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Schedule of CAPOSR - Foundations

e Foundations of Rigorous Computing: Interval methods, float-
ing point requirements and standards, dependency problem,
Taylor methods and related approaches, rigorous higher order
bounds, paths to rigorous arbitrary precision and practical re-
alization.

e Rigorous Integration of ODEs and Flows. Interval-based inte-
gration, error estimation, wrapping effect, differential algebraic
structures, Taylor integration of flows, rigorous error bounds,
automatic step size control

e Constraint Satisfaction Taylor models for inverses, point so-
lutions, constraint manifolds, differential algebraic equations
(DAES), rigorous high-order control theory

e Divide and Conquer Methods. Taylor manifolds and automatic
domain decomposition, applications for rigorous global opti-
mization, constraint satisfaction, and flow integration.



Schedule of CAPOS - Computer Assisted Proofs

e Enclosures of attractors of discrete and continuous systems in
two and higher dimensions,

e High order normal forms,
e Enclosures of hyperbolic manifolds in various dimensions

e Enclosure of homoclinic points and determination of symbolic
dynamics,

e Sharp estimates of topological entropy, center manifolds and
nonlinear

e Lyapunov and pseudo-Lyapunov functions, rigorous Nekhoroshev-
type long-term stability estimates.






Motion in the Tevatron

e Speed of Light: 3x108 m/sec
e Circumference: 6.28x103m
== 4x10%revs/sec.

 Need to store about 10 hours, or 4x10° sec
=== 2x1019 revolutions total.

e 10,000 magnetsin ring
=== 2x10™ contacts with fields!

« Extremely challenging computationally
*Need for several State-Of-The-Art Methods:
*Phase Space Maps
*Perturbation Theory
L yapunov- and other Stability Theories
*High-Performance Verified Methods
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The Particle Optical Equations of Motion
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Here the following abbreviations are used:

__ Do Yo Do
XE0 = ;o XM0 = ——
Z0€ Z0€

Ko-(1+40) —20-€e-(1496.)-V(z,y,s)
77:( kmOCQ-(1+5m) )

D- n2+n)
mlliadg— 1+5m2 _a2_b2
Do \/( ) no(2 + no)

Equations are expressed in curvilinear coordinates, an orthogonal sys-
tem attached to a reference orbit. From earliest times, these have proven
to be advantageous in practice for numerical stability.




Description and Analysis of Optical Systems

Easiest way to study optical system: trace rays through system. Light
Optics: Snell’s Law. Particle Optics: numerical integration through electro-
magnetic fields.

Very easy to do. BUT': does not provide much insight. Hard to see what
to change if a system has problems.

Better to look at the MAAP of the system:

[ @ (w0

i = Dai/Do a¢ = Dut/Do
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bi — pyi/po ? bf — pyf/po
AE/E, AE/E,
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In terms of conventional ODE integration, this is merely the local flow.



Matrix Formulation of Gaussian Optics

Gaussian Optics is equivalent to considering only linear part of Map. Can
be represented by matrix:

xp\ _ [ (@x) (@,0) ) (@
ar )\ (a,2) (a,a) a;
e Flements of Matrices tell us about the system:

(x,a) = 0: Image. (z,z): Magnification

e Matrices for systems can be obtained by multiplication of Matrices of sub-
systems (convenient!)

D ED

Image: 1/b+1/g — 1/f = 0. One solution is b = g = 2f, in this case
magnification is —1.



Nonlinear Terms

Principle can be extended to higher derivatives of map. These describe
"aberrations”.
Example: centered system with cylindrical symmetry

(Seidel Aberrations)

(x,aaa)  Spherical Aberration

(x,xaa) Coma

(x,xxa) Curvature of Image

(x,xxx) Distortion (Barrel or Pincushion)

In addition, there are chromatic effects:



The Limitations

1. Higher orders are needed

e Very high resolution (electron microscopes, spectrographs)
e Large phase spaces (muon accelerators)
e Long systems where errors can build up (circular accelerators)

2. Special elements

e [ringe fields of particle optical elements

e Off-axis effects

e Electric and magnetic round lenses

e General field elements based on measured data

As before, in all these cases numerical integration can provide individual
rays, but not maps.



History of Higher Order Optics

Light Optics Electron Optics Particle Optics
(Round Lenses) (Round Lenses)  (Non-Round Lenses)

1 Gauss 1841 ?

2 (Gauss 1841) Brown 1959

3 Petzval 1840 Scherzer 1936 Matsuda,
Seidel 1856 Wollnik 1965

4

5  Kohlschiitter, M.B. 1985

Schwarzschild 1905
Rabinovich 1946



Maps as Taylor Series

"The determination of terms of order higher than fourth is very labori-
ous in all but the simplest cases. For this reason, algebraic calculations
are usually restricted to the domain of the Seidel theory, supplemented
where necessary by ray tracing’ .

Born-Wolf, Principles of Optics, Pergamon 1959
Some Power Series Particle Optics Codes:

e TRANSPORT (2nd order, thick elements, early 60s)

e GIOS (3rd order, thick elements, fringe fields, late 60s)

e MaryLie (3rd order, thick elements, fringe fields, late 70s)
e COSY 5.0 (5th order, thick elements, fringe fields, 1985)

e COSY INFINITY (arbitrary order, thick elements, fringe fields, 1987)
(More than 1000 users by 2004)
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SUBROUTINE elmm(L,Z,K01,K02,K03,K04,K05,K27,K32,NORDER,NG,ND)

xxxxxxxxx

xxxxxxxxx

Subroutine to Compute Aberration Equations Equations

Magnetic Multipole to Fifth Order

Computer Generated by Program HAMILTON (C) M. Berz 1985

IMPLICIT DOUBLE PRECISION (A - 2)

INTEGER NORDER, NG, ND

DOUBLE PRECISION L(0:461,7)

K30 = 1./(1+K32)
K31 = 1./(1+K32/2.)
FX2 = -K01*K27
FY2 = +K01*K27
IF(FX2.LT.-1.D-8) THEN
AFX = SQRT(-FX2)
CX = COS(AFX*Z)
SX = SIN(AFX*Z)/AFX
ELSEIF(FX2.GT.1.D-8) THEN
AFX = SQRT(FX2)
EX = EXP(AFX*2)
EEX = 1.DO/EX
CX = (EX + EEX)/2.DO
SX = (EX - EEX)/2.DO/AFX
ELSE
CX = 1.DO
SX =72
FX2 = 1.D-8
ENDIF
IF(FY2.LT.-1.D-8) THEN
AFY = SQRT(-FY2)
CY = COS(AFY*Z)

SY = SINCAFY*Z)/AFY
ELSEIF(FY2.GT.1.D-8) THEN

AFY = SQRT(FY2)

EY = EXP(AFY*2)

EEY = 1.DO/EY

CY = (EY + EEY)/2.DO
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100

SY
ELSE
CcY
SY
FY2
ENDIF

(EY - EEY)/2.DO/AFY

1.D0
Y4
1.D-8

CX

SX

CY

Sy

Z

K31*K32

K30*K32

FX2

Cs2

CS3

CS3*FF2

Cs4

CS5

CS5*FF2

CS6

CS6*KK2
CS6*KK3

(+TT2)

(+TT3)

(+TT4)

(+TT72)

(+TT5)

(+TT6)

(-TT7)

(+TT5)

-EQ.O0.AND.NG.EQ.0) GOTO 100

= (+1)

C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR

(-0.5D+00*TT8-0.25D+00*TT9+TT10)

.EQ.0) GOTO 100

+1)

= (+0.5D+00*TT8+0.25D+00*TT9-TT10)

IF(NORDER.EQ.1) GOTO 1000

CS7 = CS3*CX
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cs8

Cs9

CS10
cs11
Ccs12
cs13
Ccs14
Ccs15
Ccs16
Ccs17
cs18
KK4

KK5

KK6

FF3

FF4

TT11
TT12
TT13
TT14
TT15
TT16
TT17
TT18
TT19
TT20
TT21
TT22
TT23
TT24
TT25
TT26
TT27
TT28
TT29
TT30
TT31
TT32
TT33
TT34
TT35
TT36
TT37
TT38
TT39
TT40
TT41

CS3*SX
CS4*CX
CS4*SX
CS5*CX
CS5*SX
CS5*CY
CS5*SY
CS6*CX
CS6*SX
CS6*CY
CS6*SY
KK2*K31*K32
KK3*K31*K32
KO2*K27
1/FX2/FX2
FF3*FX2
KK6*FF4
CS2*KK6*FF4
CS8*KK6
CS3*KK6*FF4
CS7*KK6*FF4
KK6*FF3
CS2*KK6*FF3
CS8*KK6*FF4
CS14*KK6
CS13*KK6*FF4
CS14*KK6*FF4
CS16*FF2
CS16*KK2*FF2
CS3*KK2
CS15
CS15*KK2
CS3*KK6
CS7*KK6
CS13*KK6
CS3*KK2*FF2
CS15*FF2
CS15*KK2*FF2
CS4*KK6*FF4
CS9*KK6*FF4
CS12*KK6
CS10*KK6*FF4
CS5*KK6*FF4
CS11*KK6*FF4
CS4*KK6*FF3
CS9*KK6*FF3
CS12*KK6*FF4

C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR
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*

TT42
TT43
TT44
TT45
TT46
TT47
TT48
TT49
TT50
TT51
TT52
TT53
TT54
TT55
TT56
TT57
TT58
TT59
TT60
TT61
L(7,1)

L(8,1)

L(13,1)

18)

L(18,1)
L(19,1)
L(22,1)
L(7,2)

L(8,2)

L(13,2)
L(18,2)
L(19,2)
L(22,2)
L(9,3)

L(14,3)
L(10,3)
L(15,3)
L(9,4)

L(14,4)
L(10,4)
L(15,4)
L(7.7)

L(8,7)

L(13,7)
L(18,7)
L(19,7)
L(22,7)

CS18*FF2
CS18*KK2*FF2
CS5*KK2

CS17
CS17*KK2
CS10*KK6
CS5*KK6
CS11*KK6
CS5*KK2*FF2
CS17*FF2
CS17*KK2*FF2
CS7*FF2
CS6*FF2
CS8*FF2

CS7

CS13*FF2
CS14*FF2
CS13

CS6*KK4
CS6*KKS5

C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR

= (+0.33333334327D+00*(+TT11-TT12-TT13))
= (+0.66666668654D+00*(+TT14-TT15))

(+0.66666668654D+00*(-TT16+TT17)-0.33333333333D+00*TT

(+0.60000002384D+00*(~-TT11+TT12)+0.2D+00*TT19)

(+0.40000000596D+00* (+TT14-TT20))

(+0.40000000596D+00* (-TT16+TT17)-0.2D+00*TT21)
(-0.33333333333D+00*TT27-0.66666666667D+00*TT28)
(+0.66666668654D+00*(~TT11+TT12)-0.13333333333D+01*TT13)

(+0.66666668654D+00* (+TT14-TT15))

(+0.6D+00*TT27+0 . 4D+00*TT29)

(+0.40000000596D+00*(~TT11+TT12)+0.8D+00*TT19)

(+0.40000000596D+00* (+TT14-TT20))

= (+0.40000000596D+00*(-TT33+TT34)+0.8D+00*TT35)

(+0.4D+00*TT36-0.12D+01*TT37+0.8D+00*TT38)
(-0.8D+00*TT36+0.40000000596D+00* (+TT37+TT38))
(+0.80000001192D+00* (+TT39-TT40)+0.4D+00*TT41)

= (+0.12D+01*TT47+0.40000000596D+00* (+TT48+TT49))

(+0.12000000477D+01*(-TT33+TT34)+0.4D+00*TT35)
(+0.40000000596D+00* (+TT33-TT34)+0.12D+01*TT35)
(-0.4D+00*TT36-0.8D+00*TT37+0.12D+01*TT38)
(+0.25D+00* (+TT53-TT54))

(+0.5D+00*TT55)

(+0.25D+00* (+TT56+TT8))
(+0.25D+00*(~TT57+TT54))

(-0.5D+00*TT58)

(+0.25D+00* (+TT59+TT8))
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27,000 lines further down:

L(449,7) = (-0.87890625D-01*TT59-0.244140625D-01*TT347
+0.2197265625D-01*TT1723+0. 14282226563D+00*TT6924+0 . 390625D-01*(
+TT348-TT1724)-0.263671875D+00*TT6925-0 . 380859375D+00*TT8
~0.1162109375D+00*TT9+0.9521484375D-01*TT60+0.26733398438D+00*TT
351+0.1484375D+00*(+TT10-TT61)-0.439453125D+00*TT352
+0.29296875D+00*TT349+0.91796875D-01*TT350-0.732421875D-01*TT
1725-0.12451171875D+00*TT6926+0 . 109375D+00*(~-TT1726+TT1727)
+0.17578125D+00*TT6927+0 . 140625D+00*TT1728+0 . 546875D-01*TT1729
~0.3515625D-01*TT1730-0.29296875D-01*TT6928+0.3125D-01*(-TT
6929+TT6930)+0.234375D-01*TT6931+0.78125D-02* (+TT6892-TT6933)
+0.390625D-02* (+TT6893+TT6934)+0..1953125D-02* (~-TT6894+TT6935)
~0.9765625D-03*TT6895-0. 15625D-01*TT6932)

L(458,7) = (+0.234375D-01*TT8-0.390625D-02*TT9-0.8203125D-01*TT
60+0.380859375D+00*TT351-0.32470703125D+00*TT1731
+0.76904296875D-01*TT6936+0 . 15625D-01*TT10+0 . 21875D+00*TT61
~0.9140625D+00*TT352+0 . 7421875D+00*TT1732-0.1708984375D+00*TT
6937)

L(459,7) = (+0.390625D-01*TT8+0.390625D-02*TT9-0.1171875D-01*TT

* 60-0.68359375D-01*TT351+0.18798828125D+00*TT1731

*  _0.76904296875D-01*TT6936-0.15625D-01*TT10+0.3125D-01*TT61

*

*

O X % X % % ok ok ok %

* ok F %

+0.1640625D+00*TT352-0.4296875D+00*TT1732+0 . 1708984375D+00*TT
6937)

L(460,7) = (+0.13671875D+00*TT8+0.29296875D-01*TT9+0.5859375D-02
*TT60-0.48828125D-02*TT351-0.25634765625D-01*TT1731
+0.38452148438D-01*TT6936-0.1171875D+00*TT10-0.15625D-01*TT61
+0.1171875D-01*TT352+0.5859375D-01*TT1732-0.8544921875D-01*TT
6937)

o % %

500 IF(NORDER.EQ.5) GOTO 1000

*

1000 CONTINUE

*

RETURN
END
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History of Higher Order Optics

Light Optics Electron Optics Particle Optics
(Round Lenses) (Round Lenses)  (Non-Round Lenses)

1 Gauss 1841 ?

2 (Gauss 1841) Brown 1959

3 Petzval 1840 Scherzer 1936 Matsuda,
Seidel 1856 Wollnik 1965

4

5  Kohlschiitter, M.B. 1985

Schwarzschild 1905
Rabinovich 1946



Maps as Taylor Series

"The determination of terms of order higher than fourth is very labori-
ous in all but the simplest cases. For this reason, algebraic calculations
are usually restricted to the domain of the Seidel theory, supplemented
where necessary by ray tracing’ .

Born-Wolf, Principles of Optics, Pergamon 1959
Some Power Series Particle Optics Codes:

e TRANSPORT (2nd order, thick elements, early 60s)

e GIOS (3rd order, thick elements, fringe fields, late 60s)

e MaryLie (3rd order, thick elements, fringe fields, late 70s)
e COSY 5.0 (5th order, thick elements, fringe fields, 1985)

e COSY INFINITY (arbitrary order, thick elements, fringe fields, 1987)
(More than 1000 users by 2004)



NUMBER FIELDS AND
FLOATING POINT NUMBERS

T

(Truncation to n digits;
Equivalence Relation)

Real Numbers Floating Point
“Numbers”
-
c=a+h + D Cr= aTEB bT
T
T
c=a-b - O Cr= aT(D b
T
Field Diagrams Field
(Also want “exp”, “sin” commute (“approximately”)
etc: Banach Field) “approximately”

T: Extracts Information
considered relevant



FUNCTION ALGEBRAS

T

(Truncation to order n;
Equivalence Relation)

Space of C™ Functions Taylor Polynomials
~ )
g T
h:f+g + ) hT: fT@gT
© { T .
S | < T
< w)
§< h=f.g . ® hT:fTQQT >'>
o
= - - -
a)
-
h = d f d @) h—l-: Q g
N L J
Differential Algebra Diagrams Differential Algebra
(also want “exp”, “sin” commute (even Banach DA)
etc: Banach DA) exactly

T: Extracts Information
considered relevant
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DX 1, NO = 11, NV = 6, INA = 27

R kR R R R R R R AR R R AR R R SR AR R R R R R R R R e e e

COEFFICIENT ORDER
-.11235361224856E-27
-2.4577764619843
382.75567438967
-2.9058143083356
-.18527560925181E-01
-2.0449053795051
230.43212330444

0.10745263897241E-01
-.40104008916025

10 0.10748538944562E-01
11 -2.3077398243793

12 4.4690872366630

13 0.61271339425922E-02
14 0.42422562884505E-03
15 -.25018158222129

16 34.164428767158

17 -2131.5807609885

18 -.42666140335568E-03
19 0.61867753199362

20 -.11349802973152

21  56.549952804501

22 0.15244016913989E-02

23 -.46319864237315

24  40.581998425553

25 -.25450130254498E-02

26 -4.6823358538539

27 1456.5235333461

28 -.25643847152791

29 0.15479910051681E-02

30 -.26430052248601

31 -7.1898343490889

32 0.58340280013060E-03

33 -.54394288125262E-04

34 0.38915493503025E-01

35 -10.856955574871

36 1254 .1599009949

37 -54750.339715548

38 0.42865921904244E-03

39 -.10129872906961

40 16.600177401064

41 -.83438533353867E-03

42 0.44656225936067E-01

XPONENTS

OCO~NOOOBSWNRE -

E
0
1
0]
0
2
1
0]
0
0
1
0
0
0
3
2
1
0
1
0]
1
0
2
1
0
0
1
0]
0
1
0
0]
0
4
3
2
1
0
2
1
0
0
2

AADMIPADIMDIMDIDIEDIDDPWWOWWWWWWWWWWWWWWWWWNNNNNNNNNRERRREO
OO NPFPFOAWNPFPFOOOFRPROORFRPROONRFPORPRORFRPROWNRFRPOOORPROOONRPFPOORrL,OO
PANNNOOOOOOOOORFROONOOOREFPNNOOOOOOOORLRNOOOOOOO
POOOOOO0OO0OO0OOONOORPRNNOOOORPFPOOOOOOONOORrRPROOOOOOOO
OO0OO0OO0OO0OO0OO0OO0OO0OOWRLNNPFPOORPRPPPOOOOOOOONORPFPOOOOOROOO
eNeolooojojooloololoojolojoojolooojolojooooojooloojooolololololoNoNe)
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43 -14.242733931933
44 1812.0210497771
45 -.14401693756858
46 -.26812285838556E-03
47 0.14433601146177
48 -25.002121384519
49 1422 .4392191357
50 0.67315613953893E-03
51 -.16340868932716
52 1.3257841503873
53 -472.13503057908
54  51681.544792611
55 -9.7160870866478
56 0.88334103087622E-01
57 -19.022409240455
58 -.48689687612391E-03
59 0.16755301265834
60 -14.106243085175
61 0.43660754939067E-03
62 -300.75757764658
63 2.9012366747428
64 -572.73159967434
65 0.53258960203668E-01
66 -.37768280924720E-03
67 0.62989087030710E-01
68 -3573.0798614067
69 1.6716112876871
70 -.10658118377282E-03
71 -.25414137178589E-05
72 0.14017294168757E-02
73 -.22915066598219
74  9.3046379608457
75 711.33599214748
76 -36864.079818068
77 0.76846052404647E-05
78 -.24398280565609E-02
79 0.49036157764730E-01
80 10.611563244730
81 -.69006293687322E-05
82 -.58227683391493E-03
83 0.62878426765274E-03
84 -.93993449228250E-01

g bbb AMAMDMDMDIMDIMDIMIMDIAMLALMLMDLMDNDIAMDIDMDIDIDIMDIMDIDIDDIADL
NWORFROFRPRNWOFRNWAIIOOOORPROORPROOORLRNOPFRPOOFRLRNOFRPOFRPNWOOLR
RPORPROWNRFPFOUPPWNPFPOOOORPROOFRPROOONRFRPRORPROONRFPOFRPROWNEFROONER
PRPRABRANNMNNNOOOOOOOOOCOOOROORPRNOOOREFEPNOOONNOOOOWREF
PRPOOOOO0OO0OO0OO0OO0OO0OO0COONMOOERLNNWOOOORENNNNOOOOOORRERER
OO0OO0OO0OO0OO0CO0OO0CO0OO0CO0OOCOORNOWWNEFRFPONNNNRPFPPOOOORRPERPPRPEPLPPOOO
[ejoeooojojoooojoojooojojolojolooojoojoojojojoolojoojojoooNoloNoNoNo]
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1100 lines further down ...

2198 -14060.942901990 11
2199 1653837 .7385130 11
2200 -257.59556830741 11
2201 -.35544757510218 11
2202 -79.173081098476 11
2203 0.51087261295152E-01 11
2204 -18.716238122641 11
2205 1542.8309211899 11

2206 -.28054439599319E-01 11
2207 0.22645955750085E-02 11

2208 -.38909056207237 11
2209 -.24095385693697E-04 11
2210 0.88753236469477E-02 11
2211 -.78021595715990 11
2212 0.12444200845638E-04 11
2213 -.25672923569253E-06 11
2214 0.46190659792613E-04 11
2215 0.85194029561067E-09 11
2216 -.30147170356411E-06 11
2217 0.25626592777412E-04 11
2218 -.27294471690391E-09 11
2219 -116911999.30448 11 1
2220 20702000792 .760 11 1
2221 -19548517.253335 11
2222 -48961.786425583 11
2223 8224946 .4473064 11
2224 -3422.0920883930 11
2225 17.260507499664 11
2226 -4159.1942930668 11

2227 -.53695898362788E-01 11
2228 0.21124533035838E-01 11
2229 -3.4758111999671 11

2230 0.37040986757764E-03 11

2231 -.72548521359208E-05 11

2232 0.12676479473598E-02 11

2233 -.33276602342639E-07 11

2234 0.20264295213287E-09 11 1
2235 -.34321706228840E-07 11 1
2236 -97662091.940232 11 1
2237 -17547.398707127 11

2238  4.1188522337990 11

2239 0.33673939625236E-02 11
2240 -.91990677263444E-06 11
2241 0.20981553537075E-10 11

OO0 O0O0OO0OO0OPrROOFrPROOFrRPROOPFRPROOFrRPOOPFRPOOFRLNOPFPOORLNOPRPOORLNOPRPOOR
OO0 O0OO0OO0OFrROOPFrRPROOFrRPROOPrRPROOPFRPROOFRPROONRPFPRORFRPROONRFPORFRPOONRFRPORPOONEPR
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Validated Maps as Taylor Series

In validated methods, use of first order is absolutely essential because of
wrapping effect.

e Zeroth Order: Moore, Kaucher-Miranker, many others
e First Order: Moore early 1960s, Eijgenraam
e ['irst Order, "good” asymptotics: Lohner 1986 7 AWA”

e Arbitrary Order by Taylor Models: Makino and Berz 1997 "COSY-VI”.
Shrink Wrapping, Blunting, Curvlinear Preconditioning

e Theoretical Foundation of "good” aysmptotics of AWA by Nedialkov and
Jackson: 1999(?)
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I
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(Also want “exp”, “sin” commute Little algebraic
etc: Banach Field) exactly! structure

I: Extracts Information
considered relevant



SET INCLUSIONS (INTERVALS)

(Interval Inclusion;
Equivalence Relation)

Real Number Set Floating Point
Intervals
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I
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C=A-B - ©) C|:A|®BI
I
_ _ Diagrams _ _
Little algebraic commute Little algebraic
structure exactly! structure

I: Extracts Information
considered relevant



Introduction

Taylor model (TM) methods were originally developed for a practical
problem from nonlinear dynamics, range bounding of normal form defect
functions.

e Functions consist of code lists of 10* to 10° terms
e Have about the worst imaginable cancellation problem
e Are obtained via validated integration of large initial condition boxes.

Originally nearly universally considered intractable by the community.
But ... a small challenge goes a long way towards generating new ideas!

Idea: represent all functional dependencies as a pair of a polynomial P
and a remainder bound [, introduce arithmetic, and a new ODE solver.
Obtain the following properties:

e The ability to provide enclosures of any function given by a finite com-
puter code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order (n + 1) of the width of the domain.

e The ability to alleviate the dependency problem in the calculation.

e The ability to scale favorable to higher dimensional problems.



FUNCTION ALGEBRA INCLUSIONS

(Inclusion in Taylor Model;
Equivalence Relation)
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Validated Maps as Taylor Series

In validated methods, use of first order is absolutely essential because of
wrapping effect.

e Zeroth Order: Moore, Kaucher-Miranker, many others
e First Order: Moore early 1960s, Eijgenraam
e ['irst Order, "good” asymptotics: Lohner 1986 7 AWA”

e Arbitrary Order by Taylor Models: Makino and Berz 1997 "COSY-VI”.
Shrink Wrapping, Blunting, Curvlinear Preconditioning

e Theoretical Foundation of "good” aysmptotics of AWA by Nedialkov and
Jackson: 1999(?)



The Henon Map

Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

Tpal =1 — Ozx% + Un
Yn+1 — ﬁxn

It can easily be seen that the motion is area preserving for |G| = 1.We

consider
a=24and f = —1,

and concentrate on initial boxes of the from (xg, yy) € (0.4, —0.4)+[—d, d]*.



Henon system, xn = 1-2.4*x"*2+y, yn = -X, the positions at each step
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Henon system, xn = 1-2.4*x"2+y, yn = -x, corner points (+-0.01) the first 5 steps
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Henon system, xn = 1-2.4*x"2+y, yn = -X, corner points (+-0.01) the first 120 steps
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Henon system, xn

= 1-2.4*x"2+y, yn = -X, NO=1, SW
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Definitions - Taylor Models and Operations

We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D C R’ — R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let zy be a point in D and P the
n-th order Taylor polynomial of f around z. Let I be an interval such that

f(z) € P(x —x¢) + 1 forall z € D.
Then we call the pair (P, I') an n-th order Taylor model of f around zy on D.

Definition (Addition and Multiplication) Let 715 = (P2, [12) be
n-th order Taylor models around z over the domain . We define

Ti+T=(P+ P, + 1)
Ty - T = (P, I1.0)
where P 5 is the part of the polynomial P - P, up to order n and
Lo=B(P)+B(P) - I+ B(PR) -1+ I - I

where P, is the part of the polynomial P, - P, of orders (n + 1) to 2n, and
B(P) denotes a bound of P on the domain D. We demand that B(P) is at
least as sharp as direct interval evaluation of P(x — z() on D.



Definitions - Taylor Model Intrinsics

Definition (Intrinsic Functions of Taylor Models) Let T' = (P, I)
be a Taylor model of order n over the v-dimensional domain D = |a, b|
around the point ;. We define intrinsic functions for the Taylor models by
performing various manipulations that will allow the computation of Taylor
models for the intrinsics from those of the arguments. In the following,
let f(x) € P(x — ) + I be any function in the Taylor model, and let
cr = f(x9), and f be defined by f(z) = f(x) — ¢s. Likewise we define P by
P(x —xy) = P(x — x9) — ¢y, so that (P, I) is a Taylor model for f. For the
various intrinsics, we proceed as follows.

Exponential. We first write

exp(f(x)) = exp (cf + f(2)) = exp(cy) - exp (f(2))
= xpley) {1+ Flo) + (0P -+ o)

1
K
@) e (- f@) |

where 0 < 6 < 1.



Definitions - Taylor Model Exponential, cont.

Taking £ > n, the part

expler) {1+ fla) 4 5 (F@)P 4+ (o)

is merely a polynomial of f, of which we can obtain the Taylor model via
Taylor model addition and multiplication. The remainder part of exp(f(x)),
the expression

exples) - o)™

(k i 1>!(f<x))k+1 exp (6 : f(:z:))} ,

will be bounded by an interval. First observe that since the Taylor polyno-
mial of f does not have a constant part, the (n + 1)-st through (k + 1)-st
powers of the Taylor model (P, I) of f will have vanishing polynomial part,
and thus so does the entire remainder part. The remainder bound interval
for the Lagrange remainder term




Definitions - Taylor Model Exponential, cont.

) e (0 F)

can be estimated because, for any z € D, P(x—xg) € B(P),and 0 < 6 < 1,
and so

exp(cy)

= - k41
(@) exp (8- f(2)) € (B(P)+1)" ]
x exp ([0,1] - (B(P)+1)).
The evaluation of the “exp” term is mere standard interval arithmetic. In

the actual implementation, one may choose k =n for simplicity, but it is
not a priori clear which value of £ would yield the sharpest enclosures.



Definitions - Taylor Model Arc Sine

Arcsine. Under the condition Vo € D, B(P(x — xo) + 1) C (—1,1),
using an addition formula for the arcsine, we re-write

arcsin( f(x)) = arcsin(cy) + arcsin (f(a:) /1 —ci—cp V11— (f(a:))Q) .

Utilizing that

g(x) Ef(:c)-w/l—c?f—cf-\/1—(f(:13))2

does not have a constant part, we have

ancsin(g(2) = 9(2) + 3(9(@)* + 5 (9(2))° + 5 (g(0)

; - (o) a0 - g(a),

where
arcsin’(a) = 1/v/1 — a2, arcsin”(a) = a/(1 — a2)3/2,

arcsin®(a) = (1 +242)/(1 — a®)*?, ...



Definitions - Taylor Model Arc Sine, Antiderivation

A recursive formula for the higher order derivatives of arcsin
- (k+2) _

arcsin a) =

is useful. Then, evaluating in Taylor model arithmetic yields the desired re-
sult, where again the terms involving 6 only produce interval contributions.

{(2k + 1)aarcsin®*V(a) + k% arcsin®™ (a)}

Antiderivation. We note that a Taylor model for the integral with
respect to variable ¢ of a function f can be obtained from the Taylor model
(P, I) of the function by merely integrating the part P, ; of order up to
n—1 of the polynomial, and bounding the n-th order into the new remainder
bound. Specifically, we have

9P T) - ( /O Py (a)dxi . (B(P— Py )+ 1) - (b — a@-)) |

Thus, given a Taylor model for a function f, the Taylor model intrinsic
functions produce a Taylor models for the composition of the respective
intrinsic with f. Furthermore, we have the following result.



TM Scaling Theorem

Theorem (Scaling Theorem) Let f, g € C"*(D) and (P, I1)
and (P, 1,,) be n-th order Taylor models for f and g around x; on
zp + |[—h,h]” C D. Let the remainder bounds Iy, and [, satisfy I;;=
O(h") and I,;,=0(h"™). Then the Taylor models (P4, Ir1,5) and
(Pf.g, Lr.41) for the sum and products of f and g obtained via addition and
multiplication of Taylor models satisfy

If+g,h — O(hn+1>, and If-g,h — O(hn+1>

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Pys), Iss),n) for s(f) obtained by the above definition
satisfies

Iy = O(R").

We say the Taylor model arithmetic has the (n+1)-st order scaling property.

Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof for
the intrinsics follows because all intrinsics are composed of binary operations
as well as an additional interval, the width of which scales at least with the
(n+1)-st power of a bound B of a function that scales at least linearly with

h.



Fundamental Theorem of TM Arithmetic

The scaling theorem states that a given function f can be approximated
by P with an error that scales with order (n + 1). Common mathematical
jargon. But in interval community, a related but different meaning of scaling
exists, namely the behavior of the overestimation of a given method to
determine the range of a function.

Theorem ( FTTMA, Fundamental Theorem of TM Arith-
metic) Let the function f: R"— R"be described by a multivariate Taylor
model Py + [y over the domain D C RY. Let the function g : R'— R be
given by a code list comprised of finitely many elementary operations and
intrinsic functions, and let g be defined over the range of the Taylor model
Pr,+1¢. Let P+ I be the Taylor model obtained by executing the code
list for g, beginning with the Taylor model Py + ;. Then P + I is a Taylor
model for g o f.

Furthermore, if the Taylor model of f has the (n + 1)-st order scaling
property, so does the resulting Taylor model for g.

Proof. Induction over code list.

Example: Consider f with f(x) = sin®(exp(x + 1)) + cos?(exp(x + 1)).
We know f(x) = 1, but validated methods don’t.



Implementation of TM Arithmetic

Validated Implementation of TM Arithmetic exists. The following points
are important

e Strict requirements for underlying FP arithmetic

e Taylor models require cutoff threshold (garbage collection)
e Coefficients remain FP, not intervals

e Package quite extensively tested by Corliss et al.

For practical considerations, the following is important:

e Need sparsity support
e Need efficient coeflicient addressing scheme

e About 50, 000 lines of code
e Language Independent Platform, coexistence in F77, C, F90, C++



TM Enclosure Theorem

Theorem (Taylor Model Enclosure Theorem) Let the function
J + R" — R” be contained within P; + Iy over the domain D C R". Let
the function ¢ : R — R be given by a code list comprised of finitely
many elementary operations and intrinsic functions, and let g be defined
over the range of an enclosure of Py, +1;. Let PP+ I be the result obtained
by executing the code list for g in admissible FP Taylor model arithmetic,
beginning with the Taylor model Py 4+ I;. Then P + I is an enclosure for
go f over D.

Proof The proof follows by induction over the code list of g from the
elementary properties of the Taylor model arithmetic.

Apparently the presence of the floating point errors entails that P is not
precisely the Taylor polynomial. In a similar fashion, also the scaling
property of the remainder bound in a rigorous sense is lost. However, these
properties of Taylor models are retained in an approximate fashion.



Important TM Algorithms

e Range Bounding (Evaluate f as TM, bound polynomial, add remain-
der bound)

e Quadrature (Evaluate f as TM, integrate polynomial and remainder
bound)

e Implicit Equations (Obtain TMs for implicit solutions of TM equa-
tions)

e Superconvergent Interval Newton Method (Application of Implicit
Equations)

e ODEs (Obtain TMs describing dependence of final coordinates on initial
coordinates)

e Implicit ODEs and DAEs

e Complex Arithmetic (Describe complex ranges as two-dimensional
TMs)
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A Simple 1D Example

Approximate the cos function by its power series to order 60:

Several nice properties:
1. Properties of the function are well known
2. Dependency increases with x from very small to very large

3. Periodicity allows the study of the same functional behavior with varying
amounts of dependency

4. Study at points with both non-stationary and stationary points is pos-
sible

Study results for expansion points o = n - 7w /4 for
n=15913and n =0,4,8,12.

For each of these points, domains are zg + [-27/,27/| for j =1, ..., 8.
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Implementation of TM Arithmetic

Validated Implementation of TM Arithmetic exists. The following points
are important

e Strict requirements for underlying FP arithmetic

e Taylor models require cutoff threshold (garbage collection)
e Coefficients remain FP, not intervals

e Package quite extensively tested by Corliss et al.

For practical considerations, the following is important:

e Need sparsity support
e Need efficient coeflicient addressing scheme

e About 50, 000 lines of code
e Language Independent Platform, coexistence in F77, C, F90, C++
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The Henon Map

Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

Tpal =1 — Ozx% + Un
Yn+1 — ﬁxn

It can easily be seen that the motion is area preserving for |G| = 1.We

consider
a=24and f = —1,

and concentrate on initial boxes of the from (xg, yy) € (0.4, —0.4)+[—d, d]*.



Henon system, xn = 1-2.4*x"*2+y, yn = -X, the positions at each step
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Henon system, xn = 1-2.4*x"2+y, yn = -x, corner points (+-0.01) the first 5 steps
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Henon system, xn

= 1-2.4*x"2+y, yn = -X, NO=1, SW
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Henon system, xn = 1-2.4*x"2+y, yn = -X, corner points (+-0.01) the first 120 steps
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Henon system, xn = 1-2.4*x"*2+y, yn = -x, NO=1, SW
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Henon system, xn = 1-2.4*x"2+y, yn = -x, NO=20, SW
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Rosenbrock’s “Banana’ Function

fla,y) =100 (y — 2°)° = (1 —x)*
Study on [—2,2] x |—2,2].
Assumes min 0 at (1, 1), but it is very difficult for gradient methods.

Picture from http://www.math.wm.edu/~buckaroo/classes/csci638/homework /project2.html



Nonvalidated Results of Rosenbrock’s Function

Using COSY’s true and tested default optimizers:

Starting point (X,Y)> (-1.2,1.0)

Optimizer #> 1 : Simplex

Number of steps> 251

F> 0.1711168421282399E-16

(X,Y)> (1.000000004115731 ,1.000000008272989 )

Optimizer #> 2 : LMDIF

Number of steps> 70424

F> 0.9124815296170133E-10

(X,Y)> (0.9999904485839599,0.9999809108990141)

Optimizer #> 3 : Simulated Annealing

Number of steps> 100003

F> 0.5106520406572324E-05

(X,Y)> (0.9977499955081044,0.9954840773134492)



Ordered LDL (Extended Cholesky) Decomposition

Given Quadratic Form with symmetric H
1
Q(x) :§th'H'I’—|—CL'$—|—b
We determine Ordered LDL Decomposition (L: lower diagonal with unit
diagonal, D: diagonal) as follows

1. Pre-sort rows and columns by the size of their diagonal elements

2. Successively execute conventional L'DL decomposition step in interval
arithmetic, beginning by representing every element of H by a thin interval;
in step u:

(a) TfI(D(4, 7)) >0proceed Holthemexttowland [dolumn.

(b)Ifu(D(4, 1)) <0 exchangeltowlandl¢olumn ¢[with[tow and[¢olumn
o[+ 1, oo + 2, ... [flalpositivelelementisfound,increment 2[and[repeat.

If none is found, stop.

Note:CorrectionMatrix(Inldasel0 € D(4, ), applysmall

correction C' to H, i.e. study H + C instead of H, such that all elements of
D are clearly positive or negative. |C| is lumped into the remainder bound
of the original problem.



Ordered LDL Decomposition - Result

Have obtained representation of H as LDL composition
P'HP = L'DL

e [irst p elements of D satisfy [(D(i,2)) > 0

e Remaining (n — p) elements of D will satisfy u(D(i,4)) < 0

Proposition: Sufficiently near a local minimizer, D will contain only pos-
itive elements. Furthermore, in the wider vicinity of the local minimizer,
the number of negative elements in D will decrease as the minimizer is ap-
proached.

Simply follows from continuity of the matrix D as a function of position



The QDB (Quadratic Dominated Bounder) Algorithm

1. Let u be an external cutoff. Initialize u = min(u, Q(C')). Initialize list
with all 3" surfaces for study:.

2. If no boxes are remaining, terminate. Otherwise select one surface .S of
highest dimension.

3.0n S, apply LDB. If a complete rejection is possible, strike S from the list
and proceed to step 2. If a partial rejection is possible, strike the respective
surfaces of S from the list and proceed to step 2.

. Determine the definiteness of the Hessian of () when restricted to S
If the Hessian is not p.d. strike S from the list and proceed to step 2.

If the Hessian is p.d., determine the corresponding critical point c.

It cis fully inside S, strike S and all surfaces of .S from the list, update u
= min(u, Q(c)),and proceed to step 2

8. If ¢ not inside .S, strike S. If certain components of ¢ lie between —1 and
+1, strike the corresponding surfaces and proceed to step 2



The QDB Algorithm - Properties

The QDB algorithm has the following properties.
1. The quadratic bounder QDB has the third order approximation property.

2. The effort of finding the minimum requires the study of at most 3" surfaces.

3. In the p.d. case, the computational effort requires at most the study of 2"
surfaces

4. Because of extensive box striking, in practice, the numbers of boxes to
study is usually much much less.



The QDB Algorithm - Properties

The QDB algorithm has the following properties.
1. The quadratic bounder QDB has the third order approximation property.

2. The effort of finding the minimum requires the study of at most 3" surfaces.

3. In the p.d. case, the computational effort requires at most the study of 2"
surfaces

4. Because of extensive box striking, in practice, the numbers of boxes to
study is usually much much less.

But[still, it is[desirablefohaveldomething[FASTER.



The QFB (Quadratic Fast Bounder) Algorithm

Let P + I be a given Taylor model. Idea. Decompose into two parts
P+1=(P—-Q)+I+Q and observe
(P+1)=1(P—-Q)+1(Q)+ 1)
Choose () such that

1. ) can be easily bounded from below
2. P — () is sufficiently simplified to allow bounding above given cutoft.
First possibility: Let H be p.d. part of P, set
Q=x2'Hx
Then [(Q)) = 0. Removes all second order parts of P (!) Better yet:

Qu, = (v — 20) H(x — )
Allows to manipulate linear part. Works for ANY x( in domain. Still

[(Q.,) = 0.

Which choices for xy are good?



The QFB Algorithm - Properties

Most critical case: near local minimizer, so H is the entire purely quadratic
part of P.

Theorem: If z; is the (unique) minimizer of quadratic part of P on the
domain of P + I, then the lower bound of the linear part of (P — @) is
zero. Furthermore, the lower bound of (P — @, ), when evaluated with plain
interval evaluation, is accurate to order 3 of the original domain box.

Proof: Follows readily from Kuhn-Tucker conditions. If z( inside, linear
part vanishes completely. Otherwise, wlog if i-th component of x( is at left
end, ¢-th partial there must be non-negative, so that we get non-negative
contribution.

Remark: The closer xj is to the minimizer, the closer we are to order 3
cutoft.

Algorithm: (Third Order Cutoff Test). Let ") be a sequence of
points that converges to the minimum =z of the convex quadratic part P In
step n, determine a bound of (P — @);,) by interval evaluation, and assess
whether the bound exceeds the cutoft threshold. If it does, reject the box and
terminate; if it does not, proceed to the next point ;1.



The QMLoc Algorithm

Tool to generate efficient sequence ™. Determine ”feasible descent direc-
tion”
)

—gg if :r;z(-n) inside
9@‘(”) = ¢ min (—gff, 0) if xl(n) on right
max (—gﬁ, 0) if a:ﬁ”) on left
\ 1

Now move in direction of ¢!™ until we hit box or quadratic minimum along
line. Very fast to do, can change set of active constraints very quickly.
Result: Cheap iterative third order cutoftf.



Use of QFB - Example

Let fi(z) =32"- A,-x— A, (a-x)+ia' - A, - a with

2 3 ...3
e[
-1 -1 ...2

known to be p.d. with minimum a. Choose a random vector a, and 5¥ boxes
around it. Check box rejection with Interval evaluation, Centered Form, QFB.
Output average number of QFB iterations.



Use of QFB - Example

Let fi(z) =32"- A,-x— A, (a-x)+ia' - A, - a with

2 3 ...3
e[
-1 -1 ...2

known to be p.d. with minimum a. Choose a random vector a, and 5¥ boxes
around it. Check box rejection with Interval evaluation, Centered Form, QFB.
Output average number of QFB iterations.

v N=5"v NI NC NQFB Avg. Iter
2 25 25 8 1 1.1
4 625 625 308 1 0.31



Use of QFB - Example

Let fi(z) =32"- A,-x— A, (a-x)+ia' - A, - a with

2 3 ...3
e[
-1 -1 ...2

known to be p.d. with minimum a. Choose a random vector a, and 5¥ boxes
around it. Check box rejection with Interval evaluation, Centered Form, QFB.
Output average number of QFB iterations.

v N=5"v NI NC NQFB Avg. Iter
2 25 25 8 1 1.1
4 625 625 308 1 0.31
6 15,625 15,625 12,434 1 0.31
8 390,625 390,625 372,376 1 0.43
10 9,765,625 9,765,625 9,622,750 1 0.55



Moore’s Simple 1D Function

flx)=1+2"—2"
Study on [0, 1]. Trivial-looking, but dependency and high order.
Assumes shallow min at 0.8.
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Box Step Number

COSY-GO with naive IN with mid point test. 1D. f=x"5-x"4+1
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COSY-GO with Centered Form with mid point test. 1D. f=x"5-x"4+1
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Beale’s 2D and 4D Function

oy, m9) = (15 — 21(1 — 1)) 4+(2.25 — 21(1 — 23)) +(2.625 — 2,(1 — 23))°

Domain [—4.5,4.5]%. Minimum value 0 at (3,0.5).

Little dependency, but tricky very shallow behavior.
Generalization to 4D:

f(x1, k9, k3, 4) = (15—:1:1(1—x2)) (2 25 — 1(1 — 3) )
+(1—|—I3(1—£L’4)) (34—1'31—3:2)
+ (B34 a1 (1 —xy) + (9+x11—xi)
+ (0.5 — m3(1 — 29))° + (0.75 — 23(1 — 23)
Domain [0, 4]%. Minimum value 0 at (3, 0.5, 1, 2)

4+ (2625 — (1 — a3))

(7 + 23(1 — xi))2
(21 + z1(1 — xi))Q
1)+ (0.875 — 25(1 — a3))

_1_
_|_
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COSY-GO with IN. The Beale function




COSY-GO with CF. The Beale function




COSY-GO with LDB/QFB. The Beale function
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COSY-GO. The Beale function. Remaining Boxes ( < 1e-6 ) around (3,0.5)
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COSY-GO The Beale Function: Number of Boxes -- CF
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Lennard-Jones Potentials

Ensemble of n particles interacting pointwise with potentials

1 1

VLJ(T):ﬁ_Z.E

T S SO

Has very shallow minimum of —1 at » = 0. Very hard to Taylor expand.
Extremely wide range of function values: V7 ;(0.5) & 4000, V77(2) ~ 0.03

V=2 Vislri—r)

1<J

Study n = 3, 4, 5. Pop quiz: What do resulting molecules look like?
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COSY-GO Lennard-Jones potential for 4 molecules: Cutoff Value -- LDB/QFB
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COSY-GO Lennard-Jones potential for 5 molecules: Number of Boxes -- LDB/QFB
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COSY-GO Lennard-Jones potential for 5 molecules: Cutoff Value -- LDB/QFB
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Lennard-Jones Potentials - Results

Find minimum with COSY-GO and Globsol.
Use TMs of Order 5, QFB&LFEFB.
Use Globsol in default mode.

Problem CPU-time needed Max list

n=4, COSY 89 sec 2,866
n=5, COSY 1,550 sec 6,321

Total # of Boxes

15,655
69,001



COSY-GO Lennard-Jones potential for 4 molecules: Number of Boxes -- LDB/QFB
3000 . ! . . .

ITo Be Studiled

2500

2000

1500

Number

1000

500

]

0 2000 4000 6000 8000 10000 12000 14000 16000
Step (Number of Boxes Studied)



Lennard-Jones Potentials - Results

Find minimum with COSY-GO and Globsol.
Use TMs of Order 5, QFB&LFEFB.
Use Globsol in default mode.

Problem CPU-time needed Max list Total # of Boxes
n=4, COSY 89 sec 2,866 15,655
n=5, COSY 1,550 sec 6,321 69,001
n=4, Globsol 5,833 sec 243,911

n=5,[Globsoll! >60,530Lsec
(not finished yet)



The Higher Order Bounder

After removing first and second order part of polynomial, we
have

Ly g+ Pt ),

Goal: want to find nonlinear polynomial 7 - R” — R such that
with i = (¥ — Z), we have

> = 1_} . ~ .
7 ()" HT () =0 57 Hi + Po (3).

DO |



The Higher Order Bounder Algorithm

Will do this to arbitrary order, in an order-by-order fashion. Let
7. (77) denote the part of 7 (i) consisting of the terms of the m-th
order, so that

—_

n_

TH=Y T, Let Teu () = > T ().
0 [=0

3
I

Note 77 (7) = . Let us now define a sequence of real-valued
polynomial functions S, () by

P LT ,
Sm (§) = P=2 (§) — §T§m—1 ()" HI<p1 (§) form=1,2,...,n.



The Higher Order Bounder 11

Assume we have determined 7- <m—1 - We want to determine T
Note that then, S, (%) has only terms of order m + 1 and higher.
We demand

~ N 1 = — = — T — — - —
0=t Por () = 5 (Ten s )+ T @) H (Tens )+ T ()
- 1o . S y
=m+1 P>2 (y) ) <m-—1 (?J)T H7<p (y)

o Tﬁm—l (y_)T Hfm (y_) o
—m-+1 Sm—l (?7) — fﬁm—l (y)T H m (g)
—m-+1 Sm—l (g) o gTHTm <

This establishes a requirement for the sought 7,, (7/) .Now note
that each term in S,,_1 contains at least one of the variables

YL, vy Yp COMPTISING i = (Y1, -.v, Yn )-



The Higher Order Bounder 111
Now factor out one such term in term in S,,,_1, and write
Sna=i 1 -Sn
Then we can satisfy condition on 7, (7) by picking

~

,fm (g) — H_l Syt



Example: Smooth Function in 6 Dimensions
Let

1 1
f(T) = —exp (—ig (:E’)) + e (—g (%)) for & € B;, where

9
v 1 v
7) = RZ)? SN (RD), | =1
o0 (L) + (o (§3cm9) 1)
with a v X v rotation matrix R. Has resemblance to a linear

combination of two Gaussian functions.

Choose boxes |
Bj=a+277 . [-1,1]
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Figure 1: Logarithmic plot of the measurements of an upper bound ¢ of the

overestimation in [ (f) with different orders n = 3,...,9 of Taylor models.
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Figure 2: Plot of the empirical approximation order (EAO) for different orders
n=3,...,9 of Taylor model representations.

25



L Ca
—5—.
—6—

3RD ORDER TM
4TH ORDER TM
5TH ORDER TM
6TH ORDER TM

— 8 — 8TH ORDER T™M
—8— 9TH ORDER TM

— # —7THORDERTM | |

Figure 3: Logarithmic plot of the size w (I) of the remainder bounds of Taylor
models of different orders n = 3,...,9.
11 T
-3 .- 3RD ORDER TM
-4 4TH ORDER TM
10— 9 —5—5THORDERTM | |
—6— " 6TH ORDER TM
— # — 7TH ORDER T™M
— 8 — 8TH ORDER T™M
9 — - - - - — 8 —8&— 9TH ORDER TM A
gb------ Fmmm oo 7 1
E
S e m e 6 1
o
<
w
T T TE 5 —————5 R
b 4ot
Shor G, Bereerrenniniis, B, y
i e 3 s 3. 4
3 1 1 1 1
1 2 3 4 5 6
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Quadratic Pruning - The Idea

Extract a convex quadratic part P, of Taylor model, write

f(x) € Py(x) + R(z) + [ where

1
Py(x) :§xt-H-x

Want to confine the region Py(z) < a with a > 0, by an interval box
|—Zm, Tp] With z,, > 0.

Because of positive definiteness and convexity, this region is inside a
closed ellipsoidal contour surface P(z) = a. The optimal confin-
ing interval box touches such a region at each box side surface tangentially,
so the condition to find z,, is, for each dimensional direction, V f is normal
to the corresponding box surface, namely for determining x,,., the k-th
component of z,,,

(VP); =0 for Vi # k.



Quadratic Pruning - The Algorithm I

WLOG, choose k = n, where n is the dimensionality of x. The condition
for 1 # n is
(H - x); =0 for Vi # n.
Denote the (n — 1) dimensional system of H and x, obtained by removing

the n-th components from H and z, by H and Z. Using these, (can be
expressed as

~

(H - I’)Z — (H . f)l + h@',nl'n = 0.

where
h1,1 h1,2 hl,n—l L1 hl,n
S IR A I R PR
hl,n—l hQ,n—l hn—l,n—l Lnp—1 hn—l,n

Combining all the components, we have
H-%+z,h, =0,

Thus ) .
T=—H' h,x,.



Quadratic Pruning - The Algorithm II

Now, under this condition, the function P is simplified as

1 1
Po=-2'""H-2=-x,H- 1),
% 2
2 b = Bl H™ Ry

— —[L‘n
2

which contains only x, among all the components of x. Here, the last ex-
pression is derived as

(H -x), = ﬁfb - T4 Ry Xy = iL% : (—H_l : hnazn) + AT,

Demand the function value to be a when z,, = x,,,. From above, such z,,,
can be determined as




Quadratic Pruning - Example 1

ponaet-3on (12) 3

Let us demand the pruning value a = 1. We have

xm\/ \[ ym\/2—0}10

Consider




Quadratic Pruning - Example 11

The next example function is created by rotating the above f(x,y) by
30°. The function is now

T, V3 5, 1 1 3 T

Again, we demand a = 1. Using the formula, at this time, we obtain x,,
and y,, as

2 5 2

2.1 \ﬁ
xm: — —,
_(_ﬁ .2.(_£) 8

-
NS N |

@

As expected, x,, is larger and v, is smaller, and the area size of the interval
box is larger.
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Some General Thoughts about Rigorous Par-
allel Optimization

1. Performance gains in modern computing are gained through
multi-processor architectures, not increased clock speed and
more efficient microcode.

2. While the global optimization task does not parallelize trivially,
with due care it is manageable

Caveats:

1. Communication mode, in particular for large numbers of proces-
sors - point to point, master - slave, common meeting?

2. Load balancing, in particular with many processors and slow
connections



Key Features and Algorithms of COSY-GO

e List management of boxes not yet determined to not contain the global
minimizer. Loading a new box. Discarding a box with range above
the current threshold value. Splitting a box with range not above the
threshold value for further analysis. Storing a box smaller than the
specified size.

e Application of a series of bounding schemes, starting from mere interval
arithmetic to naive Taylor model bounding, LDB, then QFB. A higher
bounding scheme is executed only if all the lower schemes fail.

e Update of the threshold cutoff value via various schemes. It includes
upper bound estimates of the local minimum by corresponding bounding
schemes, the mid point estimate, global estimates based on local behavior
of function using gradient line search and convex quadratic form.

o [Box[sizelreductionusiig L.DB QPB.

e Resulting data is available in various levels including graphics output.



COSY-GO in Parallel Environment

Design aspects of COSY-GO-P

1. Utilize MPI and be standard. This is done with a COSY
language construct called PLOOP, a parallel loop with var-
ious types inter-processor updates upon conclusion. Can be
nested.

2. Should scale from for different numbers of processors

(a) multiple cores in a chip
(b) large clusters with thousands of processors

3. Should scale for different connection speeds

(a) extremely fast interconnect (multiple cores in one chip)

(b) very fast (a few cores in a "node" with a nearly bus-like
interconnect)

(c) fast (specialized network for parallel use, at least Gigabit)

(d) slow (grid-based systems - geographicly dispersed, relying on
standard Internet)



Basic Ideas of the COSY-GQO Parallel Envi-
ronment

1. List Management: Each processor has two lists:

(a) Short List of large boxes, shared with other processors
(b) A section of Short List is pre-allocated to each processor.

(c) Long List of regular boxes owned by each processor.
)

(d) Long List is kept in moderately strict order of difficulty.
Achieved by selection strategy favoring newer boxes

2. Communication Concept

(a) Processors communicate in sheduled meeting mode after
pre-determined fixed time interval 7,,,.

(b) Time interval T, is determined by trial and error for each
environment under consideration. Single node: fraction of

second, Berkeley NERSC cluster (76000 processors): 1-2
minutes, Grid systems: fractions of hours.



What Happens in a Meeting

1. Assess status. Gather short data from each processor, scat-
ter this information to all others. Cutoff updates, number of
remaining large boxes and small boxes

2. Processing of results. Global cutoff is updated; it is deter-
mined if we can stop code

3. Processing of status. Each processor simultaneously iden-
tifies

(a) how many boxes N, are needed to replenish Short List
(b) Let N, = N, /Ny
4. Load balancing.

(a) Each processor uploads its IV, largest boxes, if available, to
the Short List

(b) The Short List is randomized, so that the sections allocated
to each processor are roughly of similar complexity



What Happens Between Meetings

1. Each processor splits its time between

(a) working on its Long List of boxes. For each box, perform
a sequence of tests: interval evaluation rejection test; Taylor

model evaluation: LDB, QFB bounders, Gradient-based box
rejection with Gradient Taylor models

(b) performing non-rigorous global search (currently via genetic
algorithm) in its assigned search space of global boxes, as
well as neighboring global boxes

2. If Long List of boxes is exhausted, retrieve a box from the
processor’s section on the Short List

3. If processor’s section on Short List is exhausted, continue to
perform non-rigorous global search as in 1b.

4. After appropriate time, join next meeting.
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Normal Form Methods

Iterative order-by-order coordinate transfomation to simplify dy-
namics around a fixed point.
Result: Except for resonances, up to order n,

e Elliptic case \;;1 = \;: spiral motion in (\;, A\;11) plane

e Elliptic unity case A\;;; = A; and |\;| = 1: circular motion,
radius-dependent rotation frequency

e Hyperbolic case ()\; real) motion along ¢é; axis, expanded or
contracted by \;

Practial use:

e Can be performed rigorously in Taylor model arithmetic

e Implemented to arbitrary order in arbitrarily many variables in
COSY INFINITY



The Normal Form Defect Function

e Extreme cancellation; one of the reasons TM methods were invented
e Six-dimensional problem from dynamical systems theory

e Describes invariance defects of a particle accelerator

e Essentially composition of three tenth order polynomials

e The function vanishes identically to order ten

e Study for a- (1,1,1,1,1,1) for a = .1 and a = .2

e Interesting Speed observation: on same machine,

* one CF in INTLAB takes 45 minutes
* one TM of order 7 takes 10 seconds

3 2
fa(z1, .., 6) = Z (\/9321 + 3 — \/5532'—1 + 5’7%@)

1=1
where g: ﬁl (ﬁg (ﬁg(f)))
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GlobSol Results

For the computations, GlobSol’s maximum list size was changed to 10°,
and the CPU limit was set to 10 days. All other parameters affecting the
performance of GlobSol were left at their default values.

Dimension CPU-time needed Max list Total # of Boxes

18810 sec 4733
>562896 sec (not finished yet)
>259200 sec (could not finish) 63446 (remaining)
> 86400 sec (could not finish) 21306 (remaining)
not attempted

o O W

We observe that in this example, COSY outperforms GlobSol by many
orders of magnitude. However, we are not completely sure if a different
choice of parameters for GlobSol could result in better performance.



COSY-GO Results

Tolerance on the sharpness of the resulting minimum is 107°.For the
evaluation of the objective function, Taylor models of order 5 were used.
For the range bounding of the Taylor models, Makino’s LDB with domain
reduction was being used.

Dimension CPU-time needed Max list Total # of Boxes

2 5.747071 sec 11 31
3 38.48828 sec 44 172
4 346.8604 sec 357 989
5 3970.746 sec 2248 6641
6 57841.94 sec 17241 49821



: ; r, =5:10%
£ 10™ ; P r,=5:10%

0 %

Fig. 9. Projection of the normal form defect function. Dependence on two angle
variables for the fixed radii 7 =7y =5-107%

Region Boxes studied | CPU-time | Bound Transversal Iterations
[0.2,0.4] - 107 | 82,930 30,603 sec | 0.859- 10713 | 2.3283 - 108

0.4,0.6] - 1074 | 82,626 30,603 sec | 0.587 - 10712 | 3.4072- 107

[

[0.6,0.9] - 10~ | 64,131 14,441 sec | 0.616 - 10711 | 4.8701 - 108

[0.9,1.2] - 10~% | 73,701 13,501 sec | 0.372-10719 | 8.0645 - 10°
[1.2,1.5]-10~% | 106,929 24,304 sec | 0.144-107° | 2.0833-10°
[1.5,1.8]-10~* | 111,391 26,103 sec | 0.314-107% | 0.95541 - 10°

Table 8

Global bounds obtained for six radial regions in normal form Space for the Tevatron.
Also computed are the guaranteed minimum transversal iterations.
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The Use of Schauder’s Theorem

Re-write differential equation as integral equation
t
F(t) = 7o + / F(r(t"),t") dt’.
Lo
Now introduce the operator

A COto, t1] — CPlto, t4]

on space of continuous functions via

t
A (f) (t) = 7 +/ Ia (f(t’),t’) dt'
Lo
Then the solution of ODE is transformed to a fixed-point problem on space
of continuous functions
= A(r).

Theorem (Schauder): Let A be a continuous operator on the Banach
Space X. Let M C X be compact and convex, and let A(M) C M. Then
A has a fixed point in M, i.e. there is an ¥ € M such that A(T) = 7.



Satisfying Requirements of the Schauder Theorem

Here, X = (V° to, t1], Banach space of continuous functions on [ty t1],
equipped with maximum norm. The integral operator A is continuous. The
strategy to apply Schauder’s Fixed Point Theorem consists of the following
steps:

1. Determine family Y of subsets of X, the Schauder Candidate Sets. Each
set in Y should be compact and convex, it should be contained in suitable
Taylor model, and its image under A should be in Y.

2. Using RDA, determine initial set M, € Y that satisfies A(M,) C M.
Then last requirement of Schauder is satisfied, and M contains solution.

3. Iteratively generate M; = A(M;_;). Each M, also satisfies A(M;) C M;
and we have M; D M, D... Continue until size stabilizes sufficiently.



Schauder Candidate Sets

As first step, it is necessary to establish a family of sets Y from which to
draw candidates for M. Let (P + I) be a Taylor model depending on time
as well as the initial condition 7. Then define the associated set Mz, i as
follows:

Mg,
Flto
g

"[to, t1]; and for 7€ Mz, ;:

L S Ql

r¢
)
) S P—F[Vt S [to,tl] V7o

[7(t") — 7(t")| < K|t — 7|Vt € [to, t1] V7o
In the last condition, £ is a bound for P , which exists because F is con-
tinuous and the solutions can cover only finite range over interval [ty 1]
The last condition means that all ¥ € M5z, 7 are uniformly Lipschitz with

Pii
constant k. Define the candidate set Y as

Y = U P+I



Convexity, Compactness, Invariance of Candidate Sets

Let M €Y. Then M is convex, because

fl,fQEMi
a1+ (1 — a)¥y € M VYa € |0, 1]

Furthermore, M is compact, i.e. any sequence in M has a clusterpoint in
M. To see this, let (7,,) be a sequence of functions in M.Then by definition of
M, () is uniformly Lipschitz, and thus uniformly equicontinuous. (%)) is
also uniformly bounded, and hence according to the Ascoli-Arzela Theorem,
has a uniformly convergent subsequence. Since the ,, are continuous, so is
the limit ©* of this subsequence, and since M is closed, the limit z* is in
M.

Finally, A maps Y into itself, and the uniform Lipschitzness follows be-

cause F' is bounded by k.



Satisfying Inclusion with Taylor Models

The only remaining requirements for Schauder’s theorem is to find a Tay-
lor model P + I such that
AP+I)CP+1.
But this condition can be checked with Taylor Models.
Toﬁsucceegi with inclusion requirement depen(is on finding suitable choice
for P and /. Furthermore, it is desirable that I be tight.

Both benefit from the choice of a polynomial P that is already ”close” to
the true solution of the ODE.



The Polynomial of the Self-Including Set

Attempt sets M* of the form

]\4>I< = Mﬁ*+f* Where

ﬁ* — Mn(”?()at))

the n-th order Taylor expansion of the flow of the ODE. It is to be expected
that I* can be chosen smaller and smaller as order n of P* increases.

This requires knowledge of nth order flow M, (7, t), including time de-
pendence. It can be obtained by iterating in polynomial arithmetic, or
Taylor models without treatment of a remainder. To this end, one chooses
an initial function M. (7,t) = Z, where 7 is the identity function, and
then iteratively determines

This process converges to the exact result M,, in exactly n steps.



The Remainder of the Self-Including Set

Now try to find I* such that
AM, +I") c M, + I*,

the Schauder inclusion requirement. Suitable choice for I requires experi-
menting, but is greatly simplified by the observation

I 5 1 = A(M,,(7,t) + [0,0]) — M (7, t).

Evaluating the right hand side in RDA yields a lower bound for I*, and a
benchmark for the size to be expected. Now iteratively try

k) — ok . Jl0)
until computational inclusion is found, i.e.

AM, (7, t) + TWY € M, (7, ¢) + T,



Iterative Refinement of the Self-Including Set

Once computational inclusion has been determined, solution of ODE is
known to be contained in the Taylor model M,,(7,¢) + ). Set I;;) = I™;
since the solution is a fixed point of A, it is even contained in

AR(M, (7, 1) + I y)) for all k.
Furthermore, the iterates of A are shrinking in size, i.e.
AF(M, (7, t) + T1y)) € AFY ML (7 t) + Ty) Yk

So the width of the remainder bound of the flow can be decreased by iter-
atively determining

— —

M (7, 1) + Ly = AML(T, 1) + I_1y),

until no further significant decrease in size is achieved. As a result,

—

Mn(??, t) + [(k)
is the desired sharp inclusion of the flow of the original ODE.



The Volterra Equation

Describe dynamics of two conflicting populations

dx
= 221(1 — x9), d_t2 = —x9(1 — 1)

diy

dt

Interested in initial condition

zo1 € 1+ [—0.05,0.05], xg9 € 34 [—0.05,0.05] at t = 0.

Satisfies constraint condition

2%’2 —

Clxy, 19) = xyxie 1~ Constant
’ 2
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Integration of the Volterra eq. COSY-VI and AWA
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Solution Enclosing Box Width of Preconditioned TM Integrationl
during Forward-Backward Cycles of the Volterra Eq.L]

with Shrink Wrapping
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Solution Enclosing Box Width of Preconditioned TM Integration
during Forward-Backward Cycles of the Volterra Eq.
with Shrink Wrapping


Long-Term Behavior - Floating Point Case

Consider very simple two-state dynamical system:
Lp+1 = A - Ty
Tnro = (1/a) - Tpi

with initial condition zy = 1. Study the behavior for specific choices of a in
both single and double precision arithmetic on

e '77 compiler by DEC, now distributed as {77 Digital Visual Fortran
Version 5.0 as part of Microsoft Fortran PowerStation

e 77 compiler distributed by GNU; we specifically tested Version V0.5.24.

Choose a; = 3 for single precision, as; = 0.9999999901608054 for double
precision
In both cases, we observe exponential growth of the error!
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Long-Term Behavior - Validated Case

Consider very simple two-state dynamical system:

$n+1:xn\/1+x%+yq21 andyn+1:yn\/1+$72z+y%

2
Tpio = Tpyt - and
\/1 +/1+4(22  +92,,)

2
Yn+2 = Yn+41 - :
" " \/1 +/ 1+ 40 +yn)

Simple arithmetic shows that, also here we have (12, Yni2) = (Tn, Yn)-
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Shrink Wrapping I

A method to remove the remainder bound of a Taylor model by increasing
the polynomial part.

After the kth step of the integration, the region occupied by the final
variables is given by

A= Iy + U Mo(f()),
7B

where X are the initial variables, B is the original box of initial conditions,
M is the polynomial part of the Taylor model, and Iy is the remainder
bound interval. M, is scaled such that the original box B is unity, i.e.
B= —1,1]". I accounts for the local approximation error of the expansion
in time carried out in the kth step as well as floating point errors and
potentially other accumulated errors from previous steps; it is usually very

small. Try to “absorb” the small remainder interval into a set very similar
to the first part via

AC A =T+ | ) M),
ngé

where M is a slightly modified polynomial, and I_ék is significantly reduced



Shrink Wrapping 11

First, extract the constant part ap and hnear part My - 7 of My and de-
termine a floating point approximation M of My. If ODEs admits unique
solutions, attempting to invert the linear transformation M, in a floating
point environement will very hkely succeed.

After approx1mate inverse M has been determined, apply linear trans-
formation M, - (Z —dy) from the left to the Taylor model M (Z) + I, that
describes the current flow. As a result, the constant part of the resulting
Taylor model now vanishes, and its linear part is near identity. We write
the resulting Taylor model as

M+T=T+S+1,

where 7 is the identity, and the function S contains the nonlinear parts of
the resulting Taylor model as well as some small linear corrections due to
the error in inversion. We include I into the interval box d - [—1, 1]*, where
d is a small number.



Shrink Wrapping 111

alan
K - Jx

Figure 1: The region described by the Taylor model Mg + fo is transformed to be normalized as Z + S + f, where 7 is the identity.

Definition (Shrinkability) Let M =7+ S +7, where S is a polyno-

mial and I is a small interval. We include I into the interval box d - [—1, 1]".
We pick numbers s and ¢ satisfying

s> |S(@)|VieB, 1<i<uw,
dS; . .

t > VereB, 1<1,j<w.
81']'

We call a map M shrinkable if (1 — vt) > 0 and (1 — s) > 0;



Shrink Wrapping IV

Then we define ¢, the so-called shrink wrap factor, as
1

I=(w=1t)-(1-s)

The bounds s and ¢ for the polynomials S; and 0S;/0z; can be computed
by interval evaluation. The factor ¢ will prove to be a factor by which
the Taylor polynomial Z + & has to be multiplied in order to absorb the
remainder bound interval.

qg=1+d-

Remark (Typical values for ¢) To put the various numbers in per-
spective, in the case of the verified integration of the Asteroid 1997 XF'11,
we typically have d = 1077, s = 107*, t = 107%, and thus ¢ ~ 1 + 107", It
is interesting to note that the values for s and ¢ are determined by the non-
linearity in the problem at hand, while in the absence of “noise” terms in
the ODESs described by intervals, the value of d is determined mostly by the
accuracy of the arithmetic. Rough estimates of the expected performance
in quadruple precision arithmetic indicate that with an accompanying de-
crease in step size, if desired d can be decreased below 107!, resulting in
qg~1+10"1,



Shrink Wrapping V

In order to proceed, we need some estimates relating image distances to
origin distances.

Lemma. Let M be a map as above, let ||-|| denote the max norm, and
let (1 — vt) > 0. Then we have

M(Z) = Mi(E)| <D 10+t |2 — =],
J

[M(Z) = M(Z)|| < (1 +w0t)-||T -7, and

|M(Z) = M(@D)|| = (1—wt)-||7— 7.

Proof. For the proof of the first assertion, we observe that all (v —

1) partials of OM;/0z; for j # ¢ are bounded in magnitude by ¢, while
OM;/0x; is bounded in magnitude by 1+¢; thus the first statement follows
from the intermediate value theorem. For the second assertion, we trivially




observe

H/\/l.f) M(% H—max‘./\/l (Z) — M,( f)‘
§m§XZ|5¢,j+t\ ) — ;]

J
< (1+4wt) ||z —2.

For the proof of the third assertion, which is more involved, let k& be such
that Hf— a":’H = |z, — x|, and wlog let T — x;; > 0. Then we have

R e e

= |(L+ o) (@ — z) + YT — ) (1)
jk

for some set of ¢; with |¢;| <t Vj = 1,...,v, according to the mean value




theorem. Now observe that for any such set of c¢;,

Y eil@i—a)| < el Nz —al < | D el | e —

JF#k J7#k JF#k

< (U—l) t |£f]€—l'k|

< (1—t> \a‘:k—xk\ < (1+ck)(§:k—xk).
Hence the left term in the right hand absolute value in (1) dominates the
right term for any set of ¢;, and we thus have

(14 e (@ — ) + ) (@ — )
J7k
Z(l—t a:k—:r;k Zt ‘l']
J#k
> (1 — If)(fk — ZEk) — (U — 1) t ([Z“k — ZEk)
= (1 —vt)(Z — xp) = (1 — vt) Hj

which completes the proof.




Shrink Wrapping VI

Theorem (Shrink Wrapping) Let M = 7 + S(&), where Z is the
identity. Let I = d-|—1,1]", and
R=T+| M@
7eB
be the set sum of the interval I = [—d,d]" and the range of M over the
original domain box B. So R is the range enclosure of the flow of the ODE

over the interval B provided by the Taylor model. Let g be the shrink wrap
factor of M; then we have

R c (JaM)(7),
7eB
and hence multiplying M with the number ¢ allows to set the remainder
bound to zero.

Proof. Let 1 < i < v be given. We note that because OM;/dx; > 1—t >
0, M, increases monotonically with x;. Consider now the (v—1) dimensional
surface set (21, ..., x,) with ; = 1 fixed. Pickaset of z; € [—1,1], 7 # i. We
want to study how far the set R = I+ = M(Z) can extend beyond the
surface in direction i at the surface point ¥ = M(x1, ..., x;_1, 1, Tiv1, ooy Tyy)-



Let y; be the i-th component of . The i-th components of the set 1 + I
apparently extend beyond y; by d. However, it is obvious that R can extend
further than that beyond y;. In fact, for any other y with 1y, —yi| <d for

j < i, there are points in § + I with all but the i-th component equal to
those of 4. On the other hand, any § with |j; — y;| > d for some j # i can

not have a point in y + [ with all but the i-th component matching those
of 1. So at the point y;, the set R can extend to

ri(y) = d+ Sup Yi-
{J| ly;—y;|<d (j#i)}

We shall now find a bound for r;(7/). First we observe that because of the
monotonicity of M;, we can restrict the search to the case with x; = 1. We
now project to an (v — 1) dimensional subspace by fixing x; = 1 and by
removing the i-th component M,. We denote the resulting map by M.
and similarly denote all (v — 1) dimensional variables with the superscript
CC( i)?? .

We observe that with the function M., also the function M is shrinkable
according to the definition, with factors s and ¢ inherited from M. Appar-
ently the condition on ¢ in the definition of r;(¢/) entails that in the (v — 1)
dimensional subspace, ||7") — 71| < d. Let £ and %) be the (v — 1) di-



y+I
. y
y+l
y
K/ |
- /y' — i
i d ri(?)

Figure 2: A
: At the poi
point y;, the set R = I + ... 5 M(Z)
scB ) can extend t
o 7i(9).



mensional pre-images of §') and 7"), respectively; because ||7") — 717|| < d,
we have according to the above lemma that

- d
—1—(v—1)¢t
which entails that also in the original space we have |7; — z;| < d/(1—(v—
1)t) for j # i. Hence we can bound r;(%) via
ri(y) < d+ sup M;(Z).
{2 |7j—ay|<d/(1=(v=1)t)

(j#i), vi=T;=1}
We now invoke the first statement of the lemma for the case of 7, T satisfying
7, — x| <d/(1—(v—1)t) (j #1), ;i = T; = 1. The last condition implies
that the term involving (6;; + ¢) does not contribute, and we thus have
IM;(Z) — M;(Z)| < (v —1)t-d/(1 — (v—1)t), and altogether

20) _ (i)

d-(v—1)t
i) <y +d
rild) <yt Jr1—(’0—1)t
1
— g+ d- .
i 1 —(v—1)t

We observe that the second term in the last expression is independent of
i. Hence we have shown that the “band” around | J._z M(Z) generated by



the addition of I never extends more than d/(1 — (v — 1)¢) in any direction.

To complete the proof, we observe that because of the bound s on S, the
box (1—s)[—1, 1]" lies entirely in the range of M. Thus multiplying the map
M with any factor ¢ > 1 entails that the edges of the box (1 — s)[—1,1]"
move out by the amount (1 — s)(¢ — 1) in all directions. Since the box is
entirely inside the range of M, this also means that the border of the range
of M moves out by at least the same amount in any direction ¢. Thus

choosing ¢ as
1

I=(@=1t)-(1-5s)

q=1+d-

assures that

U(q/\/l) O R

—

reB
as advertised.



Shrink Wrapping VII

Let us consider the practical limiations of the method; apparently the
measures of the nonlinearities s and ¢ must not become too large

Remark (Limitations of shrink wrapping) Apparently the shrink
wrap method discussed above has the following limitations

Remark 1 1. The measures of nonlinearities s and t must not become too
large

2. The application of the tnverse of the linear part should not lead to large
increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be cov-
ered by the Taylor model, and it will thus happen only in extreme cases.
Furthermore, in practice the case of s and ¢ becoming large is connected
to also having accumulated a large remainder bound, since the remainder
bounds are calculated from the bounds of the various orders of s. In the
light of this, not much additional harm is done by removing the offending
s into the remainder bound and create a linearized Taylor model.

Definition (Blunting of an Ill-Conditioned Matrix)

Tet A be a regular matrix that is potentially ill-conditioned and ¢ =
(q1, -.-qn) & vector with ¢; > 0. Arrange the column vectors d; of A by size.



Let ¢; be the familiar orthonormal vectors obtained through the Gram-
Schmidt procedure, i.e.

1—1
73— > & (@-&)
k=1

€, =

1—1
- > & (@-&)
k=1

We form vectors I;Z via ~

bi = d; + gi€;
and assemble them columnwise into the matrix B . We call B the ¢-blunted
matrix belonging to A

Proposition (Regularity of the Blunted Matrix) The I;;- are lin-

early independent and thus Bis regular.

Proof. By induction. Apparently by is linearly independent. Assume
now that 51, o I;;-_l are linearly independent. We first observe that for each
7, the vector I;Z- is a linear combination of the aj, for £ = 1, ..., 7 and thus also
of the ;. for £ =1, ..., 7, since both the a; and the €, span the same space.
Now assume Ez is linearly dependent on 51, - 5¢—1; then it is also linearly



dependent on €1, ..., €;_1, i.e. there are A\, ..., \;_; such that
1—1
= \iéh.
k=1

But because b; = d; + ¢;€;, we have

( \21

a; 1+ 1 4
k=1

Since by requirement, ¢; > 0, the factor of a; is nonzero, and we have a
contradiction to the linear independence of a; from €1, ..., €;_1. Thus 51, e b;
are linearly independent.

Intuitively, of course, the eflect of blunting is that each vector b; is being
"pulled away" from the space spanned by the previous vectors 51, e I;Z-_l,
and more strongly so if ¢; becomes bigger and bigger. In fact, we have the
following result: .

)\k—kaz €k gk
k=1
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Preconditioning the Flow

It can be viewed as a coordinate transformation.

Definition (Preconditioning the Flow) Let (P + I) be a Taylor
model. We say that (P, + ), (P, + I,) is a factorization of (P + I) if
B(P.-+1,) € |—1,1] and

(P+I1)e (P+1)o(P+1,)forallz € D
where D is the domain of the Taylor model (P, + I,.).

Proposition Let (P, + I;,,) o (P.,, + I,,) be a factored Taylor model
that encloses the flow of the ODE at time ¢,. Let (P, , I, ) be the

result of integrating (P, + [;,,) from ¢,, to ¢,,4+1. Then
(PlTn-I—D ]lﬂ:n—kl) © (PTTL + ]7“,”)

is a factorization of the flow at time ¢,,,1.

Example Preconditionings: QR, Blunted, Curvilinear.



Curvilinear Preconditioning

Definition (Curvilinear Preconditioning) Let ™ = f(z, 2/, .2 1)
be an m-th order ODE in n variables. Let z,(¢) be a solution of the ODE
and z/.(t), ..., 2 (t) its first k£ time derivatives. Let €7, ..., € be the [ unit
vectors not in the span of z/.(t), ..., 2\ (t), sorted by distance from the
span. Then we call the Gram-Schmidt orthonormalization of the set (z/.(t),

s :zzfak)(t), €1, ..., €;) the curvilinear basis of depth k.

Example (Solar System and Particle Accelerators)
In this case, n = 3, and one usually chooses k£ = 2.
(1) The first basis vector points in the direction of reference orbit motion.
(2) The second is perpendicular to it and points approximately to the sun
or the center of the accelerator.
(3) The third is chosen perpendicular to the plane of the previous two.



)€

X2

Reference Curve



Volterra - Curvilinear preconditioning
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Blunting
Definition (Blunting of an Ill-Conditioned Matrix)

AN

Let A be a regular matrix that is potentially ill-conditioned and ¢ =
(q1, ---qn) With ¢; > 0. Arrange the column vectors a@; of A by size. Let €; be
the orthonormal vectors obtained through the Gram-Schmidt procedure;

1
a; — > € (a; - ex)
=1

We form vectors I;Z via
bi = ; + Qi€

and assemble them columnwise into the matrix B . We call B the g-blunted
matrix belonging to A

Proposition (Regularity of the Blunted Matrix) The I;Z are lin-
early independent and thus Bis regular.

The effect of blunting is that each vector b; is being "pulled away" from
the space spanned by the previous vectors 51, o l_);-_l, and more strongly so

if ¢; becomes bigger and bigger.






Random Matrices - Discrete

Select 1000 twodimensional random matrices with coefficients in |—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditioned Taylormodel

e Blunted preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation

Perform the following tasks:

e [terations through matrix

e Sets of iterations through matrix and its inverse
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Random Matrices - Discrete

Select 1000 twodimensional random matrices with coefficients in |—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditioned Taylormodel

e Blunted preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation

Perform the following tasks:

e [terations through matrix

e Sets of iterations through matrix and its inverse
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Random Matrices - Continuous

Select 10 fourdimensional random matrices A with coefficients in [—1, 1.
Solve ODE p

gr:A-r

with random initial conditions.

Perform integration in the following ways:
e Curvilinear-Preconditioned Taylormodel
e QR-Preconditioned Taylormodel
Observe that

e CV and QR preconditiong have the same asymptotic behavior

e Both lead to error growth agreeing with growth along longest EV up to
1%.

e Thus, same error growth as in non-validated case.
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Remainder Error Size (Average over 4 components)
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A Muon Cooling Ring

Example from Beam Physics: Simple model of muon cooling ring, using
curvilinear preconditioning.

Simultaneous damping via matter, and azimuthal accelerations. Equa-
tions of motion:

T = Py

y:py

. 8% n 8% y

Pz = Dy — " Pz )
/P21 Vit

Has invariant solution
(2, Y, Pz, py)1(t) = (cost, —sint, —sint, — cost),
ODE asymptotically approach circular motion of the form
()9, Das Py)alt) = (cos (¢ = 6) . —sin (¢ — ¢) ,— sin (¢ — ), — cos (¢ — 9)),

where ¢ is a characteristic angle for each particle.
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mucool, DX=0.01, preconditioned TM 12th, noSW
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A Muon Cooling Ring - Results

1. Need to treat a large box of [—1072, 1072

2. Because of damping action towards the invariant limit cycle, the linear
part of the motion is more and more ill-conditioned.

COSY easily integrates 10 cycles for d = 1072 with curvilinear precondi-
tioning and QR preconditioning. AWA (method 4) behaves as follows:

d | Cycles
1072]0.22
10731 1.25
107419.5

Thus, trying to simulate the system with AWA requires > (10*)* = 108
subdivisions of the box that COSY can transport in one piece.
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Remainder Error Size of x

mucool ODE, (1,0,0,-1), Pre-conditioned TM 12th, noSW
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--- Conclusion ---
Key Features and Algorithms of COSY-VI

e High order expansion not only in time ¢ but also in transversal variables

—

X.

e Capability of weighted order computation, allowing to suppress the ex-
pansion order in transversal variables .

e Shrink wrapping algorithm including blunting to control ill-conditioned
cases.

e Pre-conditioning algorithms based on the Curvilinear, QR decomposi-
tion, and blunting pre-conditioners.

e Resulting data is available in various levels including graphics output.


Makino
--- Conclusion ---


TM Integrator: Pushing Further...

e The Reference Trajectory and the Flow Operator
e Step Size Control
e Error Parametrization of Taylor Models

e Dynamic Domain Decomposition



The Reference Trajectory

First Step: Obtain Taylor expansion in time of solution of ODE
of center point c, i.e. obtain

c(t)=cotci-(t—1tg)+co-(t—to) 4+ ...+ ey (t—1to)"

Very well known from day one how to do this with automatic
differentiation. Rather convenient way: can be done by n iterations
of the Picard Operator

c(t) = ¢y + /0 f(r(d), t)dt

in one-dimensional Taylor arithmetic. Each iteration raises the
order by one; so in each iteration ¢, only need to do Taylor arith-
metic in order ¢. In either way, this step is cheap since it involves
only one-dimensional operations.



The Nonlinear Flow

Second Step: The goal is to obtain Taylor expansion in time
to order n and initial conditions to order k. Note:

1. This is usually the most expensive step. In the original Taylor
model-based algorithm, it is done by n iterations of the Picard
Operator in multi-dimensional Taylor arithmetic, where ¢ is
now a polynomial in initial conditions.

2. The case k = 1 has been known for a long time. Tradition-
ally solved by setting up ODEs for sensitivities and solving
these as before.

3. The case of higher k goes back to Beam Physics (M. Berz,
Particle Accelerators 1988)

4. Newest Taylor model arithmetic naturally supports different
expansions orders k for initial conditions and n for time.

Goal: Obtain flow with one single evaluation of right hand
side.



The Nonlinear Relative ODE

We now develop a better way for second step.
First: introduce new "perturbation" variables 7 such that

r(t) =c(t)+ A-7(t).
The matrix A provides preconditioning. ODE for 7(¢):
M= AT fle(t) + A-F(t) = (1))

Second: evaluate ODE for # in Taylor arithmetic. Obtain a
Taylor expansion of the ODE, i.e.

7 = P(7,t)

up to order n in time and k in 7. Very important for later use:
the polynomial P will have no constant part, i.e.

P(0,t) = 0.



Reminder: The Lie Derivative

Let
r' = f(r,t)
be a dynamical system. Let g be a variable in state space, and let
us study g(r(t)), i.e. along a solution of the ODE. We have

d dg
I =7F-Va+o,

Introducing the Lie Derivative L f = -V + 0/0t, we have

d i t—t

1=0




Polynomial Flow from Lie Derivative

Remember the ODE for 7'
7 = P(7,t)

up to order n in time and k in 7. And remember P(0,t) = 0. Thus
we can obtain the n-th order expansion of the flow as

f(t):z”:(t—i!to)i. (P-V+§t)i%/

1=0

e The fact that P(0,t) = 0 restores the derivatives lost in V

e The fact that 0/0t appears without origin-preserving factor
limits the expansion to order n.



Performance of Lie Derivative Flow Methods

Apparently we have the following:

e Fach term in the Lie derivative sum requires v + 1 derivations
(very cheap, just re-shuffling of coefficients)

e Flach term requires v multiplications
e We need one evaluation of f in ,,D, (to set up ODE)

Compare this with the conventional algorithm, which requires n
evaluations of the function f of the right hand side. Thus, roughly,
if the evaluation of f requires more than v multiplications, the new
method is more efficient.

e Many practically appearing right hand sides f satisfy this.

e But on the other hand, if the function f does not satisfy this
(for example for the linear case), then also P will be simple
(in the linear case: P will be linear), and thus less operations
appear



Step Size Control

Step size control to maintain approximate error € in each step.

Based on a suite of tests:

1.

Utilize the Reference Orbit. Extrapolate the size of coeffi-
cients for estimate of remainder error, scale so that it reaches
and get At;. Goes back to Moore in 1960s. This is one of
conveniences when using Taylor integrators.

. Utilize the Flow. Compute flow time step with At;.Extrapolate

the contributions of each order of flow for estimate of remainder
error to get update At,.

. Utilize a Correction factor ¢ to account for overestimation

in TM arithmetic as ¢ = "{/|R|/e. Largely a measure of com-
plexity of ODE. Dynamically update the correction factor.

. Perform verification attempt for At; = c - Aty
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Error Parametrization of Taylor models

Motivation: Is it possible to absorb the remainder error bound
intervals of Taylor models into the polynomial parts using addi-
tional parameters?

Phrase the question as the following problem:

1. Have Taylor models with 0 remainder error interval, which de-
pend on the independent variables # and the parameters a.

Ty = By(# @) + [0,0].
2. Perform Taylor model arithmetic on Tj), namely F(T})
F(Ty) = P(Z,@) + Iy, where I m
3. Try to absorb I into the polynomial part that depends on &
B(&,d) + Ir C P'(Z,&) +]0,0). (A)



Observe

P(#,d) = P(#,0) + P(&,d)— P(%,0) = P(%,0) + P,(Z,d)
a-indep. &—depgndent

The size of P (#,0) is much larger than the rest, because the rest
is essentially errors. The process of (A) does not alter P(Z,0), so

set the a-independent part ]3(:1_:’, 0) aside from the whole process,
which helps the numerical stability of the process.
The task is now
S - S —
P.(Z, )+ Ip C P (Z,d) + |0,0].
We limit P, (Z, @) to be only linearly dependent on &.

o
&@@+ﬁ:(ﬁ+M@)&+&



Express Iy by the matrix form using additional parameters 5
Ir C (TF + ]_F(f)) 3.
where /I:F(f) = (0 and (TF) = |]Fz| .
P(Z,d) + Iy C (M\Jr M(f)) - a+ (fp+fp(f)) ¥e)
View this as a collection of 2 - v column vectors associated to 2 - v
parameters & and 3. Recall a matrix, or a collection of v column

vectors, represent a parallelepiped. The problem is now to find a
set sum of two parallelepipeds.



Psum Algorithm for choosing column vectors

Task: Choose v vectors out of n vectors s;, i1 =1,....,n, n > v.

1. Choose the longest vector s, and assign it as t1. Normalize it
as 51 = tl/ ‘tl‘ .

2. Out of the remaining vectors s;, choose the j-th vector t_; = S},

such that
j—1

5e* =) 18k - Gl

is largest. Compute &;, the orthonormalized vector of #; to
€1, ..., €j—1. (Gram-Schmidt)

3. Repeat the process 2 until 7 = v.

Experimentally, p = 0.5 is found to be efficient and robust for
obtaining a set sum of two parallelepipeds



Psum Algorithm for two parallelepipeds
Task: Obtain a set sum of two parallelepipeds ]\/4\1 and ]\/4\2

1. Prepare the basis Mb using the Psum algorithm for choosing v
column vectors out of 2 - v column vectors from M, 1 and M2

2. Compute conditioned parallelepipeds M o M 1 and M o Mg.
3. Confine the conditioned parallelepipeds by bounding them.

El — bound (]\/4\6_1 ' ]\/4\1> and 52 — bound (]\/4\b_1 ' ]\/4\2> .

4. Compute the interval sum b= él + ég. B confines the condi-
tioned set sum of the conditioned parallelepipeds.

| B1| 0

AN

5. From B , set up a parallelepiped as a box B = .
0 | Byl

6. Compute ]\/J\b . B , which is a set sum of ]\/4\1 and ]\/4\2 under ]\/Zb



Psum of Org Parallelpiped (0.4,0.15)-(0.2,0.13) and I-box 0.05-0.05

Org

I-box ——
1r basis --------
Psum




0.5

Psum of Org Parallelpiped (0.4,0.15)-(0.2,0.13) and I-box 0.07-0.07

LN TR LR T T

Org
I-box
basis --------
Psum

“Hnnnnnny
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Error Absorption

We now chose a favoured collection of v column vectors L+ L(Z)
using the Psum algorithm. Collect the left over v column vectors

to E + E(Z). Associate them to 2 - v parameters & and 3.
B(#@)+TrC (L+1@) &+ (E+E@) -7

Since o and E do not appear anymore, we can rename & and E’
as @ and (3 for the simplicity.

—Tol|L o Z+E(f)) d+1 ' (E+E(:f)).
CTo '(ﬂz—loE(f)) .méﬂ

where B is a diagonal matrix with the i-th element is |B;| and
B :boumd(z_1 o (E + E(f)) : E) .



P

If the diagonal terms of (f T+l L(:E’)) are positive,

— Z+f(f)+io§)-o7.

AN

Note: A modification to use A instead of E, when A ~ L, is
done easily. This involves bounding of A~ o (L — A) - and the

diagonal terms to be checked positive are those of (f +A o E(:E’)) .
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Cost of Additional Parameters

For a v dimensional system, we need v parameters a to absorb
Taylor model remainder error bound intervals. The dependence
on « is limited to linear. So, we use weighted DA. Choose an

appropriate weight order w for a.

e The dependence on @ has to be kept linear. Namely 2 - w > n,
where n is the computational order of Taylor models. Choose

n
:It(—) 1
w n 5 -+

Maximum size necessary for DA and TM for v = 2.

n v DA TM v DA TM w v, DA TM
13 2 105 140 | 24+ 2 2380 2419 7T 2+2, 161 200
21 2 253 304 | 2+ 2 12650 12705 =11 2+ 2, 385 440
33 2 595 670 | 2+ 2 66045 66124 17 242, 901 980




Dynamic Domain Decomposition

For extended domains, this is natural equivalent to step size
control. Similarity to what’s done in global optimization.

1. Evaluate ODE for At = 0 for current flow.

2. If resulting remainder bound R greater than e, split the domain
along variable leading to longest axis.

3. Absorb R in the TM polynomial part using the error parame-
trization method. If it fails, split the domain along variable
leading to largest x dependence of the error.

4. Put one half of the box on stack for future work.
Things to consider:

e Utilize "First-in-last-out" stack; minimizes stack length. Spe-
cial adjustments for stack management in a parallel environ-
ment, including load balancing.

e Outlook: also dynamic order control for dependence on initial
conditions
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Henon system, xn=1-2.4*x"2+y, yn=-x, NO=33 w17
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Henon system, xn=1-2.4*x"2+y, yn=-x, NO=33 w17
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The Henon Map

H(z,y) = (1 — az* +y, bx).
We set the parameters a = 1.4 and b = 0.3, which are originally
considered by Henon. The map H has two fixed points.

p1 = (0.63135,0.18940) and p> = (—1.13135, —0.33941).
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rhenon: Number of Objects

To carry out multiple mappings of the Henon map, Taylor model
objects underwent the domain decomposition.

Number of Taylor model objects used for multiple mappings:

n w for 5 steps for 7 steps
box1l 33 17 3 1386
box2 21 11 148 1691
box3 33 17 8 2839



Normal Form Methods

Iterative order-by-order coordinate transfomation to simplify dy-
namics around a fixed point. Assume we have TM representation

of

1. Discrete Systems: One rigorous iteration of nonlinear map

2. Continuous Systems: Rigorous Flow representation of suitable
time step At

Result: Except for resonances, obtain a coordinate transforma-
tion that up to order n linearizes the motion

e Elliptic case \;;1 = \;: spiral motion in (\;, ;1) plane

e Elliptic unity case \i;; = A; and |\;| = 1: circular motion,
radius-dependent rotation frequency

e Hyperbolic case, i.e. A\; > 1 real forz =1,....k, \; < 1 for

v =1, ..., v: motion along hyperpolae, €; axis expanded or con-
tracted by A,












: ; r, =5:10%
£ 10™ ; P r,=5:10%

0 %

Fig. 9. Projection of the normal form defect function. Dependence on two angle
variables for the fixed radii 7 =7y =5-107%

Region Boxes studied | CPU-time | Bound Transversal Iterations
[0.2,0.4] - 107 | 82,930 30,603 sec | 0.859- 10713 | 2.3283 - 108

0.4,0.6] - 1074 | 82,626 30,603 sec | 0.587 - 10712 | 3.4072- 107

[

[0.6,0.9] - 10~ | 64,131 14,441 sec | 0.616 - 10711 | 4.8701 - 108

[0.9,1.2] - 10~% | 73,701 13,501 sec | 0.372-10719 | 8.0645 - 10°
[1.2,1.5]-10~% | 106,929 24,304 sec | 0.144-107° | 2.0833-10°
[1.5,1.8]-10~* | 111,391 26,103 sec | 0.314-107% | 0.95541 - 10°

Table 8

Global bounds obtained for six radial regions in normal form Space for the Tevatron.
Also computed are the guaranteed minimum transversal iterations.



Normal Form Methods

Iterative order-by-order coordinate transfomation to simplify dy-
namics around a fixed point.
Result: Except for resonances, up to order n,

e Elliptic case \;;1 = \;: spiral motion in (\;, A\;11) plane

e Elliptic unity case A\;;; = A; and |\;| = 1: circular motion,
radius-dependent rotation frequency

e Hyperbolic case ()\; real) motion along ¢é; axis, expanded or
contracted by \;

Practial use:

e Can be performed rigorously in Taylor model arithmetic

e Implemented to arbitrary order in arbitrarily many variables in
COSY INFINITY



Rigorous Unstable Manifold Enclosures I

Goal: Find collection of hopefully very narrow Taylor models
that contain a hopefully long stretch of unstable manifold.

X2 A

n(0) = Oy (@)

X1

{n(t)+e-s:(t,5s) € D}
where D :=[—b, b] x [-1,1]

Begin with unstable manifold near fixed point:

e Obtain approximate polynomial path v(¢) as image of normal
form €] axis

e Put "test tube" around (t) to get v(t) + € - s - €5. Practical
choice: ¢ = 1071



Rigorous Unstable Manifold Enclosures 11

e Verify that M (y(t) + ¢ - s - €;) leaves "test tube" only at ends.
Very useful for that:
1. M(~(t)) =, v(A1 - t), so orbit of ~ is reproduced to order n
2. M is contracting with Ay perpendicular to
3. v(t)+¢e-s-€5 and its image under M can be treated rigorously
in Taylor model arithmetic

After these steps, it is assured that

e The unstable manifold does NOT leave v(t) + € - s - €5 at top
or bottom

e The unstable manifold DOES leave y(t) + ¢ - s - €, at the sides
(easy to show)



v

X1

M2 = M(Ml)
= {72(t) + P(t,s) + kL : (t,s) ¢

where D := [—b, b] x [-1,1]



My = {y1(t) +e-s:(t,s) € D}
where D := [—b, b] x [-1,1]



Rigorous Unstable Manifold Enclosures 111

Unstable manifold can be drawn as far as desired by
e Mapping v(t) 4+ ¢ - s - €; through M repeatedly
e Splitting result if length > tolerance

As a result, we obtain a collection of as many Taylor model as
we wish, each of which

e Contains a piece of the unstable manifold
e The unstable manifold leaves through the "narrow sides"
e The unstable manifold does not leave through the "long sides"

By considering the inverse map, we can analogously obtain rig-
orous enclosures of the stable manifolds.



Unstable Manifold of a Henon map (a=1.4, b=0.3) represented by 450 pieces of TMs
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Homoclinic and Heteroclinic Points

Rigorous enclosures of the manifolds up to a certain arc length
allows:

1. Rigorous enclosures of homoclinic points (intersections of
stable and unstable manifolds of same fixed points). For ex-
ample, the "Fundamental" homoclinic point H of the standard
Henon map is guaranteed to satisty

H € (0.3388525493352557, —0.2551126297857507).

2. Rigorous enclosures of heteroclinic points (intersections of
stable and unstable manifolds of separate fixed points). These
have practical applications, for example the design of low-energy
transfers in restricted three body problem.



Symbolic Dynamics

Rigorous insight into the behavior of a dynamical system can be
obtained by studying symbolic dynamics. This refers to a pro-
jection of the dynamics into finite sets of "symbols", and study of
how these evolve under map. Prime example: determine suitable
subsets of variables and study their mapping properties rigorously.

Ideal candidates:

Curvilinear Rectangles: having homoclinic points in their
corners, pieces of unstable and stable manifold, respectively, as
their sides.

Advantages: Their mapping properties can be rigorously under-
stood by the knowledge of the location of all homoclinic points
up to a certain arc length of stable and unstable manifold, as well
as the mapping properties of these homoclinic points.



Rigorous Computational Symbolic Dynamics

Using Taylor model based flow integrators and normal form
methods, can set up even very complicated symbolic dynamics.
Let two initial pieces of stable and unstable manifold be given.

1. Rigorously enclose ALL homoclinic points of using the rigorous
global optimizer COSY-GO.

2. Determine rigorous parent-child relationships of these ho-
moclinic points.

This allows the rigorous determination the mapping properties
of curvilinear rectangles, which can be described by the so-called
incidence matrix. The largest eigenvalue of it is a lower bound of
the topological entropy.

Note: probably the first such attempt at a rigorous dynamics
was done by Piotr Zgliczynski for the Henon map, proving that it
follows a horseshoe dynamics, with



Henon stable-unstable manifolds from data HPIlist9it.dat

| original
mapped
org rectangles

10

15

20

25

30
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Figure: Galias Subshift with h(H) > 0.430, 29 symbols



Galias-Zgliczynski periodic table:

930 Z Galias and P Zgliczynski

Table 7. Periodic orbits for the Hénon map belonging to the trapping region. Q,, number of
periodic orbits with period 7; P, number of fixed points of 4"; H,, (k) = n~*log(F,), estimation
of topological entropy based on P,.

n On P, H, (h)
1 1 1 0.00000
2 1 3 054931
3 0 1 0.00000
4 1 7 0.48648
5 0 1 0.00000
6 2 15 045134
7 4 29 048104
8 7 63 0.51789
9 6 55 0.44526
10 10 103 0.46347
11 14 155  0.45849
12 19 247 045912
13 32 417 0.46408
14 44 647 046231
15 72 1081 046571
16 102 1695 0.46471
17 166 2823 0.46739
18 233 4263 0.46432
19 364 6917  0.46535
20 535 10807  0.46440
21 834 17543  0.46535

22 1225 27107  0.46398
23 1930 44391 046525
24 2902 69951  0.46481
25 4498 112451 0.46521
26 6806 177375  0.46485
27 10518 284041  0.46507
28 16031 449519  0.464 85
29 24740 717461  0.46495
30 37936 1139275 0.46486

which were checked by mea‘E%m& al @ Pe io ngT‘?hlg\! e

1 et 118 consider two coverirfe seatiel cafis lnn conditions
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Entropy Estimates from Trellis Untangling

1. 161 HP’s, Pure Rectangles, 66 Symbols, 94 Crossings: 0.4131

2. 161 HP’s, Rect +Hexagons, 77 Symbols, 110 Crossings: 0.4309
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Outlook

1. Current Computations take a few minutes for HP’s, and a few
seconds for symbolic dynamics

2. Expect we can go to 100,000 HP’s
3. Other Symbolic Dynamics with Taylor Model Symbols



High-Order Constraint Satisfaction

Problem: often need to efficiently satisfy various constraint conditions.
For example, minimize f over box B C R" subject to

g; S 0, 1= 1,...,C<

hi=0,i=1, .. c

Frequently used approach: subdivide box B into smaller boxes, reject those
that can be shown to violate the constraints, and perform minimization
only on "active" boxes.

Difficulty: this is expensive - for good results need small boxes.

Goal: "Prune" box B by resolving the constraints with Taylor models;
evaluate f over the resulting constraint Taylor model.

As a first step, consider only the surfaces g; = 0,7 =1, ..., c<, and h; = 0,
1=1,...,c—.



Poincare Sections

A very useful tool for the study of long-term dynamics.

e Select a plane, the Poincare section, through which the motion passes
repeatedly

e Each time the motion passes trough the plane, project it onto the plane

Determine the time the "center" meets the plane, to floating point error
(Newton etc). Then flow has the form

rr= Pz, t)+1

Problem:

Find the time ¢(z;) such that for each x;, P(x;,t(x;)) lies on the Poincare
section.

Viewed in general terms, this is a constraint satisfaction problem.



Outer and Inner Enclosures using Taylor Models

Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(z,y)|z* + y* € [1,2]} given by

f(x,y)z{ "

T+

Using Taylor models:

e Representing the domain R using Taylor models as
() = (rcos(@), rsin(¢)) where (r, 6) € [1,v/2] x [0,27] = D.



Outer and Inner Enclosures using Taylor Models

Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(z,y)|z* + y* € [1,2]} given by

f(x,y)z{ "

T+

Using Taylor models:
e Representing the domain R using Taylor models as
() = (r cos(@), 7 sin(6)) where (r, 6) € [1,v/2] x [0,27] = D.

e Split D in 8 subdomains to represent f by 8 Taylor models of order 5.
— width(/) < 0.03; the outer and inner enclosures are indistinguishable.



Region 1=<r"2 =< 2 expressed by TMs (5th order)




fx=x*y, fy=x+y, mapped by TMs in 1=<r"*2 =< 2 (5th order)
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e ... 16 X 2 subdomains, ... by 32 TMs of order 5.

e ... 8 subdomains, ... by 8 TMs of order 1.
— width(I) ~ 0.9; the inner representations of f are empty sets.






fx=x*y, fy=x+y, mapped by TMs in 1=<r"2 =< 2 (1st order)
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Using Taylor models:

e Representing the domain R using Taylor models as
() = (r cos(@), 7 sin(6)) where (r, 6) € [1,v/2] x [0,27] = D.

e Split D in 8 subdomains to represent f by 8 Taylor models of order 5.
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e ... 8 subdomains, ... by 8 TMs of order 1.
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fx=x*y, fy=x+y, mapped by TMs in 1=<r"2 =< 2 (1st order)
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High-Order Verification of Exteriority of Points
Goal: Decide whether a point ¢ is outside the range of f(D);

c¢ f(D).

Scheme:
Have a Taylor model representation f(x) € P(z)+ I for all x € D.
Let C = P(0) and P=!(x) = P(x) — C.
Then we want to assert that there is no z € D with ¢ — C € P=Y(x) + 1.
Determine the order n inverse P='* to P=!, and apply it to both sides:

P —-C)e P*(P2(x)+ ) CcIT+I"C D+1I"
So, if it can be shown that
P=%(c—C)¢ D+ I,
then ¢ ¢ f(D).



The Taylor Polynomial of the Inverse

In practice it is usually not possible to determine the inverse of M. How-
ever, we develop a method that allows the computation of the Taylor poly-
nomial of M ! from the Taylor polynomial of M. We split M into its linear
and nonlinear parts

M=L+N

and note that there is no constant part since the constraint conditions satisfy
fi = 0 for x = 0 because of the shift of origin. Composing with the inverse
map M !, we have

MoM™‘'=1
LoM‘'=I-NoM™!
M'=L'o(I-NoM™).
The latter relationship now allows to iteratively compute the Taylor poly-

nomial of the inverse. Because note that N is purely nonlinear; so if M ! is
known to order k, N o M~ is automatically know to order k£ + 1. Thus also
Lo (I —NoM™)isknown to order k +1, and hence M ! is obtained
to the next higher order. Thus by sufficient iteration one can determine the
Taylor polynomial of the inverse to any desired order.



High-Order Verification of Interiority of Points
Goal: Decide whether a point ¢ is inside the range of f(D);

c e f(D).

Scheme:
Very similar to the previous scheme for an exteriority test.
If it can be shown that

P="(c—-C)e D+ 1T

then ¢ € f(D). In this case, however, P=!* has to be shown to be injective
(for example by factoring out linear part, and showing that resulting identity
plus higher orders has strictly positive slopes).



High-Order Verification of Interiority of Points
Goal: Decide whether a point ¢ is inside the range of f(D);

c e f(D).

Scheme 2:

Have a Taylor model representation f(z) € P(x)+1 for all z € D, and let
r(z) = f(x)— P(x), where r(z) € I. Let C' = P(0) and P=}(z) = P(z)-C.

We attempt to assure the existence of a point s € D : f(s) = ¢, which is
equivalent to

c—C = P2Ys) +r(s).
Determine the order n inverse P=1* to P=!. Let
so = P=(c = O),

an approximation for a solution s, and it is likely sy € D. If not, move s
towards the center of D.

Now we introduce a change of variables § = s — 5.

Let L denote the linear part of P=!(sy+ 5) in 5, and let L* be an approx-
imate non-singular inverse of L. Then the problem is equivalent to

c—C =P (sg+5)+r(sp+5), or
I(5) = L* [c = C — (P! (sg+ 5) + r(s + 5))] +Z(5).



I(5) = L* [c — C = (P (so+ 5) + 1(so + 5))| + Z(5).
Compute the RHS by TM arithmetic ( r(sq+ 5) by 0+ I ). We obtain a
fixed point problem in s:
I(g) = R(g) + [f.

Observe that the zeroth order and the linear parts of R(S) have very small
coefficients. By bounding them by an interval /g,

Z(3) = R>*(3) + Ip + 1.
Now we attempt to find an interval S :
S D A(S) = R*(S) + Ip + 1.

If such S is found, S contains a fixed point (via Brower FP theorem). Then
we have found a solution of the original problem as long as so + 5 C D.

c € f(sg+9), thusc € f(D).

~Note: For a small interval S, R=%(S) is a much smaller interval. Choosing
S as a small multiple of the interval (I;+ 1) will likely lead to an immediate
self enclosure, which will scale with order (n + 1) of the domain size.



Properties:

1.

Given a TM P+ describing the function f over D, the problem of decid-
ing interiority is transformed to a FP problem. The occurring intervals
are comparable in size to the small remainder /. Since only quadratic
and higher order terms appear in the FP problem, the method is very
likely to succeed as long as [ is sufficiently small.

. The resulting enclosure of the FP scales with the width of I, and hence

with order (n + 1) of the domain D.

. The setup of this FP problem requires only limited inexpensive addi-

tional TM arithmetic beyond the computation of the TM representing
the original function f. In particular, using an intrinsic tool for Horner
shifts, no TM multiplications are necessary.

. Unlike conventional interval-Newton methods, the approach does not

require the inversion of any interval matrices, but only floating point
approximations to inverses of floating point matrices.



Example: Exteriority and Interiority of Points

Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(z,y)|z* + y* € [1,2]} given by

f(x,y)z{ "

T+

Using the discussed schemes:

e Study the distance of points verified barely outside and inside the range
of the function f(D).

Measure the distance along the vertical line through the point

(z,y) = (% g) ,

which is known to lie on the boundary.



fx=x*y, fy=x+y, mapped by TMs in 1=<r"*2 =< 2 (5th order)
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Gradient Taylor Models - Motivation

Conventional Taylor Model for f on D: Pair of Taylor polynomial P of f
and remainder [ such that

f(x)e P(x)+ 1 forallz € D

Many verified tools benefit from enclosures for derivatives of functions;
for example Global Optimization.

Frequently used: Automatic Differentiation with interval arguments
yields interval enclosure of derivatives

Similarly, can use Automatic Differentiation with Taylor Model argu-
ments to get Taylor model enclosures of derivatives.

But: the Taylor polynomial of 0f/0x; is just 0P/dx; (to one order less)

Thus: Knowing P from TM of f, we already know the bulk of the infor-
mation for the TMs of the gradient (to one order less)!

Idea: Save time by calculating only P, and not the Taylor polynomials
of the derivative.



The Gradient Taylor Model

Definition: Gradient Taylor model
For a function f(x) on D, we call the vector

(P I, 14,...,1,)
a gradient Taylor model of f, if Vo € D,

f(z) € P(z)+ I and
Of(x) _ OP(x)

c%@- < 81'@

Thus a gradient Taylor model for the function f consists of its Taylor poly-

nomial, a remainder bound, as well as remainder bounds for its partial
derivatives based on their Taylor polynomials of one order less.

+ [ foralle=1, .., v



Addition of Gradient Taylor Models

Assume we know gradient Taylor models for f and ¢, and thus on D, we
have

0Py 0Py
Pr+1Tr,——+4+1p,... I,
(f,Vf)€< ;o f»axf1+ f15 ,6,va+ f)
oP OP,
P+I,—Y+1,....—2+1,].
(gavg>€ ( 9_|_ 9783391_'_ gl 785591;—'_ 9)
Then we apparently also have
oP OP,
(f+g,Vf+Vg)€(Pf+Pg+[f+Ig,—a f—|‘a g—|—[f1—|—[g1,
I f1 Lg1
OP;  OF,
Ipy+1gy | -
’8va+0xgv+ d i g)

and thus (Pr+ Py, I+ 1,, I+ 1y, ..., 11, + 1) is a gradient Taylor model
for f +g.



Multiplication of Gradient Taylor Models

We compute the regular Taylor model part .,y and I(1.q) as we do it for
regular Taylor models. For the remainder bounds, there are several ways
based on the product rule

9 9
09 = (5 ) 9+ £+ (509 ()
Method 1: Use
of _ 0P,

ox; 03:2

and perform the computation of (1) in regular Taylor model arithmetic,
then get I1.4); as the remainder of the arithmetic for (1).

This is simple, but wasteful as it always re-computes the polynomial parts
of the derivatives, which is unnecessary as they are merely derivatives of

Py.,.

+ 1y



Multiplication of Gradient TM - Remainders

Studying the details of Taylor Model multiplication, we see: To obtain the
remainder bound of the product, all we need are bounds for each order

I J(f{i), I g({z’) of the factors. Indeed, derivative remainder bounds /., ; are then
given by

>n +1) (7) (>n—j+1)
Zl i - ]f ']g,i

Method 2a: Use the polynomlal derivation operation to calculate each
of the gradient polynomials
OP; OPF,
(9513@‘ 7 (9513@
and use the already existing tool for order bounding,.
Relatively fast (polynomial derivation is essentially coefficient re-shuffling)
and optimally precise, given available information.




Multiplication of Gradient TM - Remainders
Method 2b: Observe that

+1
]J(;] ) = E |ai,.........] and we also have
i1t iy=j+1
() _ : B .
[f,z- — E \Zz' "y T E (7 |%zz

fee i, =+ 1 it iy=j+1

So, the order bounds of the derivative polynomials satisfy
| o
1) c iyt (j+ 1) 2)

Extremely fast (only re-use existing order bounds), but less precise.



Intrinsic Functions of Gradient Taylor Models

Problem: given gradient TM of f, want a gradient TM for int(f), where
int € {sin, cos, exp, log,sqrt,... }.
Example: sin. Note

d . d
T (sin(f)) = cos(f) -

1. First factor: perform one additional intrinsic evaluation, compute order
bounds.

2. First factor: bulk of effort lies in computing powers of f, which are al-
ready available from sin(f) evaluation!

3. Second factor: Obtain order bounds directly, as above.

4. Determine derivative remainder bound as above from Z?:o I ](eji) I é()zs?]:)j+1)



Generalizations of Gradient Taylor Models

1. Extremely Cheap: do not store I, ..., I,, but only a single I’ such
that
Lcr,....I,cTr

Particularly useful if combined with method 2b based on [/ }‘7@) C

j+ 1), since all I') will be the same already.
[y

(J+1)
If ~

2. Higher Orders: Apparently the approach readily generalizes to Hessian
Taylor models, or higher derivatives yet.

3. Cheap Higher Orders: Can be done economically, i.e. without large
numbers of remainder bounds, by using the "extremely cheap" storage
way.



Gradient Taylor Models - Summary

e We have shown how to simultaneously obtain Taylor models for the
function and its entire gradient.

e There are various ways of obtaining remainders, differing in sharpness,
speed, and storage

e Even the least sharp way yields good results, since TM remainder bounds
are usually so small.

e In all cases, the extra computational effort is minor, usually less than
10% beyond the normal cost of a Taylor model.

e Can be generalized to higher orders.



High-Order Constraint Satisfaction

Problem: often need to efficiently satisfy various constraint conditions.
For example, minimize f over box B C R" subject to

g; S 0, 1= 1,...,C<

hi=0,i=1, .. c

Frequently used approach: subdivide box B into smaller boxes, reject those
that can be shown to violate the constraints, and perform minimization
only on "active" boxes.

Difficulty: this is expensive - for good results need small boxes.

Goal: "Prune" box B by resolving the constraints with Taylor models;
evaluate f over the resulting constraint Taylor model.

As a first step, consider only the surfaces g; = 0,7 =1, ..., c<, and h; = 0,
1=1,...,c—.



Poincare Sections

A very useful tool for the study of long-term dynamics.

e Select a plane, the Poincare section, through which the motion passes
repeatedly

e Each time the motion passes trough the plane, project it onto the plane

Determine the time the "center" meets the plane, to floating point error
(Newton etc). Then flow has the form

rr= Pz, t)+1

Problem:

Find the time ¢(z;) such that for each x;, P(x;,t(x;)) lies on the Poincare
section.

Viewed in general terms, this is a constraint satisfaction problem.



Constraint Satisfaction - General Concept I

Given m smooth constraint functions fi, ..., f,,, in n variables x4, ..., x,
satisfying
filz1,..;xy)=0fori=1,...,m.
Assume the point (3350), . $7(10)) satisfies the constraints. Wlog ($(10), . 557(10))

= (), otherwise shift origin.

Also assume that the first (n — m) variables can be used to parameter-
ize the constraint; can usually be achieved by rearranging the variables.
Construct the function M as follows:

More specifically, the first (n—m) components of M are simply the identity,
i.e. M;(x)=ux;fori=1,....,(n —m), and the last m components are the
constraint functions f, ..., fi.



Constraint Satisfaction - General Concept 11
If M is invertible, then M ! satisfies

M Hay, oy B> 0, ..., 0) = ;.

[
The first (n — m) rows are merely the identity and are thus uninterest-
ing. However, the lower m rows contain the information on how the m
constrained variables x; depend on the unconstrained variables x; for j =
1,...,(n —m), which is what is desired.
Thus, as long as the inversion of M can be carried out, the constraints
can be resolved.



The Taylor Polynomial of the Inverse

In practice it is usually not possible to determine the inverse of M. How-
ever, we develop a method that allows the computation of the Taylor poly-
nomial of M ! from the Taylor polynomial of M. We split M into its linear
and nonlinear parts

M=L+N

and note that there is no constant part since the constraint conditions satisfy
fi = 0 for x = 0 because of the shift of origin. Composing with the inverse
map M !, we have

MoM™‘'=1
LoM‘'=I-NoM™!
M'=L'o(I-NoM™).
The latter relationship now allows to iteratively compute the Taylor poly-

nomial of the inverse. Because note that N is purely nonlinear; so if M ! is
known to order k, N o M~ is automatically know to order k£ + 1. Thus also
Lo (I —NoM™)isknown to order k +1, and hence M ! is obtained
to the next higher order. Thus by sufficient iteration one can determine the
Taylor polynomial of the inverse to any desired order.



A Taylor Model for the Constraints

Previous algorithm allows to compute Taylor polynomial for constraint
functions f; in terms of the parametrizing variables.

Now want to obtain validated remainder bounds. Let P, be the Taylor
polynomial of the dependence of constraint 7 on the unconstrained variables.

Try to guess values €;; and ¢;,, such that constraint ¢ is violated for all

(3517 s Tp—ms Y15 -y Yi > PZ + STRTEREES yn)
(5131, coos Ty Y1y s Yi < PZ = &l ey yn>
Describe ith component by auxiliary variable g; € [—1, 1] via

vi = (P +€iu)(1+7i)/2 4 Yimax(1 — 7;)/2 and
vi = (P — i) (1 +95) /2 + yimin(1 — ;) /2, respectively

Lower bound for educated guess can be obtained from evaluating f;(z1 +
[07 0]7 e P1<xi) + [07 0]7 e Pn<x2) + [07 OD



Example: A Robotic Arm

Two rods in plane, attached at origin, lengths [; and [5. Variables (x4, 2, 3, 24) :

(x1,y1) : position of elbow
(x2,y2) : location of hand

Constraint conditions:

0= fi(z1, 22, y1,92) = 4/ iyt — 1

0= folz1, T2, y1,92) = /(12 — 21)2 + (2 — 11)% — o

Consider special case of domain D and lengths /; and [ as

D =10,5*
L =1.0,l=1.2



Example: Box

Let us consider the constraint resolution problem for the box
B =(0.2,0.5,1.0,2.1) 4 [-.1, +.1)*

This box contains feasible points, and can thus not be rejected outright by
any method. Try to "prune" the region of the box containing the constraint
using Taylor models.

e First step: Choice of variables - x1 and x5 are parametrizing variables.

e Second step: Approximate feasible point for center value. Using stan-
dard non-validated tool, we find an approximate solution as

9 = 0.979795897113271
¥ = 2.141600900975497



Example: Approximate Polynomial P

e Third step: Find approximate polynomial. Using algorithm outlined
above, up to fourth order, we find Pi(x1,xs) for y; as

I COEFFICIENT ORDER EXPONENTS
1 0.979795897113271 O 00 0O
2 -.2041241452319316 1 10 00
3 -.5315732948748217 2 20 00
4 -.1107444364322545 3 30 00O
5 -.1672702425278845 4 40 0O

Note that because of the specific form of the constraint, y; depends only
on x1, and not on xs.



Example: Approximate Polynomial P,

Similarly, we find Ps(x1, x2) as

COEFFICIENT ORDER EXPONENTS
2.141690900975497 O 00 0O
0.5407474451522962E-01
—-.2581988897471612
.99056935433142194
0.9180404968787954
—-.4590202484393976
—-.8739936779055102E-02
-.3060134989595984
9 0.3060134989595984
10 -.1020044996531995
.2806085754758839
.4533533317919972
.6800299976879959
.4533533317919973
.1133383329479993
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Example: Approximate Polynomial P
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Example: Approximate Polynomial P,
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Example: Checking Polynomial Part

To check whether indeed the polyomials P;(x1, x9) and Py(x1, x2) resolve
the constraints up to order 4, we insert their Taylor models into the contraint
conditions. Determine the resulting Taylor model. Their polynomial parts
should be zero. We indeed obtain for constraint 1:

I COEFFICIENT ORDER EXPONENTS
1 -.1110223024625157E-15 1 10 0O
2 0.1387778780781446E-15 3 3 0 0O

Note that terms below the cutoff value of 107! are not shown. Similarly
we obtain for constraint 2:



Example: Checking Polynomial Part

I COEFFICIENT ORDER EXPONENTS
1 0.6661338147750939E-15 0 00 0O
2 0.3330669073875470E-15 1 10 00
3 -.3330669073875470E-15 1 01 0O
4 -.6661338147750939E-15 2 20 00
5 0.1332267629550188E-14 2 11 00
6 -.4440892098500626E-15 2 02 0O
7 —.1942890293094024E-15 3 3 0 00
8 0.1665334536937735E-15 3 21 00
9 -.1665334536937735E-156 3 12 00
10 0.5551115123125783E-16 3 03 00
11 0.1110223024625157E-15 4 4 0 0 O
12 -.1443289932012704E-14 4 31 0O
13 0.1665334536937735E-14 4 2 2 00
14 -.8881784197001252E-15 4 13 00
15 0.1942890293094024E-15 4 04 0O

Indeed constraint conditions have been resolved.



Example: Remainder Interval Construction

As the last step, we we now try to find small correction values

€1,0y €1u;
€2.0,E2.u
such that all values of (1, x2, Y1, y2) that satisfy the constraint conditions
also satisfy
Y1 € Pi(x1,29) + €14, €14
Yo € Po(x1,x9) + €24, €24
For the guess of possible values, we let ourselves be guided by the widths of
the remainder bounds obtained when evaluating the constraint conditons
on the Taylor model (x1, s, Pi(x1,22) + [0,0], Py(x1,22) + [0,0]). Those
values are about & - 107°. So we attempt

e1y=—-2-10"% g, =2-10""
g9;=—2-107% g9, =2-107"

Note that using higher order Taylor models, even tighter bounds can be
obtained.



Example: Remainder Interval Validation

We do this by showing that the outside of these sets violate some of the
constraints. To verify that it is necessary to have y; € Py(x1, x2)+ |1, €1.4),
we evaluate constraint 1 with the Taylor model

024012105+ 0.1 29,
0.9 (1 =91)/2+ (Pr(w1,22) — 1) - (1 +91)/2,21+ 0.1 - o

with domain box [—1, 1]*. Over this box, the range of this Taylor model
contains all those parts of original domain of interest that satisfy 11 <
Pi(z1,22) + [€115 €1.0)-

Numerical evaluation shows that for this seed Taylor model, the upper
bound of constraint function 1 is always negative, and so constraint 1 is
always violated. Indeed, the polynomial part is very close to vanishing
altogether because the polynomial P; resolves the constraint, and bounding
is simple.

Likewise, we use the seed

0.2+0.1-27,0.5+0.1-2s,
2.2 - (1 + g]l)/2 + (P1<$1,I2) + 51,u) . (1 — gl)/Q, 2.1+0.1- Y2

over [—1, 1]* and obtain that constraint function 1 is always positive.



Example: Constraint Enclosure Theorem

Altogether, we have shown:
Theorem: Over the box

B =1(02,0.51.0,2.1) 4 [-.1, +.1]*
only points (1, T2, 41, y2) that satisfy
Yy € P+ [—2-107%2-107Y
Yy € Py+[—2-107%,2-107
are compatible with the constraint conditions.

For subsequent minimization of an objective function g, it is sufficient to
evaluate g with the seed Taylor model

0.2+0.1-21,0.54+0.1- 29,
(P1($1, T2) + €11, €1u), Pi(T1, 22) + |€1, €14 ) '

Thus, for Taylor model-based global optimization, the constraint has been

resolved.





