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Abstract

The motion of objects in the solar system is studied with the use of verified inte-
gration methods. Providing rigorous bounds for the possible coordinates of objects
whose initial coordinates are known to lie in a certain region, the methods are ap-
plied to the study of near-earth asteroids within an advanced relativistic NASA
model of the solar system with the ultimate goal of assessing the possibility of
collision with earth.

Because of the relatively large set of initial conditions compatible with measured
orbit data, great care has to be taken to limit overestimation of the possible range
of final coordinates. This is achieved using the approach of Taylor models. Within
this framework, it is possible to control the so-called dependency problem as well
as the wrapping effect commonly observed in verified integration. This approach
yields accuracies that are sufficient to guarantee absence of collisions.

Examples of orbit integrations are given, showing that even relatively large do-
main boxes can be transported over extended time periods with a relative overesti-
mation in the range of only around 107°.
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1 Introduction

Orbit calculations of near-earth asteroids pose several difficult challenges. First
of all, due to the fact that the impact of such an object is potentially serious,
the problem requires as precise an answer as possible, for a relatively large
range of initial conditions determined by measurement inaccuracies. Secondly,
while the primary force to govern the equation of motion is the gravity of the
sun, there are many other factors that influence the details of asteroid motion,
making the resulting ODE quite complicated.

In the following, we outline an approach that allows the verification of the ab-
sence of the possibility of collisions for a given range of initial conditions of an
asteroid based on verified ODE integration using the Taylor Model approach
1,2].

While interval-based methods can provide verification, it is commonly known
that the overestimation due to the cancellation problem sometimes limits their
application for practical problems. To solve a system of multidimensional or-
dinary differential equations

d -
S(t) = F(7(),) 1)

over long time with verification, the so-called wrapping effect adds a further
difficulty. This effect is caused by the inflation of the size of the geometric set
at each time step containing the validated solution set. Details about interval
methods can be found in [3-7] as well as many other sources.

We have been proposing a new method, the Taylor model approach [1,2], which
combines high-order multivariate polynomial techniques and the interval tech-
nique for verification. Any (n + 1) times continuously partially differentiable
function f in a domain D can be expressed by its nth order Taylor polynomial
F, ; at the expansion point & € D, and a remainder bounded by an interval
In, f via

VZ e D, f(f) € Pn’f(f— fo) + In,f. (2)

From Taylor’s theorem, the width of the remainder interval I, s can be chosen
to scale with the domain size proportional to (Z — # ). By choosing the
size |T — &o| small and the order n sufficiently high, the size of the remainder
interval I, ; can be kept very small in practice. The bulk of the functional de-
pendency is kept in the polynomial part P, ¢ with point coefficients, and there
is no interval arithmetic associated inflation that happens in the polynomial
part. Thus, the interval related overestimation is rather optimally suppressed
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with the Taylor model method [8]. The implementation of the method in the
code COSY Infinity [2,9] supports binary operations and standard intrinsic
functions, as well as the antiderivative operation which widens the applica-
tions of the method.

The method can be applied to verified global optimizations straightforwardly;
refer to [8] for example. The Taylor model based algorithm for a verified ODE
integrator carries the functional dependency of the solutions on the initial
conditions in the Taylor polynomial part. Thus it can optimally eliminate
the wrapping effect, making possible not only to integrate over long time but
also to deal with much larger domains of initial conditions. The algorithm
can be naturally extended to be a verified solver of differential algebraic equa-
tions (DAEs), when combined with methods for verified solutions of constraint
conditions over extended domains [10]. The high order differential algebraic
method for multidimensional systems, which is the backbone of the Taylor
model method, presents an algorithm for an efficient prescribed path control.

The following two sections provide a brief summary of the aspects of the
Taylor model methods as well as their use in the setting of verified integration
of ODEs necessary for the further developments. Subsequently, we outline
the tools necessary for verified integration in the solar system, and study the
behavior of the verified integrator and in particular the overestimation of the
range of initial conditions for a typical asteroid problem.

2 Taylor models

Following the reasoning of the last section, a pair (P, Inf) satisfying (2) is
called a Taylor model of f and denoted by

Tog = (Prgs Ing)- (3)

Taylor models of complicated functions f can be determined by carrying Tay-
lor model arithmetic through binary operations and intrinsic functions which
compose the function f sequentially. Suppose we have Taylor models for g and
h as Trg = (Prg, In,g) and Tnp = (P, Inp). Then Taylor models of the sum
and difference of g and A can be obtained as

Tn,g + Tn,h = (Pn,g + Pn,h) In,g + In,h)- (4)

The Taylor model for the product of g and A can be obtained as

Tn,g * Tn,h = (Pn,g'h, In,g~h), (5>
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where P, - P = Py gp + P, with P, g being the nth order polynomial of
the result of the left hand side, and P, the part of the product polynomial
with order from n 4+ 1 to 2n, and

In,g'h = B(Pe) + B(Pn,g) ' In,h + B(Pn,h) ' In,g + In,g : In,h, (6)

where B denotes the bounds of the argument over the domain D. Refer to
[1,2] for the details on intrinsic functions including a multiplicative inverse of
Taylor models.

The other important operation is the antiderivation operation, which is nat-
urally available as an intrinsic function on the space of Taylor models. It has
the form

ai_l(Pn,faIn,f) = (/Pn—l,fd$i7 In,ai_lf) ) (7)

where I o1 = (B(Pyf — Pa1,5) + In,g) - B(z:).

3 Verified integration based on Taylor model methods

In this section we review the key elements of the verified integration of ODEs
through Taylor models; for details refer to [2,11]. Compared to other verified
ODE integrators, the method has the following characteristics:

e Because the solution set is described as a Taylor model describing the de-
pendence on initial conditions, in subsequent operations the dependency
problem based on the repeated use of the solution set, which is the source
of the wrapping effect, can be avoided.

e For nonlinear ODEs, the sharpness of the inclusion of the true solution set
for each time step scales with order (n + 1) in the original domain width,
and not order 2 as in the case of inclusion in interval boxes, polygons,
or zonotopes used by other approaches. This allows larger domains to be
transported without significant overestimation.

e The method naturally combines both first inclusion, commonly known as
Algorithm I, as well as verification inclusion, commonly known as Algorithm
II, into one high-arder step.

e Because of the use of the intrinsic antiderivation operation, there is no need
for explicit use of any error bounding formulas based on higher derivatives;
rather, the error verification happens automatically as part of the integra-
tion step.
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More specifically, the algorithm consists of the following basic steps. First, as
is commonly done, we re-write the ODE (1) in the form of an integral equation

ﬂﬁ:%+/ﬁﬂﬂjﬂﬂ (8)

and with the introduction of the operator on the space of continuous functions
from [ty, t1] to RY given by A(f)(t) = Fo+ I F(f{t"),t') di', we arrive at a fixed
point problem 7 = A(7). We apply Schauder’s fixed point theorem to obtain
a Taylor model for the flow M(7%,¢) of the ODE (1). An important aspect is
that the quantity 7o in the fixed point problem can be either a point expressed
by real numbers, or an interval box, or Taylor models depending on the initial
conditions, or a combination of the above.

To apply Schauder’s theorem, we follow the following steps.

o Determine a family Y of subsets of X, the Schauder Candidate Sets. Each
set in Y should be compact and convex, it should be contained in a suitable
Taylor model, and its image under A should be in Y. The mathematical
details of the choice of the candidate sets are described in [11].

e Using differential algebraic methods on Taylor models, we determine an
initial set My € Y satisfying the inclusion property A(My) C M,. Then
all requirements of Schauder’s theorem are satisfied, and My contains a
solution. Note that different from other verified integrators, in this procedure
we simultaneously determine the so-called a priori (initial} inclusion as well
as the high order inclusion necessary to execute the step.

e Iteratively generate the sequence M; = A(M;_,) for ¢ = 1,2,... Each M;
also satisfies A(M;) C M;, and we have My D My D ... . We continue the
iteration until the size stabilizes sufficiently.

For computational purposes, the only requirement for Schauder’s theorem is
to find a Taylor model P 4- I such that

AP+ cP+T, 9)

which can be checked computationally. The task depends on finding a suitable
choice for P and I, , and furthermore it is desirable to have I as tight as possible.
By choosing a polynomial P that is already close to the true solution of the
ODE in the following way, we can get the desired answer.

The nth order expansion M,(7,t) of the flow including time dependence
can be obtained in conventional Differential Algebraic scheme [12]. Choose an
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initial function M9 to be the identity function Z, then iteratively determine

MEFD =, AMD). (10)

This process converges to the exact result M, in n -+ 1 steps.
Now try to find I* such that

M, +I* C AWM, + 1%, (11)

the Schauder inclusion requirement. The suitable choice for I* requires some
trial and error. I obtained as A(M, + [0,0)) = M, + I'D can serve as
a good estimate for a lower bound for I* because I* D IO Now iteratively
try 1) = gk . 10 with ¢ > 1, until a computational inclusion is found, i.e.
AM,, + I®) c¢ M, + I™®. In practice, a computational inclusion can be
found in a few iterations with ¢ between 1 and 2. Should this however not be
the case, it can almost always be forced by slightly reducing the integration
step size, which reduces the main contribution of the remainder bound of the
mapped set.

Once a computational inclusion has been determined, the solution of the ODE
is known to be contained in the Taylor model M, + I*¥). Set Iy = ™). Since
the solution is a fixed point of 4, it is even contained in A¥(M,, + I;)) Vk.
Furthermore, the iterates of A are shrinking in size, i.e. A¥(M,, + f(l)) C
AFY M, + 1:‘(1)) Vk. So the width of the remainder bound of the flow can be
decreased by iteratively determining M, + f(k) = A(M, + fzk_l)), until no
further significant decrease in size is achieved. As a result, M, + I_Ek) is the
desired sharp inclusion of the flow of the ODE.

To integrate over time, we apply the procedure at each time step. Automatic
step size controllers are utilized that assure that if the solution at a time step
is not favorable, the step size is decreased, on the other hand, if a time step
can proceed without much growth of errors, the next step size is increased.

4 Dynamics in the solar system

In order to study the motion in the solar system with an accuracy that is
sufficient to predict collisions, it is necessary to include various relativistic
corrections to the well-known Newtonian forces based on the Kepler force
law. Specifically, the full equation of motion in the solar system including the
relevant relativistic effects is given by [13]
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. mi(ri—1) | 2B+7) = my
r-—G; r? {1 c? sz: T G; Tij c?
AP 20+, o 8 [@ox)t]" 1
+ c? 2 T s T + 2c? (ri —x) -1
rox Ze (e feonl (e mi— (e mo=r),

(12)

where r is the point of interest, G is the gravitational constant; m; and r;
are the mass and the solar-system barycentric position of body %, including
the sun, the planets, the moon and the five major asteroids, respectively;
r; = |r; — r|; and B and «y are the parametrized post-Newtonian parameters
measuring the nonlinearity in superposition of gravity, and space curvature
produced by unit rest mass [13].

Based on the rather accurately known positions r; of the celestial bodies, which
are the result of measurements over long periods of time and fitting of orbits
through large numbers of data points and are thus orders of magnitude more
precisely known as those of asteroids, the equation of motion as written is
believed to allow prediction of orbit coordinates with an accuracy in the range
of a few kilometers for integration over time spans of around one century {13].
Based on this information, an interval bound for the error of the right hand side
can be estimated and folded into the computation as an additional term to be
added to the remainder bound of the respective Taylor model of the right hand
side. For the practical calculations below, it turns out that this additional term
proves rather inconsequential. However, it needs to be stressed that within the
framework of conventional reasoning of the community in celestial mechanics,
it is sometimes difficult to find error bounds at a level of rigor needed for
interval-based arguments.

To study potentially hazardous near-earth asteroids [14], we apply the verified
Taylor model based ODE integrator to the equation of motion (12). Due to the
limitation of the means of measurements, i.e. the observation of an asteroid at
the observatories situated on the earth or near earth, the inaccuracies of the
position and velocity of the asteroid are large, especially in the direction from
the earth toward the asteroid. This means that the ranges of initial conditions
for the ODE may not only be quite large (in the range of 107° relative), but
also have different magnitudes for different variables. These errors have to be
accounted for, as they represent the main source for the large ranges of possible
later positions that are typical for predictions of asteroid dynamics. Overall, it
is these large ranges that make the system very susceptible to wrapping effect
problems as well as the common problem of overestimation.
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As an example to assess the performance of our verified integration scheme, we
study the dynamics of ranges of initial conditions for the near-earth asteroid
1997 XF11. The asteroid travels from outside of the Mars orbit to inside of
the earth orbit very close to the Venus orbit, having a period of about 1.7
earth years. The asteroid 1997 XF11 will make a close approach to the earth
on QOctober 26th in 2028. The recent analyses predict an approach distance
of 0.00636 AU ( 951,000 km ), which is about 2.5 times farther than the
moon, replacing an earlier reported extremely close passage of only a few
earth diameters [14]. As is the case for most asteroids, compared to the planets
the ranges of initial conditions compatible with measurement data are very
large, and the challenge lies in the transport of these large ranges without
introducing significant overestimation. In the following section we see that
this can actually be accomplished, and hence it is possible to perform verified
calculations that allow the exclusion of collisions, as was found to be the case
for 1997 XF'11.

5 Results of verified calculations

We now present some results of verified calculations based on orbit data of
the 1997 XF11 asteroid, and analyze the performance of the verified integrator
being used. Denoting by z, y, and z the three Cartesian coordinates of the
variables 7 and by , ), and Z the three Cartesian velocities 7 in eq. (12), we
study the dynamics over a domain box with six domain widths of d for the
initial conditions. For the sake of better computational performance, we scale
the variables around the initial center values so that the relative domain in
the new scaled variables is [—1,1] in each dimension; Z = z. + (z — z.)/(d/2).
Thus, the scaled variables as well as the time initially have the following form
with the center values as the reference point:

VAR REFERENCE POINT DOMAIN INTERVAL
1 -1.772666585569338 [-2.772666585569338 ,-.7726665855693382]

2 0.237218728844051 [-.7627812711559487 , 1.237218728844051]
3 0.167950671786751 [-.8320493282132488 , 1.167950671786751]
4 -.580218647359020 [-1.580218647359021 ,0.4197813526409793]
5 =-.013597900139683 [-1.013597900139683 ,0.9864020998603170]
6 -.201599807982744 [-1.201599807982745 ,0.7984001920172554]
7 0.000000000000000 [0.0000000000000000 ,0.0000000000000000]

The latter one is initially zero and is only populated in the execution of each
integration step through iteration of eq. (10); after each step, the value of the
time coordinate is inserted, which again makes the dependence disappear. The
first six lines contain the positions (in astronomical units) and velocities (in
astronomical units per year times 27) of the starting point, as well as the width
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of the domain interval for the respective quantities. All domain intervals have
size 1, and the linear parts of the polynomial parts are adjusted to assure
that the initial range of possible values for the coordinates is spanned over the
domain box.

At the beginning of six dimensional integration to order 10, the Taylor model
for the first component of the motion, the Taylor model for the x coordinate
of the asteroid, as printed by COSY, has the form

I COEFFICIENT ORDER EXPONENTS
1 -1.772666585569 0 000000
2 0.5000000000000E-06 1 100000

REMAINDER BOUND INTERVAL [-.4440894318947E-15,0.4440894318947E-15]

The first line denotes the center z position in astronomical units. The second
line shows the initial linear part of the Taylor model, which is responsible for
spanning the initial box of width 107® astronomical units over the domain
box given above, which amounts to the width of possible z values determined
by measurement errors. The last line contains the initial remainder bound
interval of the Taylor model, which is so far determined only to account for
the numerical inaccuracy in the representation of the true numbers by floating
point numbers. This Taylor model represents the starting value for the first
coordinate of the quantity 7o = (2o, Yo, 20, Z0, Y0, 20) in eq. (8).

It is worth stressing that in a conventional verified integrator, this first com-
ponent z would be represented merely by an interval of width 10~% centered
around the point —1.772666585569338. Such a relatively large width has a
tendency to lead to wrapping effect problems very quickly, since in each step
a new distorted box with width in the order of 1075 has to be re-packaged
by another box. On the other hand, describing the structure of the range of
initial conditions and later intermediate values for the dynamical variables by
Taylor models avoid the need for re-packaging; the deformed shape is merely
described as the range of Taylor polynomials in the initial conditions.

As an additional advantage, the Taylor model approach can avoid most of
the overestimation due to the intervals of width 10~% that would occur in the
mere interval evaluation of the right hand side of the ODE (12); details of this
avoidance of the dependency problem can be found in [8].

After a time of approximately 1.76 years, the Taylor model of the z component
as determined by the verified integrator now has the form

I COEFFICIENT ORDER EXPONENTS
1 -1.729979938862 0 000000 15 -.1541518999234E-10 2 010100
2 0.2669995836588E-05 1 100000 16 -.2780687661956E-11 2 001100
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3 -.1555595145519E-05 1 010000 17 0.2524887623418E-10 2 000200
4 -.1999596199058E-06 1 001000 18 0.9405928517122E-13 2 100010
5 0.3983192063746E-05 1 000100 19 -.1304168062733E-12 2 010010
6 0.1936219598678E-07 1 000010 20 -.6920679984791E-13 2 001010
7 0.1382206623852E-05 1 000001 21 0.23225663261934E-12 2 000110
8 0.8813122946243E-11 2 200000 22 0.1032777207550E-10 2 100001
9 -.8482323930185E-11 2 110000 23 -.5321701018616E-11 2 010001
10 0.3598785862399E~-13 2 020000 24 -.9887392833456E-12 2 001001
11 -.1763671873927E-11 2 101000 25 0.1871537734475E-10 2 000101
12 0.7351992613921E~12 2 011000 26 -.2305603850554E-12 2 000020
13 -.2277507757098E-12 2 002000 27 0.1595760887145E-12 2 000011
14 0.2976593389359E-10 2 100100 28 0.1571674237059E-11 2 000002

REMAINDER BOUND INTERVAL [-.8670915506993E-11,0.8670738857369E~11]

The polynomial now has more terms than before due to the fact that now also
the values of the other dynamical coordinates determine the final position
of the object. Terms of first and second order appear, the exact meaning. of
which is described by the exponents of the six dynamical variables and time
listed in the end of each line. The zeroth order part of the polynomial of the
Taylor model part is now different from before as a result of the integration,
indicating that the center of the box containing the range of allowed values
has moved. Furthermore, there are now linear dependencies on not only the
first variable, but also on the other five variables, indicating that the original
box which was aligned with the axes has now been rotated and stretched.

In addition, there are terms of second order appearing, indicating that the ac-
tual occupied range is now not a parallelepiped anymore, but rather exhibits
some nonlinear deformation. The magnitude of the largest second order terms
is in the range of 1071% above the magnitude of the now larger remainder
term. Polynomial terms below a cutoff size of 10717 are lumped into the re-
mainder term to keep the polynomial part simple and of limited size, which
is advantageous since the Taylor arithmetic employed here has full sparsity
support [15].

It is worth pointing out that had the second order dependence not been kept
in the Taylor model calculation, the respective effects would have had to be
absorbed into the remainder term, which would lead to an increase of its size by
at least one order of magnitude. As a further comparison to other methods,
typically the current box is re-packed into a rotated box with right angles,
which introduces overestimations of perhaps a few percent of the linear width,
and hence at least about four orders of magnitude more than our remainder
bound.

As a last example, we show the result of the calculation at a time of about
3.47 years.
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I COEFFICIENT ORDER EXPONENTS

1 -1.754219040644 0 000000 21 0.1021420288277E-11 2 000110
2 0.4360583811370E-05 1 100000 22 0.4278281656362E-10 2 100001
3 -.2882954051752E-05 1 010000 23 -.2749808650290E-10 2 010001
4 -,3551964030358E-06 1 001000 24 -.4016050278429E-11 2 001001
5 0.7093530502070E-05 1 000100 25 0.7839892079064E-10 2 000101
6 0.3458088648861E-07 1 000010 26 -.4036477375995E-~-12 2 000020
7 0.2461689085201E-05 1 000001 27 0.4821388881932E-12 2 000011
8 0.3470484146983E-10 2 200000 28 0.1057845692876E~10 2 000002
9 -.4321544674158E-10 2 110000 29 0.1513248269030E-14 3 210000
10 0.1042951174372E-10 2 020000 30 -.5550683440348E-14 3 120000
11 -.6646933899734E-11 2 101000 31 0.1379571548696E-13 3 200100
12 0.3930131605285E-11 2 011000 32 -.2376430348886E-13 3 110100
13 -.2239667322416E-12 2 002000 33 ~.3725055090868E-13 3 020100
14 0.1232576364442E-09 2 100100 34 -.1b581518925090E-14 3 100200
15 -.7941425674937E-10 2 010100 35 -.1339611425873E-14 3 010200
16 -.1141698404321E-10 2 001100 36 0.1405540257892E-13 3 000300
17 0.1098864604671E-09 2 000200 37 0.2269751185686E-14 3 110001
18 0.4810278850719E-12 2 100010 38 0.3157356498990E-14 3 100101
19 -.4745742391081E-12 2 010010 39 0.3828688421870E-14 3 000201
20 -.1471614587873E-12 2 001010

REMAINDER BOUND INTERVAL [~.2820192825328E-10,0.2820181117737E-10]

Beginning with inspecting the polynomial dependence, the constant part again
shows the relative position of the center of the original domain box, and the
linear parts provide information about the orientation of the box, which by now
has rotated several times. There are now more higher order terms, indicating
that the transformation from initial to final coordinates is becoming more and
more nonlinear.

The approximate size of the predicted domain region, given largely by the
linear terms, is in the range of about 107°. On the other hand, the remainder
bound, which is a measure of the overestimation of the method, is in the
range of about 10711, This means that the relative overestimation of the size
of the resulting domain is less of magnitude 107>, illustrating the far-reaching
avoidance of the wrapping effect problem.
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