Electron model lattice with added edge focusing

O Introduction:

0 Rick Baartman: “Spiral focusing slides”
Q Parallels to the my ‘TRIPLET’ design

Q Our previous electron demonstration rings results presented in Vancouver:
Q Simulation of the muon acceleration (10 GeV — 20 GeV) required:
a Small path length — acceleration at the top of the RF wave
O Small orbit offsets
O Betatron tunes in the basic cell within the a range 0.1 < v, , < 0.4
Q -0.333 < dp/p < +0.333

A A little bit about Polymorphic Tracking Code (PTC) edge effect calculation

Q Results from C=16 m example:
d Where is “additional” edge focusing introduced.
O Betatron tunes dependence on momentum comparison with and without “edge”
O Orbits through the basic cell
d Courant-Snyder amplitude functions dependence on momentum

O Summary
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Slides from the Rick Baartman presentation:
‘Cyclotrons: Classic to FFAG' - 2002

I Invention (Lawrence, 1930)

-;;af'g;"-r = quB, so mwo = gB, withr = v/wp

With B constant in time

and uniform in space, as
E : .
-y particles gain energy from
- the f system, they stay
L in synchronism, but spiral
(.J outward in r.
e .

Thomas focusing and later the Okhawa-Symon-Kolomenski FFAG
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Slides from the Rick Baartman presentation:

In 1954, Kerst realized that the sectors need not
be symmetric.By tilting the edges, the one edge
became more focusing and theother edge less.
But by the strong focusing principle (larger
betatron amplitudes in focusing, smaller in
defocusing), one could gain nevertheless.

This had the important advantage that reverse
bends would not be needed (reverse bends
made the machine excessively large).

(Figure is from J.R. Richardson notes.)

The resulting machines no longer had
alternating gradients, but Kerst and Symon
called them FFAGs anyway.

M, :=

Cosh[ky s] Sinh[ky s] / ky
(kY Sinh[ky s] Cosh[ky s] ) |-

Cosh[ky s] Sinh[ky s] / ky
( ky Sinh[k, s] Coshl[ky s] )
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Slides from the Rick Baartman presentation:

Tunes in an FFAG

To make it transparent, let us
consider all identical dipoles
_ _ and drifts; no reverse bends.
sin®) - sin(d)  \we have drifts d, dipoles
p R with index %, radius p, bend
angle ¢, and edge angles

o —40:

d2=R sin(¢=9) 1, 4qdition, imagine that the

edges are inclined by an
extra angle £. This is called
the “spiral angle” (hard to
draw).

In this hard-edged case, the “flutter” 2 = ((B — FF};-*"FE =R/p—1.

Aside: Notice that the particle trajectory (blue curve) does not coincide with a
contour of constant B (dashed curves). This has large implications for using
existing transport codes to describe FFAGs.
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Slides from the Rick Baartman presentation:

Example: TRIUMF cyclotron

250MeV | 251in. | 0.78 | 47 33 0.20 | 0.24
505MeV | 311in. | 1.17 | 72 20.0 0.07 | 0.24

Dejan Trbojevic
FFAG Workshop 2005 April 3, 2005




Sector Bend with
two edges
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2. Our previous electron demonstration rings
results presented in Vancouver

E. D. Courant and D. Trbojevic

» Lattice Properties:

— Dimensions and lattice functions for the central energy E_=15 MeV:
» Circumference C and number of periods N:
— C=13mwithN=32,
— C=13mwith N = 34,
— C =16 mwith N = 45,
— C=17 mwith N = 45,
— Gradients and bending fields/angles.

— Momentum Dependence:
« Path length per unit cell and for a total length vs. momentum.
» Orbit offsets vs. momentum.
* tunes vs. momentum.
« Amplitude and dispersion functions vs. momentum.
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Electron Demonstration Ring - Path Length in one cell
Number of cells: 45, 35,
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Electron Demonstration Ring C=15m N=45
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GRADIENTS:

Dimensions:

Bending Fields:

Bending angles:

FFAG Workshop 2005

GF 7.06035 T/m
GD = -4.59590 T/m

Lgp = 10cm

Lop = 3.8cm
CAV =10.6 cm
Drift = 3.12 cm

Bygp = 0.1093 T
Byor = —0.0520 T

ANGqp = 0.2186575
ANGqr =-0.039516

6,/6, = 0.180
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Electron Demonstration Ring C=15m , N =45

Tunes vs. Momentum

0.5 | | | | | | | | T | | | | T | | | | | | | | | H
! +—¢ v, SYNCH l
»—a Vv, SYNCH .
0.4 N d —
; —V, COSsY ]
AN —V, COsY 7
0.3 — _
T
} | —
s - -
c

I L _
k3 - i —

- 4, '-h:"".:-'h: :
0.2 — ., = o S —
L = - 94 _
L ""h-__“. .
: :L
D“ | | | | | | | | | | | | | | | | | | | | | | | | | "

-0.4 -0.2 0 0.2 0.4
dp/p

Dejan Trbojevic
FFAG Workshop 2005 April 3, 2005




A little bit about Polymorphic Tracking Code (PTC) edge effect calculation

LIKEMAD=.TRULE.

e,=0
LD

LIKEMAD=.F ALSE.

o =¢+E,

E=WU
Figure 19: Two Different Bends constructed from the RBEND by PTC
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Q.5.8 The Rectangular Bend

The rectangular bend is created with the command

O=¢€+ &
Figure 22: The True RBEND of PTC
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B = RBEND("B",L,ANGLE)! L and ANGLE are keywords of the optional construct.
or
B = RBEND("B",L,ANGLE,TILT)

It is also possible to call RBEND with the syntax

o
Il

RBEND("B",L,ANGLE ,E1)! L, ANGLE, and ET1 are keywords of the optional construct.
or

B = RBEND("B",L,ANGLE,E1,TILT)

0o
Il

RBEND("B",L,ANGLE,E2)! L, ANGLE, and E1 are keywords of the optional construct.
or B = RBEND("B",L,ANGLE,E2, TILT)

In this case the entrance angle E1 of the bend is following the MAD convention that E1 is zero for ideal
parallel face bend, that is to say:

ei1=a+Fland e; = a+ E2 (62)

where a is the total angle and ¢ is defined in Figure 22.

The total bending angle is ANGLE and the exit angle is ANGLE-z¢q. In PTC, unlike MAD. RBEND
really means a rectangular Cartesian bend in the EXACTMODEL option. Therefore ¢, the exit angle,
must be ANGLE-2¢. This bend is very interesting because it is the only element of PTC for which EL%L,
EL%P%LD, and EL%P%LC are all different!

As seen in Figure 22, this is a perfect example of the generality needed to cover an arbitrary magnet.
Here the variable EL%L is tied, as we said, to the inner field details of the magnet. Since the magnet is
a rectangular object, it must be integrated in Cartesian coordinates. This has nothing to do with the end
purpose of the magnet. This length L is really a “private” variable of the magnet similar to a bizarre B-field
or other strange properties that arbitrary complex magnets might have. On the other hand, EL%P%LD and
EL%P%LC are once more the variables indicating the coordinate needed to patch to the outside world.
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The RBEND, obviously, supports the option EXACT_MODEL.

In that context, we remind the reader of the option LIKEMAD=.TRUE. displayed in Figure 19. This
is the case of a rectangular bend with arbitrary entrance and exit angles. This is not possible in a true
rectangular geometry. Therefore MAD-like wedges are applied. The MAD-like input for this object is

B = RBEND("B",L,ANGLE,E1,E2)! L, ANGLE, E1, and E2 are keywords of the optional construct.
or
B = RBEND("B",L,ANGLE ,E1,E2,TILT)

PTC sees in this case an arbitrary E1 and E2; therefore it uses the wedges. In fact, even if one inputs an E2
matching the condition of the “true bend”, PTC will still use the wedges if the two keywords are present in
the call statement. This is the clue telling PTC to use MAD wedges on top of the true rectangular bend.
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Q.5.9 The Sector Bend

B = SBEND("B",L,ANGLE)! L and ANGLE are keywords of the optional construct.
or

B = SBEND("B",L,ANGLE, TILT)

The sector bend calls the general bend routines. If EXACT_MODEL is true, then the exact sector bend
(KIND10) is used. As in the case of RBEND, it is possible to have up to two extra angles, in which case
wedges are added. The syntax is as before:

B = SBEND("B",L,ANGLE ,E1,E2)! L, ANGLE, E1, and E2 are keywords of the optional construct.
or
B = SBEND("B",L,ANGLE ,ET,E2,TILT)

In this case, the angles E1 and E2 are just 1 and .

Of course the best manual is the code itself (it cannot lie) but it is not too eloquent, like a village idiot!
What follows is hardly better, but here it is anyway. First we remind the reader of the connection between
0 = (p—po)/po and 0g = (E — Ep)/(poc):

201

. - 2 . ; ~2 .
[\l—l—()) = l—T—()L,-'. lfﬁf))
70
The time of flight ¢T" is canonically conjugate to —dg while path length is conjugate to —d.
In what follows we emphasize the é-dependent Hamiltonians for the magnets out of pure laziness; these
produce path length rather than time of flight.
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K.4.1 DRIFT1: Drift

Well this is a drift! Drifts come in two flavors: exact and expanded. The exact Hamiltonian is given by the

formula:

' 2 .
H = —V’F(l P s e (37)
The expanded Hamiltonian is
2 2
ps + D
- i N (38)
2(1 + 4)
Incidentally, the expression in Equation (38) gives us
_.lr IF 1 L3 {
(zy) = 1+9) (P py) (39)

which, in turn, leads to a multipole kick of the variables (z',y’) proportional to 1/(1 + d): this is the usual
non-canonical result.

K.4.2 DKD2: Drift-Kick-Drift Element

This is the “classic” TRACYII-SixTrack Hamiltonian in the non-exact expanded mode. The Hamiltonian of
the body of such a magnet is given by

nZ 1 n2 ; 2
P o x ,
H = ;p'_—};’r—ﬁ—i— ——t — + V(z,y)
2(1+9) ) Pa 2P
i, i,
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The Teapot code (DRIFTKICK=.TRUE.) split uses the standard ROT_XZ (drift in polar coordinates
called SPROT in S.DEF_KIND) and a multipole kick. In PTC the ideal orbit and the computed orbit do
not match perfectly if this is used unless BN(1) is adjusted and differs slightly from EL%P%B0. With the
Teapot split it 1s possible to even do a straight element; of course this is not recommended. The other split
(DRIFTKICK=.FALSE.) is an “exact bend-multipole” split. The horizontal bend is handled exactly. Notice
that it may even differ from the ideal bend since there is no assumption that by = py.

PTC must compute a template from which it extracts the B-field from the multipole components. The
potential V' in the limit of ;351 going to zero becomes the regular harmonic expansion of Equation (40).
However for finite values of p;1._ the potential V' obeys the equation:

( | 52 52 o 3, V—0 (
TE T | V¥V =, '-
Pd dr2 Oy dr dx

The field, scaled by po/q is then given by

(] |
o
o

1 J _.
by = ————V
pd‘f’-’]f ().‘I,’
1 0
by = ———V
' P+ x dy
bs = 0.

Equation (55) is solved in the module ANBN to order SECTOR_NMUL. It is solved by an iterative procedure
for p{ﬂ = 1. In fact, the beginning of the iteration is the usual harmonic solution for straight elements. The
solution for an arbitrary p, can be regained due to the fact that each successive iterate depends on one extra
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approaches are not equivalent if there are multipole components in the body of the bend simply because
pa-dependent Maxwellian effects must be included in type TEAPOT.

If LIKEMAD=.FALSE., then PTC truly constructs a parallel face bend. One should notice that for this
bend the sum of the entrance and exit angles must always be equal to the total bending angle. Moreover
the case LIKEMAD=.FALSE. is very interesting since it is a rare case of L # L. # Lg; it also shows very
clearly that L is truly an internal variable whose meaning is detail-dependent while L, and L, are layout
variables describing the desired geometry of the element. The total map for the magnet is

M(L) = Ry} 0 Re:(£1) 0 FY" 0 F5" 0 B(L) 0 F3" 0 F{" 0 Ryz(£2) 0 Ray (60)
R.. 1s a dynamical rotation: the famous PROT of Dragt. Ffr”“'”'t is the fringe field due to by, which
acts mostly in the vertical plane and F E'nfum is the quadrupole fringe field from any bz or az. Here we see
explicitely that in a more exact treatment of a bend., the thin quadrupole trick does not appear.
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Results from C=16 m example:

19.6 mm different momenta

Orbits along the cell at

dp/p=+44%

T e . ——
e e
7 Sy S e -
A i R
R e

Q FFAG Workshop 2005

dp/p = -44%
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Results from C=16 m example:

Electron Demonstration Ring: Betatron Tunes Dependence on Momentum

With and without additional magnet edge
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Results from C=16 m example:

Electron Demonstration Ring: Path Length Dependence on Momentum
With and without additional magnet edge
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B, dependence on momentum along the cell
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Summary:

A simple straight edge effect application to the ends of the magnets
improved the tune dependence on momentum especially in the vertical
plane.

Improvements with the curved edges should not be taken seriously
because of the very small sizes of the non-scaling FFAG magnets. This
approach does improve performance of the scaling FFAG, as Rick
Bartmaan had previously explained.
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Equation (55) is solved in the module ANBN to order SECTORNMUL. It is solved by an iterative procedure
for pj = 1. In fact, the beginning of the iteration is the usual harmonic solution for straight elements. The
solution for an arbitrary py can be regained due to the fact that each successive iterate depends on one extra
power of ;:ad_1. The ugly details can be found in reference [3], Interlude XIV.

In module ANBN, the solution must be tied to a physical definition, a measurement so to speak. Thus
we define the usual a,, and b,, as follows:

Sactor_Mmul

=] n—1
E:Ii — Z 'I'.I-i; -r

mi=1

Sactor MNmul
=0 = 3} b (56)

n="1

Then, on the basis of Equation (56), V is computed to order SECTOR_NMUL.

Module ANBN provides the template. Each time the multipole components of an exact sector bend are
changed, the power series for b, and b, are recomputed (BF_X,BF_Y).

The symplectic integration proceeds in the usual two-terms Yoshida for the two possible splits. Finally
the full map in PTC for this element is:

M(L) = R} o F{™ o F§"t o B(L) o Fi® o Fi" o Ry, (57)

This is similar to the full map for the exact parallel face bend in Equation (60).

Apain we repeat, it is possible to add a wedge to this element. The wedge is an exact sector bend of field
BN{1) which modifies the peometry so that the entrance and exit angles can be different. This is described
in 5] and it is compatible with MAD. This gymnastic is barely PTC compliant.
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To understand the difference between MAD and PTC with regard to true parallel face bends. it is best to
look at a simple example. In Figure 19, the two bends displayed have an entrance angle ¢4 = 0 and an exit
angle £, = « where « is the total bending angle. For the first case, LIKEMAD=TRUE., PTC constructs
this bend using a wedge glued to a true Cartesian bend. In PTC this can be done with type TEAPOT,
in which case the glueing is done on a sector bend or on type STREX, as it is the case here. These two

approaches are not equivalent if there are multipole components in the body of the bend simply because
pa-dependent Maxwellian effects must be included in type TEAPOT.

If LIKEMAD=.FALSE., then PTC truly constructs a parallel face bend. One should notice that for this
bend the sum of the entrance and exit angles must always be equal to the total bending angle. Moreover
the case LIKEMAD=.FALSE. is very interesting since it is a rare case of L # L. # Ly ; it also shows very
clearly that L is truly an internal variable whose meaning is detail-dependent while L. and L, are layout
variables describing the desired geometry of the element. The total map for the magnet is

M(L) = R, 0 Rzz(e1) o F{™ o F2" 0 B(L) 0 F3™ 0 F}™ 0 Ry (e2) © Ray (60)

Wy

. . E Y f y in l,-" ut . v . v .
R.. is a dynamical rotation: the famous PROT of Dragt. F1""/"" is the fringe field due to b1, which
in/out

acts mostly in the vertical plane and F5 is the quadrupole fringe field from any b2 or az. Here we see
explicitely that in a more exact treatment of a bend, the thin quadrupole trick does not appear.
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