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For the purpose of precision studies of transfer maps of particle motion in complex
magnetic fields, we develop a method for Differential Algebra based 3D field computation
and multipole decomposition. It can be applied whenever a model of a magnet is given
which consist of line wire currents, and the wires are utilized to represent both the coils
and the iron parts via the so-called image current method. Such a model exists for most
modern superconducting magnets and a large variety of others as well. It is stressed that it
is the only practically possible way to extract the multipoles and its derivatives, and hence
the transfer map of the particle motion, analytically to high order. We also study various
related topics like aspects of computational complexity of the problem, Maxwellification of
fields, importance of vanishing curl, etc., and its applications to very accurate computation
of magnetic fields including fringe fields.
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Introduction. The performance of modern high energy accelerators, such as the Large
Hadron Collider at CERN depends critically on the field quality of superconducting or air coil
magnets employed to guide and focus the circulating beam [1]. The nonlinearities of these
magnets drive resonances, potentially rendering the motion of particles at large amplitudes
unstable [2]. The shrinkage of the useful region in space, called the dynamic aperture, due
to magnet nonlinearities is detrimental to the stringent high luminosity requirements, so a
careful design of these magnets is in order.

The design of air coil magnets is often performed by dedicated codes like ROXIE [3]. The
accurate placement of the wires, followed by extensive optimization, produces an analytical
model of the magnet. In a similar vein, many modern compact accelerators including certain
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FFAGs [4] as well as novel applications like those connected to planned precision measurement
for electric dipole moments require very precise field arrangements [5].

Using the Biot–Savart law, the resulting magnetic field is computed on the surface of
a cylinder coaxial with the optical axis, and subsequently Fourier analyzed numerically to
reveal its multipole content. Several iterations are necessary to obtain a magnet model that
satisfies the design specifications. However, once the magnet model is ready, the dynamical
studies can use only the multipole data output of the magnet design codes, usually organized
in tables. These contain the integrated values of the multipoles [6]. This is satisfactory for
the interior of the multipoles where the fields are independent of the arc length s, which is
used as the independent variable. However, it is not necessarily accurate enough for the end
regions, the fringe fields, where the s dependence of the fields could result in unusual local
dynamics not revealed by the integrated values.

In the following we develop a theory that solves this problem by computing the magnetic
fields based on Differential Algebraic (DA) methods. This method allows not just the
extraction of the multipole strengths, but also their full s dependence, allowing analytical
computation of s derivatives, which are necessary for “exact” fringe field map computations.
The first steps in this direction have been done by Caspi [7], which we here extend to
a general theory. Subsequently we derive an improved, numerically stable version of the
Biot–Savart law for straight line current wires in 3D and explain the principle of DA based
field computation. This is followed by two methods for multipole extraction. The importance
of enforcing Maxwell’s equations is presented based on two methods to enforce Maxwell’s
equations, a local and a global approach. To conclude, various examples of the computation
of multipoles and applications to map computation are given.

The Biot–Savart law and field computation. The magnetic field computation is
based on the Biot–Savart law. To solve the equations of motion, and hence to obtain the
map of a magnetic element it is necessary to compute not just the value of the field at a
certain point in space, but also its derivatives and hence its Taylor expansion. So, why do we
want to use Differential Algebraic methods [8–10] to achieve this? In principle, it is possible
to determine the derivatives analytically and implement it in some code to evaluate them.
This was done using Mathematica, and the results are presented in Table 1. We mention
that the calculations have been done in only one variable (x), for one field component (By),
and one single line current. As it turns out, higher order computations are very resource
intensive, and Mathematica usually ran out of memory at the computation of the order 10
derivative. Therefore, it is clear that for realistic magnet models, consisting of several 105

line currents, in at least 2 variables up to high orders this way is practically intractable. As
a comparison, Table 2 shows the speed of the DA method on the same computer, which at
the same time preserves the accuracy of the computed derivatives. Technically, to obtain the
Taylor expansion of the field components around a specified point in space, all we need is
the evaluation of the Biot–Savart law in DA.

While the exact form of the formula is not critical for the evaluation of the magnetic
field value at a certain point in the space as long it is mathematically accurate, it does have a
significant influence when it is used to compute also the Taylor expansion of the field around
a point. Some of the shortcomings of a naive implementation have been pointed out by Caspi
[7]. Another numerical instability has been noticed by us when we utilized it at a point
where some of the wire currents were exactly or almost collinear with the point of expansion.
Therefore, several modifications of the standard form of the Biot–Savart law are needed to
obtain a numerically stable version which has good behavior in all arising situations [11–13].

As a consequence of Ampere’s law, the elementary magnetic flux density at a point r
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Table 1. Results of transforming the analytic derivatives of the Biot–Savart law
calculated with Mathematica to FORTRAN code

Order ∂nBy/∂xn (0, 0, 0)
n Generation Max. Lines Evaluation

time mem. time
0 0.02 891 4 0.3
1 0.09 912 20 0.8
2 0.33 1026 69 2.4
3 0.94 1306 188 7.0
4 2.50 1932 457 16.0
5 6.26 3213 1009 36.0
6 12.95 5709 2078 72.9
7 27.23 10275 4059 140.9
8 50.16 18591 7567 267.0
9 96.73 33132 13603 480.0

No t e . Shown are the CPU time required to generate the code in sec, the required memory in kB,
the length of the generated FORTRAN code, and the CPU time required for the evaluation of the derivative
in msec.

Table 2. Evaluation time in sec of the Taylor expansion of the y component of
the magnetic field in DA at various orders

Order ∂nBy/∂xn (0, 0, 0)
n Evaluation time
1 4.8·10−6

5 6.8·10−6

10 10.7·10−6

15 20.5·10−6

20 47.8·10−6

25 93.7·10−6

generated by a filamentary current wire dl situated at r′ is given by the Biot–Savart formula

dB =
µ0I

4π

dl× (r− r′)

|r− r′|3
.

To compute the magnetic field generated by an extended straight line current we parametrize
the line by λ ∈ [0, 1] and define r′ (λ) = rs + λl and re = rs + l, where rs, re represent the
starting and end-point, respectively, of the line current to the point r.

Integrating over the line

B = kI

∫
dl× r′

|r′|3
= kI

1∫
0

l× (rs + λl)

|rs + λl|3
dλ = kI (l× rs)

1∫
0

dλ

|rs + λl|3
,

with k = −µ0/(4π) and introducing the shorthand notations a = |rs|2, b = 2rs · l, c = |l|2,
the integral gives the result

1∫
0

dλ

(a+ bλ+ cλ2)
3/2

=
1

b2 − 4ac

(
2b√
a
− 2b√

a+ b+ c
− 4c√

a+ b+ c

)
.
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While mathematically accurate, this formula exhibits several severe numerical pitfalls that
restrict its direct practical use, in particular when high-order derivatives are to be computed.
Indeed, first the formula apparently exhibits a problem of cancellation of close-by numbers if
b+ c� a. Introduction of the quantity ε = (b+ c) /a yields

B =
kI (l× rs)√
a (b2 − 4ac)

[
2b

(
1− 1√

1 + ε

)
− 4c√

1 + ε

]
.

The first problem can be substantially alleviated now by observing that

1− 1√
1 + ε

=
ε

1 + ε+
√

1 + ε
,

which yields the formula

B =
kI (l× rs)√
a (b2 − 4ac)

[
2bε

1 + ε+
√

1 + ε
− 4c√

1 + ε

]
. (1)

However, there is a second numerical difficulty if the line current and the observation point
are lying exactly or almost on the same line, because in this case b2 and 4ac assume similar
values, which makes the evaluation of b2 − 4ac prone to numerical inaccuracy. To avoid this
effect we rewrite the formula in terms of the angle θ between l and rs. The relations among
the angle and the products of vectors are

|sin θ| = |l× rs|
|l| · |rs|

and cos θ =
l · rs
|l| · |rs|

.

This implies the relationships

b2 − 4ac = −4 |rs|2 |l|2 sin2 θ,

2bε

1 + ε+
√

1 + ε
− 4c√

1 + ε
=

4 |rs| |l| cos θ
(

2 |rs| |l| cos θ + |l|2
)

|re| (|re|+ |rs|)
− 4 |l|2 |rs|

|re|
.

Finally, we obtain the magnetic field expressed in terms of rs and l as

B = − kI (l× rs)

|rs|2 |rs + l| (|rs + l|+ |rs|)

[
− |rs|+

|rs| cos2 θ + |l| cos θ − |rs + l|
sin2 θ

]
.

Denoting |rs| cos2 θ+ |l| cos θ = α and |rs + l| = β, we manage to eliminate the sin2 θ term in
the denominator with the help of the identity α−β =

(
α2 − β2

)
/ (α+ β) . Direct calculation

shows that
α2 − β2 = − sin2 θ

(
|rs|2 cos2 θ + |rs + l|2

)
.

Altogether we obtain the final result

B =
kI (l× rs)

|rs|2 |rs + l| (|rs + l|+ |rs|)

[
|rs|+

|rs|2 cos2 θ + |rs + l|2

|rs| cos2 θ + |l| cos θ + |rs + l|

]
. (2)

All expressions involve sums of positive numbers, so there is no cancellation problem. The
only case where the expression is numerically unstable is when |rs| cos2 θ + |l| cos θ + |rs + l|
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Table 3. Taylor expansion of the magnetic field components Bx and By

Bx (x, s, y) By (x, s, y) Order Exp
0.9384473968456148E − 11 −.8339510041598585E − 11 0 0 0 0
0.1022945817408163E − 09 17.49010593690617 1 1 0 0
0.1430119891325347E − 09 −.1304592905872117E − 09 1 0 1 0
17.49010593689972 0.9584448246993324E − 10 1 0 0 1
−.6067419448807509E − 09 0.5543819518033510E − 09 2 2 0 0
0.3602525017014357E − 08 −3.804751735973857 2 1 1 0
0.1205363555495387E − 08 −.1106863867922359E − 08 2 0 2 0
−.2014572349218202E − 08 0.1941685518966341E − 08 2 1 0 1
−3.804751736131598 0.3444233784028611E − 08 2 0 1 1
−.5986214510200760E − 09 0.5524820548968856E − 09 2 0 0 2
−.2282722315338770E − 07 −1.666257305421052 3 3 0 0
−.9274588597119049E − 09 0.1244904457298190E − 09 3 2 1 0
0.7183921058029341E − 07 9.997543895896488 3 1 2 0
0.5557759530372408E − 09 −.2165498336204053E − 10 3 0 3 0
−4.998771979234908 −.3052480102017086E − 08 3 2 0 1
−.1133153901822226E − 06 0.1106802772765647E − 06 3 1 1 1
9.997543893641829 0.6954731157637895E − 07 3 0 2 1
−.3357574107631933E − 08 −4.998771979536424 3 1 0 2
−.7398769930055948E − 09 −.5953132431457675E − 10 3 0 1 2
−1.666257304770050 −.2216494703055627E − 07 3 0 0 3

No t e . The columns represent the expansion coefficients, the order in the expansion and the exponents
of (x, s, y), respectively.

approaches zero, that is θ → π and |rs| ≤ |l| . But this corresponds to a point in the close
proximity of the wire where the field anyway diverges and is thus unavoidable.

The necessary ingredients for the DA field calculation are the above formula and the
magnet model, consisting of line wire currents. To this end, the entire field in space is
calculated by summing up the fields created by wire currents. At each step, the evaluation
of (2) in DA yields not only the value of the magnetic field at the respective point, but also
its derivatives, that is the Taylor expansion with respect to coordinates.

The result for the return end of the Large Hadron Collider’s High Gradient Quadrupole,
up to order 3, is presented in Table 3. The correctness of our results have been checked against
data obtained from Fermilab. The Fermilab data contains the values of the components of
the field on the surface of a coaxial cylinder with the optical axis, and have been kindly
supplied by G. Sabbi.

To show that the Biot–Savart law implementation based on (2) is much more stable
then, for example, code based on (1), we use as an indicator the s component of the curl
of the field, which, according to Maxwell’s equations, should vanish. From Table 4 it is
clear that the naive implementation goes wrong as low as second order in the curl. Due
to space considerations we present the result only up to order 3, but our results show that
the behavior of (2) is good up to very high orders. Also, we mention that probably this is
the most straightforward and accurate way to compute the curl and hence verify whether
Maxwell’s equations are satisfied.

Multipole Extraction Algorithms. The Direct Method. Using the field compu-
tation of the preceding section, it is possible to extract the multipole content of magnetic
fields directly, in a very elegant way that is arbitrary in order. In the following we assume
straight optical axis. In the divergence-free, curl-free region of the magnets it is possible
to derive the magnetic field components from a magnetic scalar potential that satisfies the
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Table 4. Comparison of the s component of the curl, up to order 3, computed
by two different implementation of the Biot–Savart law

(eq. (2) and eq. (1) respectively)

(∇×B)s from eq. (2) (∇×B)s from eq. (1) Order Exp
0.6448175327022909E − 11 0.6451728040701710E − 11 0 0 0 0
0.3123336252824904E − 08 0.3123335699448115E − 08 1 1 0 0
0.1577409314279521E − 09 0.1577009633990656E − 09 1 0 1 0
0.3138928421006493E − 08 0.3138927988192986E − 08 1 0 0 1
0.6297175136893429E − 07 0.3368312531613524 2 2 0 0
0.1135643710736822E − 06 0.1135639355887008E − 06 2 1 1 0
0.2254658681977162E − 08 0.2237449336917052E − 08 2 0 2 0
0.6101880112296945E − 09 0.6101442684425235E − 09 2 1 0 1
0.1121600312625759E − 06 0.1121592163033647E − 06 2 0 1 1
−.6522627415961324E − 07 −.3368312554111546 2 0 0 2
−.1035163990081857E − 06 0.8482986704194671E − 06 3 3 0 0
0.3603849257016734E − 05 −1010523.362231316 3 2 1 0
0.2310457119847342E − 05 0.4430214737283222E − 06 3 1 2 0
0.2364236389995611E − 07 −.3117654705420136E − 04 3 0 3 0
−.1977820552667708E − 05 −.3840225446083422E − 05 3 2 0 1
0.9434835135380232E − 08 0.9449170335074086E − 08 3 1 1 1
0.2256179271853398E − 05 0.6295506663533956E − 05 3 0 2 1
−.1999900781868291E − 05 −.2090122526610116E − 05 3 1 0 2
−.3674740044701252E − 05 1010523.362276393 3 0 1 2
−.9278849333327333E − 07 0.5070636007076246E − 05 3 0 0 3

Laplace equation. The general solution expanded in normal and skew components has the
form

VB =

∞∑
k,l=0

(bk,l(s) sin lφ+ ak,l(s) cos lφ) rk. (3)

Defining θk,l(s) and Mk,l(s) by

tan θk,l(s) = − bk,l(s)
ak,l(s)

, Mk,l(s) =
√
b2k,l(s) + a2

k,l(s), (4)

we have an equivalent form

VB =

∞∑
k,l=0

Mk,l(s) cos (lφ+ θk,l(s)) r
k,

which shows that any normal (skew) component can be obtained from the corresponding
skew (normal) component by an s dependent rotation around the s axis. The link between
the two forms in the other direction is

bk,l(s) = −Mk,l(s) sin θk,l(s), ak,l(s) = Mk,l(s) cos θk,l(s).

Inserting (3) in the Laplace equation in cylindrical coordinates

∆VB =
1

r

∂

∂r

(
r∂VB
∂r

)
+

1

r2

∂2VB
∂φ2

+
∂2VB
∂s2

= 0,
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we obtain
∞∑

k,l=0

[(
bk,l(s)(k

2 − l2) + b′′k−2,l(s)
)

sin lφ+
(
ak,l(s)(k

2 − l2) + a′′k−2,l(s)
)

cos lφ
]
rk−2 = 0,

using the convention that the coefficients vanish for negative indices. Due to the fact that
the above equation must hold for every r and φ, and the sin and cos are linearly independent

bk,l(s)(k
2 − l2) + b′′k−2,l(s) = 0, ak,l(s)(k

2 − l2) + a′′k−2,l(s) = 0.

Furthermore, it can be shown that the following recurrence relations hold

bl+2n,l(s) =
b
(2n)
l,l (s)

Πn
ν=1 (l2 − (l + 2ν)2)

, al+2n,l(s) =
a

(2n)
l,l (s)

Πn
ν=1 (l2 − (l + 2ν)2)

, (5)

and the coefficients that cannot be obtained by these relations are zero. The bl,l(s), al,l(s)
are called normal and skew (true) multipoles respectively, while the terms that contain s
derivatives are called pseudo-multipoles. It is worth mentioning that, as one can see from (4),
the recurrence relations (5) do not hold in general for Mk,l(s). However, when the θk,l are s
independent, (5) holds for Mk,l(s). Inserting relations (5) in (3), we get for the potential

VB =

∞∑
l=0

(fl(r, s) sin lφ+ gl(r, s) cos lφ) rl,

where

fl(r, s) =

∞∑
n=0

bl+2n,l(s)r
2n =

∞∑
n=0

b
(2n)
l,l (s)

Πn
ν=1 (l2 − (l + 2ν)2)

r2n =

= bl,l(s)−
b
(2)
l,l (s)

4(l + 1)
r2 +

b
(4)

l,l (s)

32(l + 1)(l + 2)
r4 −

b
(6)

l,l (s)

384(l + 1)(l + 2)(l + 3)
r6 + . . . ,

gl(r, s) =

∞∑
n=0

al+2n,l(s)r
2n =

∞∑
n=0

a
(2n)
l,l (s)

Πn
ν=1 (l2 − (l + 2ν)2)

r2n =

= al,l(s)−
a

(2)
l,l (s)

4(l + 1)
r2 +

a
(4)

l,l (s)

32(l + 1)(l + 2)
r4 −

a
(6)

l,l (s)

384(l + 1)(l + 2)(l + 3)
r6 + . . . .

The functions fl(r, s) and gl(r, s) represent the “out of axis” expansion of the multipoles. The
magnetic field components in cylindrical coordinates can be calculated using the well known
formulas

Br = −∂VB
∂r

, Bφ = −1

r

∂VB
∂φ

, Bs = −∂VB
∂s

,

resulting in the expressions

Br(r, φ, s) = g̃0(r, s) +

∞∑
l=1

[
f̃l(r, s) sin lφ+ g̃l(r, s) cos lφ

]
rl−1, (6)

Bφ(r, φ, s) =

∞∑
l=1

[l (fl(r, s) cos lφ− gl(r, s) sin lφ)] rl−1,

Bs(r, φ, s) =

∞∑
l=0

[
f

′

l (r, s) sin lφ+ g
′

l(r, s) cos lφ
]
rl,
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where prime denotes derivative with respect to s and

f̃l(r, s) =

∞∑
n=0

(l + 2n)bl+2n,l(s)r
2n =

∞∑
n=0

(l + 2n)b
(2n)
l,l (s)

Πn
ν=1 (l2 − (l + 2ν)2)

r2n =

= lbl,l(s)−
(l + 2)b

(2)
l,l (s)

4(l + 1)
r2 +

(l + 4)b
(4)

l,l (s)

32(l + 1)(l + 2)
r4 −

(l + 6)b
(6)

l,l (s)

384(l + 1)(l + 2)(l + 3)
r6 + . . . ,

g̃l(r, s) =

∞∑
n=0

(l + 2n)al+2n,l(s)r
2n =

∞∑
n=0

(l + 2n)a
(2n)
l,l (s)

Πn
ν=1 (l2 − (l + 2ν)2)

r2n =

= lal,l(s)−
(l + 2)a

(2)
l,l (s)

4(l + 1)
r2 +

(l + 4)a
(4)

l,l (s)

32(l + 1)(l + 2)
r4 −

(l + 6)a
(6)

l,l (s)

384(l + 1)(l + 2)(l + 3)
r6 + . . . .

It can be seen that every multipole, except for l = 0, is multiplied by rl−1. For the special
case l = 0, we get

Br(r, s) = g̃0(r, s) = −
∞∑
k=1

(−1)k+1 k

22k−1k!k!
a

(2k)
0,0 (s)r2k−1,

Bφ(r, s) = 0,

Bs(r, s) = −
∞∑
k=0

(−1)k+1 1

22kk!k!
a

(2k+1)
0,0 (s)r2k.

In the DA picture, the field calculations are done locally, as a Taylor expansion of the field
with respect to Cartesian coordinates x, y, s. Hence, we need the equations relating the
cylindrical and Cartesian components of the magnetic field:

Bx(r, φ, s) = Br(r, φ, s) cosφ−Bφ(r, φ, s) sinφ,

By(r, φ, s) = Br(r, φ, s) sinφ+Bφ(r, φ, s) cosφ,

and Bs(r, φ, s) is unchanged. Clearly, if we evaluate the above equations in the midplane
(y = φ = 0), then

Br(r, φ = 0, s) |r 7→x= Bx(x, y = 0, s), Bφ(r, φ = 0, s) |r 7→x= By(x, y = 0, s).

So, all the information we need to extract the multipoles up to the order of calculation is in
the Cartesian components of the fields in the midplane

Bx(x, y = 0, s) = g̃0(x, s) +

∞∑
l=1

g̃l(x, s) · xl−1, By(x, y = 0, s) =

∞∑
l=1

lfl(x, s) · xl−1.

This is possible due to the previously mentioned fact that any multipole strength of order
l is multiplied by xl−1. Starting at l = 1, a1,1(s) is extracted as the x independent part
of Bx, and analogously b1,1(s) from By. Evaluating a1,1(s) and b1,1(s) at s = 0 yields
the skew and normal dipole component. From a1,1(s) and b1,1(s) the functions f1(x, s),
g̃1(x, s) are generated up to the order of calculation and subtracted from Bx(x, y = 0, s),
and By(x, y = 0, s) respectively. This cancels the pseudo-multipoles generated by the s
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dependence of a1,1(s) and b1,1(s) (as in (5)), which otherwise would make the distinction
between sextupole terms and pseudo-dipole terms impossible. The procedure can be iterated
for the higher order multipoles, up to the order of calculation. After the k-th step, the
remainder of the field components should contain just (k+ 1)-th and higher order multipoles.

However, there is an additional problem in the case of solenoidal fields (case l = 0). In
this case we have an a0,0(s) in the potential, but its contribution vanishes from the field
components Bx and By, so the function g̃0(x, s) cannot be generated from the information
available in Bx and By. Fortunately, it can be generated from the Bs component, which
evaluated at x = y = 0 yields a

′

0,0(s). From this function we can calculate a0,0(s) up to a
constant and generate the l = 0 contribution to Bx, g̃0(x, s). Once this is subtracted from
Bx, the method works as previously described, starting with l = 1.

Finally, two notes: the method relies on the fact that the magnetic field can be generated
by a magnetic scalar potential that satisfies the Laplace equation. Therefore, it is really
important that the curl of the field vanishes. If the fields are calculated from line currents
by the Biot–Savart law, that means that the model should consist only of closed circuits to
ensure vanishing curl. Maxwellification of the field ensures a better numerical stability of
the algorithm. Secondly, only in the regions where the magnetic field is not s dependent the
functions fl and gl are equal to the true multipoles, and lfl = f̃l, lgl = g̃l, an assumption
that is sometimes made even for the s dependent region too.

Multipole Extraction by Analytical Fourier Transform. There is an alternate
way to extract the multipoles. The field computation being performed in COSY in Cartesian
coordinates (x, y, s), it is possible to perform an analytical pseudo-Fourier transform, meaning
a series of coordinate transformation in DA, keeping the r and s dependence. This is solved
by our S-Dependent Differential Algebraic Analytical Fourier Transform presented below.

Initially, the field components are in the form of (10). The first transformation is (x, y, s)
7→ (r, cosφ, sinφ, s) by x = r cosφ and y = r sinφ. At the same time, using (11) we switch
to cylindrical coordinates, obtaining the field components in the form of (12). Note that
we are going from a 3 variable representation to a 4 variable one, therefore some of the
information in the new representation will turn out to be redundant for our purpose. The next
transformation is (r, cosφ, sinφ, s) 7→ (r, eiφ, e−iφ, s), that is the exponential, and obviously
a complex representation, using cosφ =

(
eiφ + e−iφ

)
/2 and sinφ =

(
eiφ − e−iφ

)
/ (2i) .

It does not matter which field component is used for Fourier transformation, so assume
that we are working with Br. Then, at this stage we have Br in the form of Br(r, eiφ, e−iφ, s).
Now, in principle, it is possible to recombine various products of powers of eiφ and e−iφ to
trigonometric functions involving multiple angles. However, the key point is to notice that
we can obtain the true multipoles by setting eiφ = 0. This is true due to the fact that all the
terms of the form eiqφe−ipφ, with q, p 6= 0, are responsible for the pseudo-multipoles. This
becomes clear if one takes a closer look at (13). By setting eiφ to zero we get rid of all the
pseudo-multipole terms and we are going back to a 3 variable representation

Br(r, e
−iφ, s) =

n+1∑
l=1

zl(s)e
−ilφrl−1, (7)

where zl(s) are complex functions of s. By comparison with (14) it is clear that one term of
(7) can come only from [Al(s) cos lφ+Bl(s) sin lφ] rl−1, which also can be expressed as[

e−ilφ
(
Bl(s)

2
+ i

Al(s)

2

)
+ eilφ

(
Bl(s)

2
− iAl(s)

2

)]
rl−1.
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After setting eilφ to zero and comparison with (7) we obtain the result Bl(s) = 2Re (zl(s))
and Al(s) = 2Im (zl(s)) . As a final step, we take the true multipoles as given by

bl,l(s) =
2

l
Re (zl(s)) , al,l(s) =

2

l
Im (zl(s)) .

Enforcing Maxwell’s Equations. Local Maxwellification. Given a magnet model
consisting of line currents, it is possible to compute the magnetic field generated by the
Biot–Savart law in the DA framework as a local Taylor expansion with respect to the
Cartesian coordinates (x, y, s), as has been demonstrated in (2). The magnetic field should
be divergence- and curl-free in the regions of interest, as implied by the Maxwell equations in
a source-free region: ∇ ·B = 0 and ∇×B = 0. This is the case only when the magnet model
consist of closed loops of current. Realistic magnet models, as for example the LHC HGQ
(High Gradient Quadrupole) end regions as modeled by the code ROXIE and supplied by G.
Sabbi of Fermilab, are not closed due to presence of image currents, “leads” and separate
treatment of the two end regions (lead end and return end). One way to fix this problem is
to input as much physical intuition as possible to close the magnet model, compute the field
generated by this model, which should differ as little as possible from the original model. This
is the first step of Maxwellification. Obviously, the solution is not unique due to infinitely
many ways of closing the model. The closing is important to guarantee vanishing curl, as it
is required by the Maxwell equations, and in this case the field is derivable from a scalar
potential. From the DA computational point of view it is also important, because as seen
above, it is enough to compute the field components only in the midplane. The computer
time needed for computing a magnet model of several 105 line currents to high order in one
end region of the LHC HGQ’s scales much worse with the increase of the number of variables
than with the increase of line currents, which should be linear.

Besides reduced computation time, a second step of the Maxwellification provides a
way to correct for small computational errors or magnet model imperfections. One specific
example is presented in the next section. Although the curl is already small, as shown in
Table 4, the numerical stability of the multipole extraction algorithm is improved by local
Maxwellification of the field, which is described below.

If we restrict ourselves to elements with straight optical axis for simplicity, the second
step of Maxwellification proceeds as follows. Given Bx(x, 0, s), By(x, 0, s), Bs(x, 0, s) (y = 0
representing the midplane) we can compute the field components in the whole space in the
following way: from a scalar potential V (x, y, s) that satisfies the Laplace equation

∂2V (x, y, s)

∂x2
+
∂2V (x, y, s)

∂y2
+
∂2V (x, y, s)

∂s2
= 0,

the field results from the well-known relation B(x, y, s) = ∇V (x, y, s) (we neglect the sign
which is irrelevant in our discussion). We transform the Laplace equation to a fixed point
problem by isolating the y derivative term

∂2V (x, y, s)

∂y2
= −

(
∂2V (x, y, s)

∂x2
+
∂2V (x, y, s)

∂s2

)
and integrating twice with respect to y and considering the initial conditions in each of the
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steps, we obtain

V (x, y, s) = V (x, 0, s) +

y∫
0

∂V (x, y′′, s)

∂y′′

∣∣∣∣
y′′=0

dy′ −

−
y∫

0

y′∫
0

(
∂2V (x, y′′, s)

∂x2
+
∂2V (x, y′′, s)

∂s2

)
dy′′dy′,

so we obtain a fixed point problem for V (x, y, s). In the DA picture it converges to the exact
solution in n steps, where n is the order of computation [14]. Since the Laplace equation is a
second order PDE, we need two initial conditions. One is immediate from

y∫
0

∂V (x, y′′, s)

∂y′′

∣∣∣∣
y′′=0

dy′ = yBy(x, 0, s),

because by definition ∂V/∂y = By. This is already known, and the other initial condition to
be calculated is the potential in the midplane V (x, 0, s).

In the ideal case the potential in the midplane is computed by a path integral, along an
arbitrary path. This is the case when the curl of the initial field is exactly vanishing. Due
to various causes previously mentioned this is almost never true. Nevertheless, the curl is
usually small. Then, one should use a path along which the field is deemed more accurately
computed, yielding a potential, and subsequently field components that are close to the
original, and curl that is almost vanishing. Hence the name Maxwellification.

Most of the time it is not obvious where the fields are computed more accurately. Then
one could try different paths and choose the one giving the smallest curl. Convenient choices
of paths are along the sides or diagonal of a rectangle in the midplane with opposite corners at
(0, 0) and (x, s). In the midplane we have dV (r) = B(r) · dr, where r = (x, 0, s). Integrating,
we get

V (r) = V (0) +

r∫
0

B (r′) · dr′.

We can neglect the immaterial constant V (0), and integration along the sides in one direction
gives

V (x, 0, s) =

x∫
0

Bx(x′, 0, 0)dx′ +

s∫
0

Bs(x, 0, s
′)ds′. (8)

Integration along the sides in the other direction gives

V (x, 0, s) =

s∫
0

Bs(0, 0, s
′)ds′ +

x∫
0

Bx(x′, 0, s)dx′.

For integration along the diagonal we set r′ = λr with λ ∈ [0, 1]. Then, dr′ = rdλ and

V (x, 0, s) = x

1∫
0

Bx(λx, 0, λs)dλ+ s

1∫
0

Bs(λx, 0, λs)dλ.
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One can check by direct calculation that indeed Bx(x, 0, s) = ∂V (x, 0, s)/∂x and Bs(x, 0, s) =
∂V (x, 0, s)/∂s. This completes the Maxwellification procedure. Once we have V (x, y, s) we
can compute the field components satisfying Maxwell’s equations in the whole region of
interest.

In DA the field components are computed as local Taylor expansions, so the method
provides a local Maxwellification. That’s why beside choosing the right path it might be
useful to average over a certain region to decide which approach is the best. Finally, it
should be obvious how to extend all the equations in the case of full 3D Maxwellification,
if originally the field components are given in all 3 variables (x, y, s). For example, (8) is
extended as

V (x, y, s) =

x∫
0

Bx(x′, 0, 0)dx′ +

s∫
0

Bs(x, 0, s
′)ds′ +

y∫
0

By(x, y′, s)dy′,

and in the same way in other cases. In this situation, of course, there are many more path
choices and no fixed point transformation of the Laplace equation is needed.

Table 5. The s component of the curl, up to order 12,
after Maxwellification of the field in Table 3

(∇×B)s after Maxwellification Order Exp
−.4547473508864641E − 12 6 2 0 4
−.1455191522836685E − 10 7 2 1 4
0.3051757812500000E − 04 8 6 0 2
−.2328306436538696E − 09 8 4 2 2
−.3051757812500000E − 04 8 2 0 6
0.1862645149230957E − 08 9 4 3 2
−.1862645149230957E − 08 10 6 2 2
−.1490116119384766E − 07 10 4 4 2
−.1490116119384766E − 07 10 2 4 4
−.1455191522836685E − 10 10 2 0 8
−.2842170943040401E − 13 11 5 0 6
0.1490116119384766E − 07 11 4 1 6
−.3552713678800501E − 14 11 2 0 9
0.5960464477539063E − 07 12 2 2 8

As an example, in Table 5 we present the s component of the curl of the Maxwellified
field of Table 3. We mention that now we present the results up to order 12 in the curl and
the first non-vanishing element occurs at order 6. Also, notice the improvement in comparison
with the curl in Table 4.

Global Maxwellification. We saw that local Maxwellification is possible based on
a closed magnet model consisting of line currents. One might imagine cases when the
magnet model is not closed, and for some reason it is practically impossible to close it, or
the actual closings change the original fields significantly. For such cases the S-Dependent
Differential Algebraic Analytical Fourier Transform (SDDAAFT) provides a way for global
Maxwellification and minimal modification of the original fields in a neighborhood of the
optical axis. The only drawback compared to the previous method is that we need the
field computation of the unclosed model in all 3 variables (x, y, s), which implies increased
computer time.

We start with the magnetic field vector B(x, y, s) representing the field of an unclosed
magnet model computed using the Biot–Savart law. Therefore, ∇ ·B = 0 and ∇×B 6= 0.
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Then, exists another vector R(x, y, s), which stands for the field generated by fictitious line
currents representing the closings of the model. Obviously, R is not unique, due to infinitely
many possibilities of closing. It follows that ∇·R = 0 and ∇× (B+R) = 0. Taking the cross
product ∇×∇× (B + R) = ∇(∇ · (B + R))−∆(B + R) = 0, we obtain ∆(Bi +Ri) = 0,
Bi and Ri being the components in cylindrical coordinates of B and R. Now, we know from
the direct method what is the structure of a function in cylindrical coordinates that satisfies
the Laplace equation. Hence, we get

Ri(r, φ, s) =

∞∑
l=0

(fi,l(r, s) sin lφ+ gi,l(r, s) cos lφ) rl −Bi(r, φ, s). (9)

Apparently, we get the smallest Ri in the vicinity of the optical axis if we choose the
free parameters in fi,l(r, s) and gi,l(r, s), the true multipoles, such that they cancel the
corresponding terms in Bi. This way we fix uniquely the true multipoles, that are anyway
the dominating part, and let Ri to contribute only for the pseudo-multipole parts. Here we
define as being a true multipole of order l the s dependent function that is the coefficient of
rl−1 cos lφ or rl−1 sin lφ respectively in the expression of Bi. This definition makes sense, as
this is the case in general when the fields are derivable from a magnetic scalar potential.

Once the principle is understood, in practice we do not need to calculate explicitly Ri.
It is enough to have Bi and extract the relevant terms, the true multipoles, then the out of
axis expansion is performed, the potential is built up and the new fields are computed. The
new fields will satisfy Maxwell’s equation and corrections can be introduced from any part of
the magnet, hence the name global Maxwellification.

Still, one thing remains to be proved. The solution is really unique if we prove that
the true multipoles are invariant with respect to which component of the original field we
choose, Br or Bφ. This result is easily obtained in case we impose the vanishing curl and
divergence conditions, as has been shown in the direct method. It can be shown that this
is the case without imposing any constraints on the coefficients. This is the subject of the
appendix. Also, in the same appendix we stress the importance of the constraints imposed
by the vanishing curl.

All the methods described have been implemented in the DA based code COSY IN-
FINITY [15–17].

Examples and Computation of Maps. Using the methods developed in the previous
sections, we computed the multipole strengths as a function of s for the LHC interaction
region’s High Gradient Quadrupoles. These quadrupoles have two end regions, the lead end
and the return end, where the fields are s dependent. We computed the multipoles up to
28-poles for both ends. The field computation has been performed up to order 13, at 1 cm
equally spaced points along the optical axis. In the following we restrict ourselves to present
the results for the lead end only. Fig. 1 shows the extracted normal and skew quadrupole,
duodecapole, and 20-pole components.

As previously mentioned, the map computation requires also the s derivatives of the
multipoles. These are easily obtained as a by-product of the multipole extraction algorithms,
because we always keep their s dependence. Derivative computation in DA in an elementary
operation. It yields very accurate results without the need to resort to numerical differentia-
tion. Some of the s derivatives of multipoles presented in Fig. 1 are shown in Figures 2 and
3. The multipoles and their derivatives have been interpolated for plotting by a derivative
preserving interpolation scheme. Also, the two multipole extraction algorithms were checked
against each other and found to be in complete agreement.
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Fig. 1. Multipole strengths of the lead end (shown are
b2(s), b6(s), b10(s), a2(s), a6(s) and a10(s))
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Fig. 2. The s derivatives of normal multipole strengths at the lead end
(shown are b2(2)(s), b2

(4)(s), b2
(10)(s), b6

(2)(s), b6
(6)(s) and b10

(2)(s))

The importance of vanishing curl has been stressed at several points throughout this
paper. To show the influence on the extracted quadrupole strength and its derivatives of
the effect of non-vanishing curl, we compare two cases: multipole extracted from a magnet
model that generates field with non-vanishing curl, and multipole extracted from the same
magnet model after all the open ended wires have been closed at “infinity” (meaning far away
from the observation points). The result is contained in Fig. 4. It can be seen that although
the agreement is still pretty good for the multipoles, the differences are amplified for the
derivatives.
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Fig. 4. Normal quadrupole strength, its first and second s derivatives extracted from
Maxwellian and non-Maxwellian fields respectively

Table 6. Opening aberrations (x|an), for the maps
of the return and lead ends

Order Opening aberrations (x|an)
n Return end Lead end
2 0 0
3 0.2497609620388847 0.2995410193258450
4 0.6293863605053251E − 13 −.3054844395050998E − 13
5 0.1903231022089257 0.1962270889999381
6 0.6911276300083234E − 12 −.6125473066348172E − 12
7 0.1699451387437771 0.9019387229287767E − 01
8 −.1364626459777126E − 09 0.2013346179046971E − 09
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As an application we describe very accurate high-order map computations of s dependent
fields. There are two ways to calculate maps. In the first case the following three steps are
needed: using the magnet model, the field expansions at selected support points along the
optical axis are computed. In case it is necessary, the Maxwellification is included in this
step. Then follows the extraction of the multipoles. Finally, the multipoles are interpolated
by Gaussian interpolation [18], and using the integration algorithm of COSY described in
[17], the map is generated.

The alternate way’s first step is the same. However, the scalar potential at support
points is anyway computed in the process of Maxwellification. We use this potential to
integrate the equations of motion, with an interpolation scheme that preserves the derivatives
at the support points, yielding the map.

Both methods have been implemented in COSY and they give essentially the same
results. Especially at high orders the Gaussian method is faster, due to the smoothing
properties of Gaussian interpolation [18]. Although to list the whole map would be too long,
to get a feeling of the resulting fringe field maps for the above mentioned end regions we list
the opening aberrations in both ends up to order 8 in Table 6. Once we have the maps, they
can be employed for dynamics studies, which is actually the final purpose of the theory and
methods developed in the present paper. We applied the methods to study the fringe field
effects in the LHC. Some of the results can be found in [19].

Appendix: Structure of Br and BΦ for Non-Maxwellian fields. We start with
the Cartesian components

Bx(x, y, s) =

n∑
i,j=0

aij(s)x
iyj , (10)

By(x, y, s) =

n∑
i,j=0

bij(s)x
iyj ,

as given by the field computation, without imposing any relations among the coefficients aij
and bij ; n is the order of computation. Transformation to cylindrical coordinates x = r cosφ,
y = r sinφ gives

Br = Bx cosφ+By sinφ, (11)
Bφ = −Bx sinφ+By cosφ.

Inserting (10) in (11) we obtain

Br(r, φ, s) =

n∑
i,j=0

ri+j cosi φ sinj φ (aij(s) cosφ+ bij(s) sinφ) , (12)

Bφ(r, φ, s) =

n∑
i,j=0

ri+j cosi φ sinj φ (−aij(s) sinφ+ bij(s) cosφ) .

The next step is to transform the products of trigonometric functions into a sum of trigono-
metric functions involving multiple angles via

cosi+1 φ sinj φ =

i+j+1∑
k=0

α
(j)
k cos kφ+ β

(j)
k sin kφ,
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cosi φ sinj+1 φ =

i+j+1∑
k=0

γ
(j)
k cos kφ+ δ

(j)
k sin kφ,

where α(j)
k , β

(j)
k , γ

(j)
k , δ

(j)
k are real constants depending on j. Hence,

Br =

n∑
i,j=0

ri+j

[
aij(s)

i+j+1∑
k=0

(
α

(j)
k cos kφ+ β

(j)
k sin kφ

)
+ (13)

+ bij(s)

i+j+1∑
k=0

(
γ

(j)
k cos kφ+ δ

(j)
k sin kφ

)]
,

Bφ =

n∑
i,j=0

ri+j

[
−aij(s)

i+j+1∑
k=0

(
γ

(j)
k cos kφ+ δ

(j)
k sin kφ

)
+

+ bij(s)

i+j+1∑
k=0

(
α

(j)
k cos kφ+ β

(j)
k sin kφ

)]
.

Now we can use the multipole definition (9) to retain in Br and Bφ only the true multipoles,
i. e. we need to keep only the terms with k = i + j + 1, all others giving rise to pseudo-
multipoles. We neglect the solenoidal terms, which are always treated best separately from
Bs. Then, the components of the field containing just the true multipoles are

B̃r =

n∑
i,j=0

ri+j
[(
aij(s)α

(j)
i+j+1 + bij(s)γ

(j)
i+j+1

)
cos (i+ j + 1)φ +

+
(
aij(s)β

(j)
i+j+1 + bij(s)δ

(j)
i+j+1

)
sin (i+ j + 1)φ

]
,

B̃φ =

n∑
i,j=0

ri+j
[ (
−aij(s)γ(j)

i+j+1 + bij(s)α
(j)
i+j+1

)
cos (i+ j + 1)φ +

+
(
−aij(s)δ(j)

i+j+1 + bij(s)β
(j)
i+j+1

)
sin (i+ j + 1)φ

]
.

By expanding the trigonometric functions in terms of exponentials, it can be seen that:
for j even

α
(j)
i+j+1 = 2−(i+j) (−1)

j/2
, β

(j)
i+j+1 = 0, γ

(j)
i+j+1 = 0, δ

(j)
i+j+1 = 2−(i+j) (−1)

j/2
,

and for j odd

α
(j)
i+j+1 = 0, β

(j)
i+j+1 = 2−(i+j) (−1)

(j−1)/2
, γ

(j)
i+j+1 = −2−(i+j) (−1)

(j−1)/2
, δ

(j)
i+j+1 = 0.

Separation of the double sum into summation over i- and j-even, respectively j-odd leads to

B̃r =

n∑
i=0


n∑

j=0 j-even

ri+j [aij(s) cos(i+ j + 1)φ+ bij(s) sin(i+ j + 1)φ] 2−(i+j) (−1)
j/2

+

n∑
j=1 j-odd

ri+j [−bij(s) cos(i+ j + 1)φ+ aij(s) sin(i+ j + 1)φ] 2−(i+j) (−1)
(j−1)/2

 ,
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B̃φ =

n∑
i=0


n∑

j=0 j-even

ri+j [bij(s) cos(i+ j + 1)φ− aij(s) sin(i+ j + 1)φ] 2−(i+j) (−1)
j/2

+

n∑
j=1 j-odd

ri+j [aij(s) cos(i+ j + 1)φ+ bij(s) sin(i+ j + 1)φ] 2−(i+j) (−1)
(j−1)/2

 .

The symmetry of the above equations is clear. B̃r and B̃φ have the same number
of terms, and if the symmetry holds term by term, then it also holds for their sum. By
introducing a new index l = i+ j we obtain relations of the form

B̃r =

n∑
l=0

[Al(s) cos(l + 1)φ+Bl(s) sin(l + 1)φ] rl,

B̃φ =

n∑
l=0

[Bl(s) cos(l + 1)φ−Al(s) sin(l + 1)φ] rl,

where Al(s), Bl(s) are sums over aij(s), bij(s) with i+j = l. Shifting the origin of summation
to make comparison easier with the direct method, and using the convention that the l = 1
component corresponds to dipole gives the final form

B̃r(r, φ, s) =

n+1∑
l=1

[Al(s) cos lφ+Bl(s) sin lφ] rl−1, (14)

B̃φ(r, φ, s) =

n+1∑
l=1

[Bl(s) cos lφ−Al(s) sin lφ] rl−1.

By identification, it is apparent that (14) is of the same form as the field components derived
from a scalar potential, containing only the true multipoles. For example, up to order 5 we
can derive the following relations:

A1(s) = a00(s),

A2(s) =
1

2
(a10(s)− b01(s)) ,

A3(s) =
1

4
(a20(s)− b11(s)− a02(s)) ,

A4(s) =
1

8
(a30(s)− b21(s)− a12(s) + b03(s)) ,

A5(s) =
1

16
(a40(s)− b31(s)− a22(s) + b13(s) + a04(s)) ,

B1(s) = b00(s),

B2(s) =
1

2
(b10(s) + a01(s)) ,

B3(s) =
1

4
(b20(s) + a11(s)− b02(s)) ,

B4(s) =
1

8
(b30(s) + a21(s)− b12(s)− a03(s)) ,

B5(s) =
1

16
(b40(s) + a31(s)− b22(s)− a13(s) + b04(s)) .
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The differences between the constrained case (by the Maxwell equations) and arbitrary
coefficients now can be analyzed. Clearly, the dipole component will give the same result in
every method. The differences start to show up beginning with the quadrupole component.
For example the normal quadrupole is given in general by B2(s) = (b10(s) + a01(s))/2.

If we impose ∇ ·B = 0, as it is always the case for magnetic field computations, it gives
just a10(s) + b01(s) + c′00(s) = 0, that is, it does not impose any constraints between b10(s)
and a01(s). On the other hand, if ∇ ×B = 0, the s component imposes: b10(s) = a01(s).
If the curl is not vanishing, i. e. b10(s) 6= a01(s), the method will take as the quadrupole
component the average value. The same type of analysis can be performed on higher order
multipoles to emphasize the importance of vanishing curl.

As a conclusion, we proved that the method can be used for global Maxwellification,
with a unique solution, that alters the original fields by a minimal amount. However, we
remind the reader that B̃r and B̃φ do not contain all the terms, the whole field expressions
for Br and Bφ have contributions from pseudo-multipoles that cannot be written in the form
of (6) in case of non-vanishing curl.
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