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Abstract

Optimal feedback control is classically based on

linear approximations, whose accuracy drops off

rapidly in highly nonlinear dynamics. A high

order optimal control strategy is proposed in this

work, based on the use of differential algebraic

techniques. In the frame of orbital mechanics,

differential algebra allows the dependency of the

spacecraft state on initial conditions and envi-

ronmental parameters to be represented by high

order Taylor polynomials. The resulting polyno-

mials can be manipulated to obtain the high or-

der expansion of the solution of two-point bound-

ary value problems. Based on the reduction of

the optimal control problem to an equivalent two-

point boundary value problem, differential alge-

bra is used in this work to compute the high order

expansion of the solution of the optimal control

problem about a reference trajectory. New opti-

mal control laws for displaced initial states are

then obtained by the mere evaluation of polyno-

mials.

1 Introduction

Nominal space trajectories are usually de-
signed by solving optimal control problems that
maximize the payload launch-mass ratio while
achieving the primary mission goals. However,

uncertainties and disturbances affect the space-
craft dynamics in real scenarios. Moreover, state
identification is influenced by navigation errors;
consequently, the spacecraft state is only known
with a given accuracy. Thus, after the nom-
inal solution is computed, an optimal control
strategy that assures the satisfaction of mission
goals in the real scenario must be implemented.
More specifically, given an initial deviation of
the spacecraft state from its nominal value, the
optimal control strategy aims at canceling the
effects of such a deviation on the satisfaction
of the mission requirements by correcting the
nominal control law, while minimizing propel-
lant consumption.

Classical optimal feedback control strategies
are based on linear approximations, whose main
advantage is the simplification of the problem.
However, their accuracy drops off rapidly with
increasing errors and decreasing control fre-
quencies in highly nonlinear dynamics. Thus,
nonlinear optimal feedback control has gained
particular interest in recent years, and several
strategies have appeared to tackle nonlinearities.
One of the highly promising and rapidly emerg-
ing methodologies for designing nonlinear con-
trollers is the state-dependent Riccati equation
(SDRE) approach, which was originally pro-
posed by Pearson and Burghart and then de-
scribed in details by Cloutier, Hammett and
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Beeler [1]. This approach involves manipulating
the governing dynamic equations into a pseudo-
linear non-unique form in which system matri-
ces are given as a function of the current state
and minimizing a quadratic-like performance in-
dex. An algebraic Riccati equation using the
system matrices is then solved repetitivily on-
line to give the optimal control law. Thus, the
SDRE approach might turn out to be compu-
tationally expensive when the solution of the
Riccati equation is not properly managed. This
can prevent its use for real-time optimal control.
A sub-optimal solution can be obtained using
the approximating sequence of Riccati equations
(ASRE) method [6]. Based on an approximate
solution to the Hamilton-Jacobi-Bellman equa-
tion, the ASRE method avoids solving the Ric-
cati equation repetitively at every instant and
provides a closed-form feedback controller.

An alternative approach was recently intro-
duced by Park and Scheeres, which relies on the
theory of canonical transformations and their
generating functions for Hamiltonian systems
[8]. More specifically, canonical transformations
are able to solve boundary value problems be-
tween Hamiltonian coordinates and momenta
for a single flow field. Thus, based on the reduc-
tion of the optimal control problem to an equiv-
alent boundary value problem, they can be effec-
tively used to solve the optimal control problem
analytically as a function of the boundary condi-
tions, which is instrumental to optimal feedback
control. The main difficulty of this approach is
finding the generating functions via the solution
of the Hamilton-Jacobi equation. This problem
was solved by Park and Scheeres by expanding
the generating function in power series of its ar-
guments.

Differential algebraic (DA) techniques [3] are
used in this work to develop an alternative ap-
proach to the generating function method. Dif-
ferential algebra serves the purpose of comput-
ing the derivatives of functions in a computer
environment. More specifically, by substituting
the classical implementation of real algebra with
the implementation of a new algebra of Taylor
polynomials, it expands any function f of v vari-
ables into its Taylor series up to an arbitrary or-
der n. DA techniques are used in this work to

represent the dependency of the spacecraft state
on the initial conditions by means of high order
Taylor polynomials. Then, the resulting Tay-
lor polynomials are manipulated to impose the
boundary and optimality conditions of the op-
timal control problem. This enables the expan-
sion of the solution of the optimal control prob-
lem with respect to the initial conditions about
an available reference trajectory. The resulting
Taylor polynomials can be evaluated for new so-
lutions of the original optimal control problem,
so avoiding repetitive runs of classical iterative
procedures.

The paper is organized as follows. A brief in-
troduction to differential algebra is given in Sect.
2. Being at the basis of the proposed methods,
the possibility of expanding the flow of ODEs is
presented in Sect. 3. The optimal control prob-
lem and the algorithm for the high order expan-
sion of its solution are illustrated in Sect. 4 and
5, respectively. The application of the algorithm
to lunar landing and rendezvous maneuvers is
addressed in Sect. 6 and 7, respectively.

2 Differential Algebra

DA techniques find their origin in the attempt
to solve analytical problems by an algebraic ap-
proach [3]. Historically, the treatment of func-
tions in numerics has been based on the treat-
ment of numbers, and the classical numerical al-
gorithms are based on the mere evaluation of
functions at specific points. DA techniques are
based on the observation that it is possible to
extract more information on a function rather
than its mere values. The basic idea is to bring
the treatment of functions and the operations on
them to the computer environment in a similar
way as the treatment of real numbers. Refer-
ring to Fig. 1, consider two real numbers a and b.
Their transformation into the floating point rep-
resentation, a and b respectively, is performed
to operate on them in a computer environment.
Then, given any operation × in the set of real
numbers, an adjoint operation ⊗ is defined in
the set of FP numbers such that the diagram
in figure commutes. (The diagram commutes
approximately in practice, due to truncation er-
rors.) Consequently, transforming the real num-
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Figure 1: Analogy between the floating point representation of real numbers in a computer environment
(left figure) and the introduction of the algebra of Taylor polynomials in the differential algebraic
framework (right figure).

bers a and b in their FP representation and oper-
ating on them in the set of FP numbers returns
the same result as carrying out the operation in
the set of real numbers and then transforming
the achieved result in its FP representation. In
a similar way, suppose two sufficiently regular
functions f and g are given. In the framework
of differential algebra, the computer operates on
them using their Taylor series expansions, F and
G respectively. Therefore, the transformation of
real numbers in their FP representation is now
substituted by the extraction of the Taylor ex-
pansions of f and g. For each operation in the
function space, an adjoint operation in the space
of Taylor polynomials is defined such that the
corresponding diagram commutes; i.e., extract-
ing the Taylor expansions of f and g and oper-
ating on them in the function space returns the
same result as operating on f and g in the origi-
nal space and then computing the Taylor expan-
sion of the resulting function. The straightfor-
ward implementation of differential algebra in a
computer allows to compute the Taylor coeffi-
cients of a function up to a specified order n,
along with the function evaluation, with a fixed
amount of effort. The Taylor coefficients of or-
der n for sums and product of functions, as well
as scalar products with reals, can be computed
from those of summands and factors; therefore,
the set of equivalence classes of functions can be
endowed with well-defined operations, leading to
the so-called truncated power series algebra [2].

Similarly to the algorithms for floating point
arithmetic, the algorithm for functions followed,
including methods to perform composition of

functions, to invert them, to solve nonlinear sys-
tems explicitly, and to treat common elementary
functions [3]. In addition to these algebraic op-
erations, also the analytic operations of differ-
entiation and integration are introduced, so fi-
nalizing the definition of the DA structure. The
differential algebra sketched in this section was
implemented by Berz and Makino in the soft-
ware COSY-Infinity [4].

3 High Order Expansion of ODE Flow

The differential algebra introduced in the previ-
ous section allows to compute the derivatives of
any function f of v variables up to an arbitrary
order n, along with the function evaluation.
This has an important consequence when the
numerical integration of an ODE is performed
by means of an arbitrary integration scheme.
Any explicit integration scheme is based on al-
gebraic operations, involving the evaluations of
the ODE right hand side at several integration
points. Therefore, carrying out all the evalu-
ations in the DA framework allows differential
algebra to compute the arbitrary order expan-
sion of the flow of a general ODE initial value
problem.

Without loss of generality, consider the scalar
initial value problem

{

ẋ = f(x)
x(ti) = xi.

(1)

Replace the point initial condition xi with the
DA representative of its identity function, [xi] =
x0

i + δxi, where x0

i is the reference point for the



P. Di Lizia, R. Armellin, F. Bernelli-Zazzera, M. Berz

expansion. If all the operations of the numerical
integration scheme are carried out in the frame-
work of differential algebra, the Taylor expan-
sion of the solution with respect to the initial
condition is obtained at each step. As an exam-
ple, consider the forward Euler scheme

xk = xk−1 + ∆t · f(xk−1) (2)

and analyze the first integration step; i.e.,

x1 = x0 + ∆t · f(x0), (3)

where x0 = xi. Substitute the initial value with
[x0] = [xi] = x0

i + δxi in Eq. 3 for

[x1] = [x0] + ∆t · f([x0]). (4)

If the function f is evaluated in the DA frame-
work, the output of the first step, [x1], is the
Taylor expansion of the solution x1 at t1 with
respect to the initial condition about the refer-
ence point x0

i . The previous procedure can be
inferred through the subsequent steps until the
last integration step is reached. The result at
the final step is the n-th order Taylor expansion
of the flow of the initial value problem of Eq. 1
at the final time tf . Thus, the expansion of the
flow of a dynamical system can be computed up
to order n with a fixed amount of effort.

4 Optimal Control Problem

Suppose the spacecraft moves under the general
dynamics

ẋ = f(x(t),u(t), t), (5)

where x = {x1, . . . , xv} is the state vector and
u = {x1, . . . , xm} is the control vector (m ≤
v). The optimal control problem aims at finding
the m control functions u(t) that minimize the
performance index

J = ϕ(xf , tf ) +

∫ tf

ti

L(x(t),u(t), t) dt. (6)

The initial state vector, xi, and the final state
vector, xf , are not necessarily fixed, as well as
the final time tf . In addition to the previous
statements, boundary constraints

ψ(xf , tf ) = 0, (7)

where ψ = {ψ1, . . . , ψp}, and path constraints

C(u(t), t) ≤ 0, (8)

where C = {C1, . . . , Cq}, can be imposed.
The above problem can be solved by reducing

it to a boundary value problem on a set of dif-
ferential algebraic equations (DAEs) [5]. To this
aim, the dynamics and constraints are added to
the performance index J to form the so-called
augmented performance index

J̄ = ϕ(xf , tf ) + νT ψ(xf , tf )+

+
∫ tf
ti

[L(x,u, t) + λT (f(x,u, t)+

−ẋ) + µT C(u, t)]dt,

(9)

where two kind of Lagrange multipliers are in-
troduced:

• a p-dimensional vector of constants, ν, for
the final constraints of Eq. (7);

• an n-dimensional and a q-dimensional vec-
tor of functions λ and µ for the dynamics
of Eq. (5) and the path constraints of Eq.
(8), which are usually referred to as adjoint
or costate variables.

The optimal control problem is then reduced to
identifying a stationary point of the augmented
performance index J̄ . This is achieved by impos-
ing the gradient of J̄ to be zero with respect to
all optimization variables; specifically, the state
vector x and the control vector u, the Lagrange
multipliers ν and the costate variables λ and µ,
the unknown components of the initial state xi

and the final state xf , and the final time tf . In
particular, the optimality with respect to λ and
x leads to the following relations:

∂J̄

∂λ
= 0 ⇒ ẋ = f(x,u, t)

∂J̄

∂x
= 0 ⇒ λ̇ = −

(

∂f

∂x

)T

λ−

(

∂L

∂x

)T

,

(10)

whereas ∂J̄/∂u = 0 yields

(

∂L

∂u

)T

+

(

∂f

∂u

)T

λ+

(

∂C

∂u

)T

µ = 0. (11)

Equations (10) and (11) together are usually
referred to as Euler-Lagrange equations. It is
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worth observing that the Euler-Lagrange equa-
tions form a system of DAEs: the differential
part is represented by Eq. (10), which defines
the dynamics for the state variables x and the
costate variables λ; the role of the algebraic
constraint is played by Eq. (11). The previ-
ous system must be coupled with the boundary
conditions ensuing from the optimality condi-
tions with respect to the remaining optimization
variables (see [5] for further details). The opti-
mal control problem is eventually reduced to a
boundary value problem on a system of DAEs.

A particular optimal control problem is ad-
dressed in this work. The dynamics is supposed
to be affine in the control vector u; i.e.

ẋ = f(x,u, t) = f̃(x, t) + B(x)u, (12)

where B(x) is a v×m matrix, whose elements do
not depend on the controls. Moreover the con-
trol functions are sought to minimize the perfor-
mance index

J =
1

2

∫ tf

ti

uTu dt (13)

and no path constraints are imposed. Based on
the previous hypotheses, Eq. (11) assumes the
simpler form

u+ BT (x)λ = 0. (14)

Equation (14) supplies an explicit relation be-
tween the control functions u and the costate
variables λ, which can be substituted in Eq.
(10). The original system of DAEs of the Euler-
Lagrange equations translates into the system of
ODEs

ẋ = f̃(x, t) − B(x)BT (x)λ

λ̇ = −

(

∂f(x,λ, t)

∂x

)T

λ.
(15)

Therefore, the original optimal control problem
reduces to a two-point boundary value problem
(TPBVP) on the set of ODEs in Eq. (15), where
boundary conditions are imposed on the initial
and final values of the state and costate vari-
ables, depending on the optimal control problem
at hand.

5 High Order Optimal Feedback

Suppose the problem of transferring a spacecraft
from a fixed initial state to a fixed final state
with fixed ti and tf is of interest; i.e., boundary
conditions assume the simpler form

{

xi = xi

xf = xf .
(16)

The optimal control problem is then reduced to
the problem of solving Eq. (15) subject to the
boundary conditions in Eq. (16).

Several techniques are available in the litera-
ture to solve the previous problem for assigned
xi and xf , like the simple and multiple shoot-
ing schemes or difference methods [9]. This
means that, given xi and xf , the previous tech-
niques are applied to compute the initial values
of the costate variables that solve the TPBVP,
which will be indicated as λ0

i . The solution is
then uniquely identified by the initial state and
costate vectors, xi and λ0

i respectively.
Assume now a reference solution λ0

i is avail-
able and suppose the Taylor expansion of the
solution of the optimal control problem with re-
spect to the initial state xi is of interest. Differ-
ential algebra can effectively serve this purpose.
To this aim, initialize both the initial state xi

and the initial costate λi as DA variables. This
means the variations

[xi] = xi + δxi

[λi] = λ0

i + δλi

(17)

to the fixed initial state xi and the reference
solution λ0

i are considered.
Using the techniques introduced in Sect. 3,

the solution of Eq. (15) is expanded with re-
spect to the initial state and costate vectors.
More specifically, the dependence of the final
state and costate vectors on their initial values
are obtained in terms of the high order polyno-
mial map
(

[xf ]

[λf ]

)

=

(

xf + δxf

λ0

f + δλf

)

=

(

xf

λ0

f

)

+

(

Mxf

Mλf

)(

δxi

δλi

)

,

(18)

where xf and λ0

f are the constant part of the
map (i.e., the reference solution flowing from xi



P. Di Lizia, R. Armellin, F. Bernelli-Zazzera, M. Berz

and λ0

i under the ODEs in Eq. (15)), whereas
all higher order terms are included in Mxf

and
Mλf

.
Subtract now the constant part from Eq. (18)

for
(

δxf

δλf

)

=

(

Mxf

Mλf

)(

δxi

δλi

)

. (19)

Then, extract Mxf
from Eq. (19) and consider

the map
(

δxf

δxi

)

=

(

Mxf

Ixi

)(

δxi

δλi

)

, (20)

which is built by concatenating Mxf
with the

identity map for δxi, Ixi
.

Using suitable inversion techniques for high
order polynomials [3], the map in Eq. (20) can
be inverted to obtain

(

δxi

δλi

)

=

(

Mxf

Ixi

)

−1 (

δxf

δxi

)

. (21)

The high order polynomial map in Eq. (21) re-
lates the displacements of the initial state and
costate vectors from their reference values xi

and λ0

i , δxi and δλi respectively, to the displace-
ment of the final state vector from its fixed value
xf , δxf , and again δxi.

Suppose now the problem of reaching the fixed
final state xf regardless of any error on the ini-
tial state δxi is of interest. This means the
new solution λi of the optimal control prob-
lem corresponding to the new initial condition
xi = xi + δxi is to be computed. The map in
Eq. (21) can effectively serve this purpose. More
specifically, the boundary condition

xf = xf (22)

must be imposed. To this aim, note that xf =
xf + δxf . Consequently, Eq. (22) reduces to

δxf = 0. (23)

Substituting Eq. (23) into the high order poly-
nomial map of Eq. (21) yields

(

δxi

δλi

)

=

(

Mxf

Ixi

)

−1 (

0

δxi

)

. (24)

Extract the last v components of the map in Eq.
(24), which will be indicated as

δλi = Mλi
(δxi). (25)

The polynomial map in Eq. (25) is the high or-
der Taylor expansion of the solution of the opti-
mal control problem with respect to the initial
state xi: given any displacement δxi of xi from
the reference value xi, the mere evaluation of the
polynomials in Eq. (25) delivers the high order
correction δλi to λ0

i to obtain the corresponding
solution λi of the optimal control problem.

It is worth observing that a possible alter-
native approach to solve the previous problem
could have consisted in solving the TPBVP for
the new solution λi using classical techniques.
However, the main disadvantage of this ap-
proach is that a new TPBVP must be solved for
each displaced initial condition. This involves
running through the iterative procedures of the
classical TPBVP solvers. Each iterative proce-
dure is able to deliver one solution, whose valid-
ity is limited to the corresponding δxi. Conse-
quently, the classical TPBVP solvers should be
applied for each new δxi. The Taylor expansion
of the optimal control problem supplies an effec-
tive alternative method to overcome this issue.
First of all, analytical information are gained,
which can supply a valuable insight on the un-
derlying dynamics. Moreover, for any error δxi,
the mere evaluation of polynomials suffices to
obtain the new optimal control law to reach xf ,
so avoiding the use of iterative algorithms. Nev-
ertheless, the polynomial relation between δλi

and δxi given by Eq. (25) is accurate up to the
order of the DA-based computation.

6 Lunar Landing

The technique introduced in Sect. 5 is used here
for the optimal feedback control of a probe land-
ing on Moon’s south pole. The control profile
is designed in the frame of the controlled two-
body problem. Referring to Figure 2, the lan-
der is supposed to originally move on an ellip-
tical polar descent orbit, taking it from an al-
titude of 100 km (apocenter) to an altitude of
20 km (pericenter). The landing phase is sup-
posed to start at the pericenter of the descent
orbit. Final conditions are imposed to position
the lander over Moon’s south pole at an alti-
tude of 2 m, with a downward velocity of 3 m/s,
from which the final phase of the landing maneu-
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Figure 2: Lunar landing problem.

ver is supposed to start. A cartesian reference
frame is selected to describe the dynamics: the
y-axis is aligned with Moon’s south pole; the
x-axis lies on Moon’s equatorial plane, pointing
towards the orbital descending node; the z-axis
is selected to form a right-handed reference sys-
tem. The landing dynamics is described by the
set of ODEs:

ṙ = v

v̇ = −
µ

r3
r + u,

(26)

in which r and v are the probe position and ve-
locity, respectively; r = ||r||; µ is Moon’s grav-
itational parameter; and u is the control vec-
tor. As from Eq. (26), the dynamics is affine
in the control vector u. Thus, Eq. (15) holds
for the problem at hand and the optimal control
problem is then reduced to a TPBVP with fixed
initial and final states for the landing probe.

A reference solution of the optimal control
problem is first identified by solving the result-
ing TPBVP. The initial time is chosen to be zero,
whereas the landing duration is set to 31 min.
A simple shooting technique is used to solve the
TPBVP and to compute the reference trajectory
reported in Fig. 3. Figure 4 illustrates the cor-
responding reference control profile in terms of
histories of its components. Due to the symme-
try of the problem, the reference trajectory lies
completely on the x-y plane.

The initial probe position and velocity, ri and
vi respectively, are now supposed to be affected
by errors. The high order optimal feedback con-
trol algorithm introduced in Sect. 5 is applied
to optimally correct the reference control law.
More specifically, the reference trajectory in Fig.
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Figure 3: Lunar landing: altitude dispersion.
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Figure 4: Lunar landing: reference control.

3 is used as reference solution for the Taylor ex-
pansions. The algorithm is then applied to com-
pute the high order polynomial map of Eq. (25)
for the problem at hand. Thus, given any dis-
placement δxi = (δri, δvi) of the initial state
vector from its nominal value, the polynomial
map is readily evaluated to correct the nominal
λ0

i for the new initial value of the costate vector.

The performances of the procedure are stud-
ied in the followings. A maximum position er-
ror of 1 km and a maximum velocity error of
5 m/s are supposed to affect each component
of the initial lander position and velocity, re-
spectively. The final dispersion at landing is
then investigated. First of all, for the sake of
a more complete analysis, given any displaced
initial conditions, no corrections to the nominal
costate variables (and, consequently, to the con-
trols) are supplied. In particular, 100 samples
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Figure 5: Lunar landing: control corrections.

are randomly generated within the initial un-
certainty box with uniform distribution. Each
sample is then propagated using the nominal
guidance law; once all integrations have been
performed, the maximum and minimum lander
altitudes at each integration time are computed.
Figure 3 shows the resulting altitude dispersion
throughout landing. The figure illustrates how
initial conditions corresponding to both impacts
on Moon’s surface (lower area of the strip) and
trajectories moving away from the landing site
(higher area of the strip) are included in the ini-
tial error box.

The DA-based high order algorithm described
in Sect. 5 is then applied. In particular, third or-
der corrections are computed using Eq. (25): for
the same random samples of Fig. 3, the errors
on the initial state are computed and the map
is evaluated to correct the reference λ0

i . The re-
sulting set of trajectories is reported again in
Fig. 3 for the sake of comparison. The cor-
rected optimal control laws take the probe to
the final desired conditions and the resulting fi-
nal dispersion is drastically reduced. The neces-
sary control corrections are analyzed in Fig. 5.
More specifically, for each component of the con-
trol vector u, the maximum control correction is
evaluated among the random samples, and the
resulting curves are reported in figure. A max-
imum control correction of about 0.016 m/s2 is
required for the given error box.

7 Rendezvous Maneuver

A rendezvous maneuver is here analyzed as a
further test case for the high order optimal feed-
back technique introduced in Sect. 5. The study
of this problem is motivated by the work of Park,
Guibout and Scheeres based on the alternative
approach of generating functions [7, 8]. The
space rendezvous is a maneuver which takes two
spacecraft, originally moving on different orbits,
to the same final reference orbit, matching their
positions and velocities. Referring to Figure 6,
this rather general case can be focused on the
problem of a spacecraft (referred to as chaser)
targeting an object (referred to as target) on its
orbit.

A continuously propelled rendezvous maneu-
ver is considered. The target is supposed to
move on a circular orbit of radius R, whereas
the chaser is assumed to be subject to a con-
trolled two-body dynamics. In this framework,
the rendezvous maneuver is classically designed
in a non-inertial reference frame that is centered
at the target position, with x-axis constantly
aligned with the orbital radius, y-axis directed
towards the target orbital velocity, and z-axis
chosen to form a right-handed coordinate sys-
tem with x and y (see Figure 6). Thus, the non-
inertial reference frame rotates along the circu-
lar target orbit with constant angular velocity ω
and the chaser is subject to the relative dynam-
ics

ẋ = vx, ẏ = vy, ż = vz

v̇x = 2ẏ − (1 + x)(
1

r3
− 1) + ux

v̇y = −2ẋ− y(
1

r3
− 1) + uy

v̇z = −
1

r3
z + uz ,

(27)

where lengths and time are normalized using R
and 1/ω respectively; u = (ux, uy, uz) is the con-

trol vector; and r =
√

(1 + x)2 + y2 + z2.

The chaser is supposed to have initial offsets
from the target in both position and velocity,
which are denoted by δri and δvi respectively.
The optimal control problem is solved to design
the control functions u that take the chaser from
its initial displaced state to the target state (i.e.,
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Figure 6: Rendezvous maneuver.

to the origin of the rotating frame with zero ve-
locity) in a given time tf − ti. The relative dy-
namics in Eq. (27) is affine in the control vector
u. Thus, the optimal control problem can be
reduced to a TPBVP with fixed initial and final
states for the chaser.

Similarly to the previous test case, a nominal
solution of the optimal control problem must be
identified before applying the high order DA-
based technique. To this aim, it is worth ob-
serving that the relative dynamics in Eq. (27)
satisfies f(x = 0,u = 0, t ) = 0, with x =
(x, y, z, vx, vy, vz). This means that x(t) = 0
and u(t) = 0 for any t is a trivial solution of the
optimal control problem that is used as reference
solution for the high order expansion.

The performances of the high order optimal
feedback control algorithm are now investigated.
The chaser is supposed to have a displaced initial
position δri = (0.2, 0.2, 0) and a displaced ini-
tial velocity δvi = (0.1, 0.1, 0). The rendezvous
maneuver is designed to take the chaser to the
target state in 1 time unit. The exact solution
of the optimal control problem is first identified
by solving the associated TPBVP using a sim-
ple shooting technique. The result is reported in
Fig. 7, Fig. 8, and Fig. 9 in terms of position, ve-
locity, and control profile, respectively. As can
be seen from Fig. 7 and Fig. 8, the exact solution
(solid lines) takes the chaser to the target state
in the assigned time. The exact solution is then
compared with those achieved by the DA-based
optimal feedback control algorithm introduced
in Sect. 5 using different expansion orders. As
can be seen, the low accuracy of the 1-st order
correction is significantly improved using 4-th
and 6-th order expansions.

The main advantage of the high order opti-
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Figure 7: Rendezvous: position.
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Figure 8: Rendezvous: velocity.
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Figure 9: Rendezvous: control.
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Figure 10: Rendezvous: trajectories correspond-
ing to displaced initial positions lying on a circle
of radius 0.2.

mal feedback control algorithm is that, for any
initial offset of the chaser with respect to the
target, the same polynomial map is evaluated
to compute the corresponding optimal control
law. This means that the high order map in Eq.
(25) must be computed only once for all possi-
ble offsets, and the optimal control laws are then
obtained through the mere evaluation of polyno-
mials. This feature is exploited in Fig. 10: a set
of displaced positions distributed over a circle of
radius 0.2 in the rotating frame is selected. For
each sample, a 6-th order correction is computed
using the polynomial map of Eq. (25). As can
be seen, the chaser is always moved to the origin
of the reference frame.

8 Conclusion

A method for the computation of optimal feed-
back control laws based on differential algebra
has been introduced, with applications to lu-
nar landing and rendezvous maneuvers. The
method relies on the high order expansion of
the solution of the optimal control problem
about a reference trajectory. Thus, it improves
the results of classical techniques based on the
linearization of the dynamics. Moreover, the
method reduces the computation of new optimal
control laws to the mere evaluation of polynomi-
als. This is a valuable advantage over the con-
ventional nonlinear optimal control strategies,

which are mainly based on iterative procedures.
This work focused on the problem of transfer-
ring a spacecraft from an initial fixed state to a
final fixed state. Further developments will in-
vestigate the imposition of soft constraints, as
well as the minimization of alternative perfor-
mance criteria. Moreover, path constraints on
the controls will be included.
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