pointwise integrations with the same num-
ber of polynomials evaluations.

6. CONCLUSIONS

The paper introduced a Monte Carlo simulation
based on the high order Taylor expansion of the
flow of ODE, enabled by the use of differen-
tial algebra. Being based on the replacement
of pointwise integrations with fast evaluation of
polynomials, the proposed algorithm guarantees
significant computational time savings. The ac-
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Figure 10. Percentage of computational time re-
quired by a DA-based Monte Carlo run versus a
classical Monte Carlo simulation for 10000 vir-
tual asteroids.

curacy of the algorithm can be suitably tuned by
varying the flow expansion order. Furthermore,
the availability of analytic Taylor expansions and
the use of DA embedded tools as map inversion,
composition, and derivation allows the user to
compute arbitrary order maps of the quantities
on which the statistical analysis is performed;
thus, the algorithm is not limited to the flow
of ODE. More specifically, a technique for the
automatic computation of both CED and CED
epochs for all the virtual asteroids belonging to
the initial uncertainty cloud has been developed.
The efficiency and effectiveness of the methods
are proven by applying them to the analysis of
Apophis close encounter with the Earth occur-
ring in April 2029. In particular, it is shown that

• the nonlinear mapping of uncertainties can
be performed for any complex and arbi-
trary dynamics, even when long-term inte-
grations are required;

• a fifth order expansion increases the accu-
racy of the computation of the CED by ap-
proximately two orders of magnitude with
respect to classical linear methods;

• the expansion in time allows for the proper
identification of the CED epoch for all the
virtual asteroids.

As an additional result, the occurrence of an im-
pact with the Earth in April 2029 can be ruled
out.
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