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Abstract. A new method to decide the invertibility of a given high-dimensional function over a
domain is presented. The problem arises in the field of verified solution of differential algebraic
equations (DAEs) related to the need to perform projections of certain constraint manifolds over large
domains. The question of invertibility is reduced to a verified linear algebra problem involving first
partials of the function under consideration. Different from conventional approaches, the elements of
the resulting matrices are Taylor models for the derivatives of the functions.

The linear algebra problem is solved based on Taylor model methods, and it will be shown the
method is able to decide invertibility with a conciseness that often goes substantially beyond what can
be obtained with other interval methods. The theory of the approach is presented. Comparisons with
three other interval-based methods are performed for practical examples, illustrating the applicability
of the new method.

1. Introduction

In [3], [4], a method involving high order Taylor polynomials with remainder
bound has been presented that allows verified computations while avoiding some
difficulties inherent in normal interval arithmetic. This Taylor model approach
guarantees inclusion of functional dependencies with an accuracy that scales with
the (n + 1)-st order of the domain over which the functions are evaluated.

In particular, as shown in [10], this method can often substantially alleviate the
following problems inherent in naive interval arithmetic:

• Sharpness of the Result,

• Dependency Problem,

• Dimensionality Curse.

The method has recently been used for a variety of applications, including
verified bounding of highly complex functions [2], [5], solution of ODEs under
avoidance of the wrapping effect for practical purposes [8], and high-dimensional
verified quadrature [7].

In this paper we will combine these techniques with a fresh look at the mathe-
matics of invertibility to
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Figure 1. Left: Enclosing a function by a Taylor model of order eight. Right: Interval bounding
of the same function (figures courtesy of Kyoko Makino).

Figure 2. Interval bounding of a function by a Taylor model; orders 7 (left) and 10 (right).

• derive linear algebra tools that allow utilization of ability of Taylor models to
provide sharpness;

• obtain very sharp bounds for first derivatives.

For purposes of illustration, Figure 1 compares the enclosure of a function by
Taylor models and regular intervals. In this case, the virtue of the method lies in the
fact that one Taylor model over a relatively large domain box guarantees a sharpness
that interval bounding cannot even achieve with multiple smaller domains. This
helps significantly in fighting the dimensionality curse inherent in interval bounding
where it is of prime importance to avoid subdivisions of the domain boxes.

Figure 2 illustrates how the fact that the sharpness of Taylor models scales with
the (n + 1)-st order of the domain allows to obtain sharp bounds quickly, even in
the multidimensional case.

Recently we have begun work on a verified solver for Differential Algebraic
Equations that uses a Taylor model based verified ODE solver [8] and verified
inversion of implicit description of the constraint manifolds obtain verified enclo-
sures for the solutions of the equations. Loosely the approach can be phrased as
follows:
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Given a functionƒ : R
v → R

v (known only up to some accuracy) defined
over a boxD, is the function invertible over its rangef u(D)? And if so, find a
representation of the inverse as accurately as possible.

The first step in this process of finding local coordinate representations of the
constraint manifolds is the determination of invertibility of the constraints over the
domain under consideration. In this paper we will derive new methods that give
guaranteed answers to the question of whether a function is invertible over a given
domain. We will first derive an interval arithmetic based method that requires only
knowledge about first derivatives to determine invertibility. Capitalizing on some
special structure of the Jacobians appearing in the approach, we then will extend this
method to use high order Taylor models and show that it scales much better to high
dimensional problems over larger domains than normal interval based algorithms.
We will also utilize the fact that the Taylor models can be used to model the function
and the derivatives much more accurately over larger domains than regular interval
arithmetical methods.

2. Verified Invertibility from First Derivatives

There are a variety of ways to decide invertibility for a given vector function
ƒ, some of which rely on second- and higher order derivatives. These methods
are computationally expensive since they require bounding complicated functions
like the operator norm of the second derivative map [1] over the domain under
consideration. We will present a method that requires only bounds on first partial
derivatives to decide the question of invertibility. Furthermore and perhaps more
importantly, the method exhibits some important structure regarding the points at
which the derivatives actually have to be evaluated, which we will later capitalize
on to significantly reduce cancellation problems in the necessary verified linear
algebra. It should be noted that this method is not local in nature, but can indeed
guarantee global invertibility everywhere in the given domain.

The following theorem enables us to decide whether a given function is invertible
over a domain by just evaluating first derivatives and hence greatly reduces the
computational overhead necessary. It seems to originate in works by K. Kovalevsky
from the beginning of the twentieth century but has been “rediscovered” by many
others (e.g. [13, E 5.3-4]).

THEOREM 2.1 Invertibility from First Derivatives.Let B ⊂ R
v be a box and ƒ :

B → R
v a C1 function. Assume that the matrix

M =




∂ƒ1

∂x1
(χ1) · · · ∂ƒ1

∂xv
(χ1)

...
...

∂ƒv

∂x1
(χv) · · · ∂ƒv

∂xv
(χv)



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is invertible for every choice of χ1, …,χv ∈ B. Then ƒ has a C1-inverse defined on
f u(B), where f u(B) denotes the range of ƒ over B.

The proof of Theorem 2.1 rests on auxiliary functionshi(t) = ƒi(x1 ⋅ (1− t)+x2 ⋅ t)
that satisfyhi(0) = hi(1). Applying the Mean Value Theorem to thehi and using the
regularity ofM yields the result.

While regularity of the Jacobian at each point in the domain is a necessary
condition for invertibility, it is in general not a sufficient condition. Thus, it may
perhaps be worthwhile to note that Theorem 2.1 does not try to deduce invertibility
by using the fact that the Jacobian is non-singular at each point within the domain.
The theorem rather allows to guarantee invertibility over the whole domain by
utilizing that the Jacobian as a function ofv2 variables is regular overBv.

An immediate corollary to Theorem 2.1 is the following interval formulation of
necessary and sufficient conditions for the existence of the inverse function, which
in this version is very well known (e.g. Theorem 5.1.6 in [12] and [15]).

COROLLARY 2.1.Let ƒ and B be as in Theorem 2.1. For i, j = 1, …,v let pi, j ⊂ R

be compact intervals such that

∂ƒi

∂xj
(x) ∈ pi, j ∀ x ∈ B.

If the interval matrix P = ( pi, j) is regular, then ƒ has a C1-inverse defined on
f u(B).

An algorithm based on Theorem 2.1 and Corollary 2.1 requires efficient and
accurate methods to model partial derivatives and depends on the availability of
efficient methods for the determination of regularity of an interval matrix with
potentially large entries. Both these problems may become challenging for naive
interval methods which have difficulties to model complicated functions (i.e. one
usually has significant overestimation in bounding the derivatives of the functions)
and suffer from the well known problems that come with an increasing number of
variables and an increase in domain sizes.

Moreover, interval methods are not particularly well suited for practical appli-
cations of Theorem 2.1 via Corollary 2.1 because of difficulties in handling the
fact that the individual rows of the Jacobian are all evaluated at one point. A new
Taylor model based method that solves this will be presented in Section 4. But
nevertheless, once the interval matrixP of Corollary 2.1 has been determined as
accurately as possible, the next question is how to establish regularity of it. While
in lower dimensions it may often be sufficient to compute the interval determi-
nant of the matrix, more sophisticated methods are needed for higher dimensional
problems.

It has been shown that regularity of a matrix is equivalent to the componentwise
distance to the next singular matrix being greater than one [14]. In the following
paragraphs we present two advanced interval based methods to prove the regularity
of the interval Jacobian. We will use them in the following to compare interval
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based methods for the determination of invertibility with new approaches based on
Taylor models.

The first method of verifying the regularity of an interval matrixA = Â+[−∆, ∆]
can be deduced from the singular value decompositions of both the midpoint matrix
Â and the∆-matrix. If σ(M, i) denotes thei-th singular value of a matrixM (sorted
in non-increasing order), then the following assertion holds [16], [17]:

THEOREM 2.2.Given A = Â + [−∆, ∆]. Then σ(∆, 1) < σ(Â, n) implies that A is
non-singular.

The success of this method depends mostly on the sharpness of the models of
the partial derivatives, and as such this method may have difficulties scaling with
dimensionality and complexity of the functions of interest.

The next theorem has been shown in [12], and it often provides rather good
estimates on the regularity of the given interval matrixA.

THEOREM 2.3.Given A = Â + [−∆, ∆]. If Â is regular let S be an approximate
inverse of Â. If the spectral radius ρ(I − S ⋅ A) is less than 1 then any matrix in A is
non-singular.

This method uses a preconditioning of the matrixA to establish invertibility of
a better conditioned matrixS ⋅ A. This allows the method to work very well for
medium sized problems, but as will become clearer below, in higher dimensions
this method still suffers from the fact that the entries of the product matrixS ⋅ A
are computed from addition and subtraction of intervals and as such are subject to
significant overestimations.

The most practical method to establish the contraction of an interval matrixA is
to start out with an arbitrary non-empty interval vectorx0 and iteratexk+1 = B ⋅ xk

with B = I − S ⋅ A. If for any k ∈ N we can show thatxk+1 ⊂ xk we have shown that
B is indeed contracting and henceρ(B) < 1.

3. Taylor Models

In the following we will develop criteria asserting invertibility utilizing properties
of the Taylor model approach introduced in [3], [4], [11]. Specifically, we define

DEFINITION 3.1Taylor Model. Let D ⊂ R
v be a box withx0 ∈ D. Let P : D →

R
w be a polynomial of ordern (n, v, w ∈ N) andR ⊂ R

w be an open non-empty
set. Then (P, x0, D, R) is called a Taylor model of ordern with expansion pointx0

overD.

In general we will view Taylor models as subsets of function spaces by virtue
of the following definition.

DEFINITION 3.2Taylor Models as Sets of Functions. Let T = (P, x0, D, R) be a
Taylor model ofn-th order. Then, identifyT with the set of functionsƒ ∈ Cn(D, Rw)
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such thatƒ(x) − P(x) ∈ R for all x ∈ D, and then-th order Taylor series ofƒ around
x0 equalsP.

Furthermore, if aCn function ƒ is contained in a Taylor modelT, we callT a
Taylor model forƒ.

Methods have been developed that allow arithmetic operations on Taylor models
that preserve the defining inclusion relationships and hence to obtain Taylor models
for any smooth computer function. The next theorem shows how this can be done
for the basic elementary operations. In the following, letP and D be as above
and denote byB(P, D) a guaranteed enclosure of the range ofP over the boxD.
Moreover, fork ∈ N, P(≤ k) andP(> k) shall be the parts ofP of orders up tok and
greater thank, respectively.

THEOREM 3.1.Let T1 = (P1, x0, D, R1) and T2 = (P2, x0, D, R2) be two Taylor
models as above and define

RP = R1 ⋅ R2 + R1 ⋅ B(P2, D) + B(P1, D) ⋅ R2 + B
(
(P1 ⋅ P2)(> n), D

)
.

Obtain new Taylor models TS and TP by

TS = (P1 + P2, x0, D, R1 + R2),
TP =

(
(P1 ⋅ P2)(≤ n), x0, D, RP

)
.

Then, TS and TP are Taylor models for the sum TS and product TP of T1 and T2. In
particular, for two functions ƒ1 ∈ T1 and ƒ2 ∈ T2, we get

(ƒ1 + ƒ2) ∈ TS and (ƒ1 ⋅ ƒ2) ∈ TP.

Proof. If we defineCn functionsδ1 = ƒ1 − P1 andδ2 = ƒ2 − P2, it is δ1(x) ∈ R1

andδ2(x) ∈ R2 for anyx ∈ D. Then, for a givenx ∈ D it is
(
(ƒ1 + ƒ2) − (P1 + P2)

)
(x) = δ1(x) + δ2(x) ∈ R1 + R2 = RS.

Since then-th order Taylor expansion of the sumƒ1+ƒ2 equals the sum of the Taylor
series,TS is indeed a Taylor model for the sumT1 + T2. Also, over the domainDit
is

(
(ƒ1 ⋅ ƒ2) − (P1 ⋅ P2)(≤ n)

)
=

(
(P1 + δ1)(P2 + δ2)

)
−

(
(P1 ⋅ P2) − (P1 ⋅ P2)(> n)

)
= P1 ⋅ δ2 + δ1 ⋅ P2 + δ1 ⋅ δ2 + (P1 ⋅ P2)(> n).

Moreover, since then-th order Taylor polynomial ofƒ1 ⋅ ƒ2 equals the polynomial
product (P1 ⋅ P2)(≤ n), TP is a Taylor model for the productT1 ⋅ T2. ✷

More information on arithmetic and intrinsic functions on Taylor models can be
found in [4], [9].

It should also be noted that with availability of methods to obtain Taylor models
of functions we also have means to compute tight enclosures for the derivatives of
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those functions by using either hand coded derivatives, automatic differentiation or
new methods still under development that propagate not onlyC0 remainder terms
in Taylor models but also take bounds on derivatives into account by demanding
that the functions contained in such an extended Taylor model are alsoC1-close to
the reference polynomial.

4. Invertibility via Taylor Models

We will now come back to the question whether a given functionƒ, defined over
some domain boxD, is invertible over its image. We will combine the results of
Theorem 2.1 with the regularity criterion Theorem 2.3 and Taylor model based
techniques to derive a new algorithm to decide whether a given functionƒ is invert-
ible. Compared to the corresponding interval version as presented in Corollary 2.1
we will be able to avoid an overly pessimistic behavior.

The proof of Theorem 2.1 is based on proving regularity of the matrix

M =




∂ƒ1

∂x1
(χ1) · · · ∂ƒ1

∂xv
(χ1)

...
...

∂ƒv

∂x1
(χv) · · · ∂ƒv

∂xv
(χv)




with pointsχ1, …,χv ∈ D. Thus, any combination of entries from the same row ofM
can be evaluated using the same set of domain variables. While interval arithmetic
cannot capitalize on this intrinsic structure, as we shall see in the following, Taylor
models are particularly well suited for this task. Instead of modeling each partial
derivative of the functionsƒi by intervals we now model each of the gradients by
one single Taylor model and we are left with the task of proving regularity of a
matrix valued Taylor model, which we will be doing using a method derived from
Theorem 2.3.

1. Fori, j = 1, …,v let Ti, j be Taylor models for the partial derivatives ofƒ, i.e.

∂ƒi

∂xj
∈ Ti, j.

In practice, the Taylor modelsTi, j can be obtained for example by evaluating
the first order AD code belonging toƒ in Taylor model arithmetic. On the side we
mention that currently, extensions of the Taylor model approach are being developed
that allow the determination of theTi, j directly from the extended Taylor model
of ƒ.

As outlined earlier all Taylor models that have the same indexi (belong to the
same row of the matrix) can be evaluated using the same set of domain variables.
The next step now is to compute a suitable preconditioning matrix for the transpose
of T. So instead of showing that the matrixT is regular, we will show the equivalent
statement that the transpose ofT is regular.
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2. Let TR be an interval enclosure of the range of the Taylor modelsTi, j, i.e.
g ∈ Ti, j ⇒ g(x) ∈ TR, i, j for all x ∈ D.

3. Let T̂R be the midpoint matrix ofTR and similarly for the transposêT T
R

.

4. LetS be an approximate floating point inverse ofT̂ T
R

.

5. Compute a new Taylor modelN by Ni, j = δi, j −
v∑

k= 1
Si, kT T

k, j = δi, j −
v∑

k= 1
Si, kTj, k,

whereδi, j denotes the Kronecker Delta.

The advantage of working with the transposeT T is that the resulting entries of
the matrixN are all computed using linear combinations of Taylor models that can
be evaluated over the same set of domain variables. Hence each entry ofN is again
a Taylor model inv variables, and the columns ofN are now modeled over the same

set of domain variables. As a consequence, the sum
v∑

k= 1
Si, kTj, k can be evaluated in

Taylor model arithmetic, and in particular any blow-up is suppressed, as in other
Taylor model computations.

The final step of the method is then to show that the spectral radius of the
resulting matrix-valued Taylor modelN is less than one. To establish this, the
image of the unit ball (in the maximum norm) under the mapN is considered. If it
can be shown that the image is properly contained in the unit ball, invertibility is
verified.

Similar to above, it proves advantageous to not work with the matrixN, but rather
with its transposeN T . In this way, mixing of Taylor models from different columns
of N is again avoided, which allows suppression of blow up in the necessary linear
algebra. This is possible since the transposed matrix has the same spectral radius
as the original one. As a final application of Taylor models, we model the unit ball
by Taylor models as follows: for any smallε > 0, the identity function over the
interval [−1, 1] is contained in (x, 0, [−1, 1], (ε, ε)). Thus, if we denote thei-th such
Taylor model byei, a bound on the range ofei contains the closed unit interval in
xi. Then the algorithm proceeds as follows:

6. For i = 1, …,v compute Taylor modelsri with the Taylor modelsev+j that are
defined over new domains, independent of those of theNi, j’s:

ri =
v∑

j= 1

N T
i, j ⋅ ev+j =

v∑
j= 1

Nj, i ⋅ ev+j.

7. Find interval enclosuresIi for the Taylor modelsri.

It should be noted that due to the special nature of the Taylor modelsri, the
bounding is actually quite simple: each of thev terms of the sum that constitutes
the Taylor modelsri has a different set of variables. Thus, there will not be any
cancellation in the sum, and hence the sharpest possible bound of the sum equals
the sum of the bounds of the individual terms. Moreover, the latter are just Taylor
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models multiplied by the interval [−1, 1], and hence their ranges are just the ranges
of the Taylor model multiplied by the interval [−1, 1].

8. If Ii ⊂ [−1, 1] for all i = 1, …,v the original functionƒ is invertible.

To summarize, this method utilizes Taylor models at two crucial points. Firstly
Taylor models are used to model the partial derivatives of the functionƒ. As will be
seen later this helps tremendously in fighting the issues of complexity and cancella-
tion in modeling the derivatives. Moreover the Taylor models are used to compute
an enclosure for the derivative matrices under consideration, and they are used for
all arithmetic operations on these matrices which minimizes the overestimation due
to cancellation, since the bulk of the functional dependence is propagated in the
reference polynomial and therefore not subject to cancellation [10].

Finally we have been able to modify the computation in such a way that all
arithmetic operations on Taylor models can be performed using onlyv variables,
which allows for a very favorable computational complexity and allows the method
to scale very well to high dimensional problems.

5. Examples

As outlined before we are mainly interested in proving invertibility for a given
function over domains as large as possible. But not only the sheer size of the
domains of invertibility matters, but an equally important question is how good
we are able to fill out the maximum region of invertibility from within, i.e. how
close to a critical point can we still prove invertibility. Moreover in the context of
Differential Algebraic Equations we are likely to face high dimensional problems.
The following examples will demonstrate how the new Taylor model based method
performs in each of these areas as compared to interval based methods.

In each of the following examples we have tested a certain number of functions
for invertibility over certain domains. All tests have been performed with each of
the following methods and the results are represented in graphs and discussed. Note
that the determinant test has only been used for problems of up to 6 variables.

(1) Interval tests based on Corollary 2.1 and an interval determinant;

(2) Interval tests based on Corollary 2.1 and Theorem 2.2;

(3) Interval tests based on Corollary 2.1 and Theorem 2.3;

(4) Taylor model based tests as presented in Section 4.

For the interpretation of the following results it is important to note that in all
cases the necessary bounds on range enclosures have been computed using regular
interval arithmetic. No dedicated range bounders utilizing domain decomposition
etc. have been used either in the interval or Taylor model approaches to keep the
computational overhead within reasonable limits.
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Figure 3. Example 5.1: Percentage of random functions that can be shown to be invertible as
a function of dimensionality.

5.1. INVERTIBILITY AS A FUNCTION OFDIMENSIONALITY

The first example illustrates how the performance of the presented methods behaves
as a function of dimensionality. Invertibility of one thousand 15-th order polynomi-
als with uniformly distributed random coefficients in [−1, 1] has been tested with the
methods 1 to 4. The domain of the random polynomials has been [−0.005, 0.005]v

for v = 1, …,10. Figure 3 shows the percentage of these random polynomials that
could be verified to be invertible as a function of dimensionality. The Taylor models
in this simulation have been of 10-th order and the resulting remainder bounds are
in the order of 10−12.

As it is to be expected for increasing dimensionalities the number of successfully
established invertible polynomials is decreasing. But it is important to note that the
Taylor model based method performs much better in establishing invertibility and
suffers much less from an increase in the number of variables than the interval
based methods do. Unfortunately there is no good way to assess what fraction of
the original functions are truly invertible; but it is to be expected that this fraction
decreases with the dimension, accounting for the drop of predicted invertibility in
all approaches.

5.2. INVERTIBILITY AS A FUNCTION OFDOMAIN SIZE

For the next example we have investigated how the presented methods of establish-
ing invertibility behave as functions of the domain size. We have restricted ourselves
to the medium sized problem of 10-th order polynomials in 6 variables. For each
polynomial we have applied the methods 1 to 4 over domains of increasing size. All
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Figure 4. Example 5.2: Percentage of random functions that can be shown to be invertible as
a function of domain size.

domain boxes have been placed symmetrically around the origin and the abscissa
shows the magnitude of the domains. For each of the different domain sizes we
have plotted the percentage of polynomials for which invertibility could be proven
using the four different schemes. Like in the previous example the computation
has been performed with one thousand random polynomials and the Taylor models
have been extended with artificial remainder bounds in the order of 10−12. The
results of this simulation are shown in Figure 4.

It has been shown that the accuracy of Taylor models scales with the (n + 1)-st
order of the domain size [6], while interval arithmetic scales approximately linearly
with the domain sizes. That explains why the Taylor model based method can assert
invertibility over domain that are much larger than the ones interval based methods
can handle. It should also be noted that the number of invertible polynomials
decreases almost linear with increasing domain size.

5.3. INVERTIBILITY AS A FUNCTION OFNON-LINEARITY

This example demonstrates how the performance of the discussed methods changes
with the non-linearity of the functions under consideration. To that end we have
considered functionsƒ = (ƒ1, …, ƒv) : [−1, 1]v ⊂ R

v → R
v given by

ƒi(x1, …,xv) =

v∑
k= 1

ai, kxk

(
1−

v∑
k=1

bi, kxk

)2

+ ε2
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Figure 5. Example 5.3: Percentage of functions that can be shown to be invertible as a function
of the non-linearityε.

with ε ∈ R andv × v matricesA = (ai, k) andB = (bi, k) with coefficients in [−1, 1].
For small values ofε and appropriate coefficientsai, k andbi, k, this may give ill-
defined functions because of vanishing denominators. However, in these cases we
count the functions as not invertible.

We have generated 500 functions by choosing the coefficients of the matricesA
andB randomly in the interval [−1, 1], and the presented methods have been used
to prove invertibility over [−1, 1]6. Figure 5 shows the percentage of functions that
can be shown to be invertible depending on the non-linearityε. All computations
have been performed in 6-th order and the value ofε has been varied from 0 to 250
in steps of 2.5.

The non-linearity of these functions is mostly determined by the quantityε,
such that forε � 1, the functions are linearly dominated and their invertibility
depends mostly on the invertibility ofA. Since almost all computer generated
random matrices are invertible, it is to be expected that all methods succeed in
proving invertibility for sufficiently largeε. Figure 5 shows that this is indeed the
case.

For ε ∼ 1 the resulting functions show a large non-linearity and all methods fail
in proving invertibility. It is likely that due to the size of the domain box and the
high degree of non-linearity, these functions are actually not invertible.

With increasingε, the different methods become more successful in establishing
invertibility. However, the Taylor model based method starts proving invertibility
very suddenly forε � 20, while the success of the other methods sets in only for
largerε, and increases at a much slower rate.
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Figure 6. Example 5.4: Percentage of maximal domain size as a function of complexity and
non-linearity in the partial derivatives.

5.4. INVERTIBILITY IN THE VICINITY OF A CRITICAL POINT

As another example of how the presented methods scale to larger domain sizes and
how they behave in the neighborhood of a singular point, consider the function
ƒ = (ƒ1, …, ƒ6) : R

6 → R
6 with componentsƒi for i = 1, …,6 given by

ƒi(x1, …,x6) = (xi − x0)2 + λ cos
(
(xi − x0) ⋅ (xπ(i) − x0)

)
− λ (xπ(i) − x0) sin(xi − x0),

whereπ(i) = i + 1 for i = 1, …,5 andπ(6) = 1.
At the point (x0, …,x0) the Jacobian ofƒ vanishes and hence for symmetric

domain boxes centered at the origin, 2x0 is an upper bound for the magnitude of the
domain of invertibility. Figure 6 shows the percentage of this maximal magnitude
2x0 over which the different methods can prove invertibility as a function of the
parameterλ , which is gradually increased from 0 to 1. Forx0 = 0.1, the invertibility
tests have been performed for the domains [−p⋅0.001, p⋅0.001]6 with p = 1, …,100.
The plot shows the maximal value ofp for which the various methods can determine
invertibility as a function ofλ . The results indicate that the Taylor model based
test can guarantee invertibility over a much larger region and is less sensitive to the
perturbationλ .

It is important to note that all interval based methods behave equally bad for
increasingλ . This indicates that the real challenge of establishing invertibility in this
example lies with the accurate modeling of the derivatives and not so much with the
different methods to establish regularity of the interval matrix of derivatives. This
example illustrates how Taylor models can model complicated functions extremely
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Figure 7. Example 5.5: Percentage of random functions that can be shown to be invertible as
a function of functional complexity.

accurate—the remainder bounds of the Taylor models for the partial derivatives are
all in the order of 10−12. This aspect will be revisited in the next example.

5.5. INVERTIBILITY AS A FUNCTION OFFUNCTIONAL COMPLEXITY

Finally we would like to present an example that demonstrates how the presented
methods behave as a function of computational complexity of the original function
ƒ under consideration. We have emulated functional complexity using the following
method:

For the previously introduced random polynomials of order 10 in 6 variables
with coefficients between−1 and 1 we have modeled computational complexityc
by

ƒ(x) =
1√
c

c∑
i=1

ƒi(x),

where each of theƒi is a random polynomial as before and the scaling factor has been
introduced to maintain the standard deviation of the coefficients of the resulting
polynomials. All tests were performed over the [−0.005, 0.005]6 domain box and
the results are shown in Figure 7.

It is important to note that the functionƒ has been evaluated by adding the
results of the individual polynomial evaluations. This is a realistic model of practical
applications where the supplied functions often come as black boxes that do not
permit any further simplifications to control cancellations.

The first observation worth noting here is that the Taylor model based method
does not suffer from complexity, but rather even seems to improve with com-
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plexity. This caused by the way we simulate computational complexity. While
the coefficients in the original polynomials are uniformly distributed in [−1, 1]
the coefficients of the resulting “complex” one are not uniform anymore, and this
distributional change leads to a simpler behavior with improved chances for invert-
ibility.

As outlined earlier Taylor models are particularly well suited to deal with the
cancellation problems that arise in regular interval arithmetic, since the bigger part
of that cancellation takes place in the polynomial coefficient real number arithmetic
and only a small fraction of it contributes to the remainder bounds (this is opposed
to normal interval arithmetic, where all the functional dependence is propagated
in the “remainder” bound. As such Taylor models are expectedly much better in
modeling the derivatives themselves and hence the Taylor model based methods can
succeed in proving invertibility for computationally complex functions that cannot
be properly modeled by intervals.

6. Conclusions

We have presented a new Taylor model based method to give a verified answer
to the question of whether a given function is invertible over a certain domain of
interest. This method uses only first derivatives and as such it can be implemented
with little computational expense.

Using Taylor models we have been able to overcome some limitations of interval
arithmetic based methods to determine invertibility. Namely we have been able to
show that Taylor model based methods can model computationally complex func-
tions much more accurately than interval methods. Moreover, since the accuracy of
Taylor models scales with the (n + 1)-st order of the domain size, we have shown
that the new methods work over significantly larger domains and scale better to
high dimensional problems than interval based methods.

An important application of this method lies in the combination with recently
presented methods for the computation of Taylor models of inverse functions [6].
In that case, it is necessary to verify invertibility before actually computing the
inverse Taylor models.
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