R&D Activities on FFAG Accelerator

Yoshiharu Mori Kyoto University (KEK)

FFAG R&D Activities in Japan

On-going project

- I50-MeV proton FFAG R&D : KEK
 - Prototype for various applications
- FFAG for ADS : Kyoto Univ. FFAG + Sub Critical Reactor
- Muon phase rotation PRISM : Osaka Univ.
 Muon Rare Decay (Mu-e conversion)

- Hadron therapy @ Ibaraki Prefecture
- Electron source for sterilization
- Neutron source for BNCT
- Neutrino factory (muon accelerator)

FFAG project

Mori moved from KEK to Kyoto Univeristy

Kyoto University Reserach Reactor Insitute

- ADS, Neutron Source, Particle Therapy
- KEK : FFAG project office
 (officially organized)
 - Particle Therapy, Muon

Proton FFAG Accelerator

150MeV Proton FFAG

Design parameter

Magnet	radial sector type
	(DFD triplet)
Num. of cell	12
k-value	7.6
Ek	12 => 150 MeV
	(10 => 125 MeV)
Av. radius	4.47 => 5.20m
betatron	hor. : 3.69 ~ 3.80
tune	ver. : 1.14 ~ 1.30
Peak Field	F-mag. : 1.63T
(@beam orbit)	D-mag. : 0.78T
revolution	1.55 ~ 4.56MHz
repetition	250Hz

27th Mar, 2005 / 日本物理学会 @ 東京理科大

12-150MeV mode operation

− tune v

criterion 1) $\triangle v < 0.1$ 2) avoid structure & linear resonaces

tune_v

Betatron Tunes

Resonance Crossing

 3n_x=11 : lowest order and normal Crossing right after injection
 Direction of crossing
 Particle Trapping Emittance Growth

Resonance Crossing direction of crossing

(d) $\xi = 0$

(e) $\xi = -0.02$

κ=100

Ψ

0 007

 $\alpha^{1/2}$

 $\xi \propto \frac{1}{3}p - v$

(a)->(e):particle trappir(e)->(a):emittance grow

エミッタンス増大は有限

*変化を分かりやすくするため 150MeVと無関係なパラメータ

x (mm)

Resonance Crossing : Emittance Growth

Max. Emittance Growth Rate

$$\frac{R + A/\pi}{R} = 1 + \frac{\pi}{\sqrt{2}} \kappa^{-12} R^{-14}$$
*仮定:無限に遅い横切り
a_s: relative emittance at island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \frac{3}{\alpha_s 4}$$
: area of island

$$A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}$$

Crossing Speed

Adiabatic

parameter

 $G(\alpha) = 1 + G_m \exp(-\alpha / \tau)$

$$\alpha_1 = \left(\frac{\varepsilon}{4\pi\Delta_{NL}\Delta_e}\right)^3 :$$

Crossing speed: ε Nonlinear tune shift: $\Delta_{NL} = -12B_0a_0$ Excitation width: $\Delta_e = -3A_pa_0^{-1}$

Experiment

黒:COD corrected 赤:COD uncorrected ~30%

COD corrected >> No Beam Loss!

Beam Intensity

FFAG for ADS

ADSR in Kyoto University Research Reactor Institute (KURRI)

Feasibility study of ADSR Five-year program 2002 – 2006

Subject Accelerator technology -variable energy FFAG Reactor technology -basic experiments for energy dependence of the reactor physics

FFAG for ADS

ADSR in Kyoto University Research Reactor Institute (KURRI)

Feasibility study of ADSR
 Five-year program 2002 – 2006
 Subject

- Accelerator technology
 -variable energy FFAG
- Reactor technology
 - -basic experiments for energy dependence of the reactor physics

What is ADSR? Accelerator Driven Sub-critical Reactor charged particle

target for generating neutron

accelerator

sub-critical reactor

Beam off @ chain reaction stops Safer system !

FFAG – KUCA ADSR system schematic diagram

Parameters of the Accelerator Complex

Einj	100keV	2.5MeV	20MeV
Eext	2.5MeV	20MeV	I 50MeV
Lattice type	Spiral	Radial DFD	Radial DFD
Acc. scheme	Induction	rf	rf
# of cells	8	8	12
k value	2.5	4.5	7.6
coil/pole	coil	coil	pole
	5.00	2.84	2.83
	0.60m	I.42m	4.54m
	0.99m	1.71m	5.12m

Layout of the complex

Model of injector magnet

Particle Beam Therapy

Requirements To extend the use of Proton Therapy widely in (Japanese)society

- Efficient treatment
 - >500pateints/year
- High dose rate
 - >5Gy/min.
- Flexibility (various types of cancer)
 - Respiration mode
 - Spot scanning
- Easy operation
- High maintenance ability
 - Small residual radio activities
- Small cost
 - Construction and operation

Features

proton therapy accelerator

	Synchrotron	Cyclotron	FFAG
• Intensity	Low	Enough	Enough
• Maintenance	e Normal	Hard	Normal
• Operation	Not easy	Easy	Easy
• Multi-extrac	tion Difficult	No	Yes

Accelerator for Hadron(proton) Therapy

- Requirements
 - Proton energy 230MeV (variable)
 - Intensity >100nA : 5Gy/min
 - Beam extraction efficiency >90%
- Synchrotron I~I6nA, not enough
- Cyclotron Extraction efficiency ~<70%
- FFAG I > 100nA (100Hz), Extraction >95%

Neutron Source for Boron Captured Neutron Therapy (BNCT)

Boron Neutron Capture Therapy (BNCT)

Borocaptate sodium (BSH) L-p-Boronophenyl alanine (BPA)

COOH

¹n + ¹⁰B → ⁴He (α) + ⁷Li + 2.8 MeV

Neutron source

- Large neutron flux
 - > 1x10E09 n/cm2/sec at patient for 30 min. treatment.
 - Nuclear reactor only can provide.
- Low energy spectrum :thermal/epi-thermal neutron

Limited to extend the use of BNCT widely in society.

Kyoto University Research Reactor (KUR)

The rough sketch of D₂O-neutron facility in KUR

Accelerator-based neutron source

Neutron production reaction

- 9Be(p,n)B, 8Li(p,n)Be

- proton energy 3-10MeV
 - (Coulomb barrier ~2MeV)
 - Low gamma-ray background
- beam current >20 mA (cw)

Difficulties

- Beam current : >20mA (CW)
 - Very high duty factor
 - ex. Linac (RFQ, IH, DTL)
 - cw operation : technically not easy & expensive
- Heat load for the target : Beam power ~100kW
 - Stopping power ~100MeV/g/cm2, Range <1mm

Proton beam power is mostly consumed by ionization in the target, not by neutron production.

- Neutron production/Ionization(energy loss)
 Efficiency ~ <1/1000
- If the beam energy lost in the target is recovered by re-acceleration, the efficiency of neutron production can be improved.

ERIT

ERIT for neutron production with FFAG

- Erergy loss
 - recovered by rf re-acceleration
- Emittance growth due to scattering
 - cured by "lonization Cooling"
- Beam current
 - Required accelerating averaged beam current can be reduced because the ciruculating current in the ring is large.

Energy loss

- Proton energy I0 MeV dE/dx ~30MeV/g/ cm2
- Target : Be 5microns

Energy loss/turn ~ 30keV Power loss in the target ~1.2kW Heat load becomes modest.

Beam current

- Revolution frequency ~5MHz
- Storage time ~0.5msec

- Number of turns n=frevTst=2500
- Accelerating time 0.5msec
- Np ~5x10E10
- $Ip \sim 40mA$, lave ~ I6micro-A=Ip/2500

Emittance growth

- Using an internal target, the beam emittance could be increased by the effects of multiple scattering and straggling.
- In ERIT, however, "Ionization Cooling" should help to cure the emittance growth.

ERIT = Ring Ionization Cooling

Ionization Cooling Small emittance Large emittance Absorber Accelerator

Momentum loss is opposite to motion, p, p_x, p_y, ΔE decrease

Momentum gain is purely longitudinal

Only muon! How about proton? τ_{μ} = 2.2 γ µs or L_µ = 660 $\beta\gamma$ m

Ionization cooling

$$\frac{d\varepsilon}{ds} = A\varepsilon + B$$

$$A = -\frac{1}{\beta^2 E} \left\{ \frac{dE}{ds} \right\} \qquad B = \frac{\beta \gamma}{2} \beta_T \frac{\left(13.6 MeV\right)^2}{\left(\beta cp\right)^2 L_s}$$

Transverse

$$A = 2 \frac{\partial \left(\frac{dE}{ds}\right)}{\partial E}$$

(dE)

$$B = 4\pi \left(r_e m_e c^2\right)^2 n_e \gamma \left[1 - \frac{\beta^2}{2}\right]$$

cf. p:10MeV, Be target Transverse : Cooling Longitudinal : Heating without coupling.

$$\sum_{1}^{3} g_i > 0$$

In all of directions (trans. &long.), the beam can be cooled .

Sigma(g)

energy(MeV)

シミュレーションの条件

ビームエネルギー : T0 [MeV]	5	10
加速器平均半径 : r0 [m]	1.1	1.5
周回周波数 : Frev [MHz]	4.46	4.61
Dispersion : D [cm/%]	25	25
ターゲット 厚 @ r0 :G0 [mm]	5, 8	5, 8
ターゲット厚の傾き : r'/r0 [1/cm]	0.03~0.07	0.03~0.07
RF加速電圧 : Vrf [kV]	2	2
ハーモニックナンバー: h	5	5
エネルギーロス @r0 :dEt [keV]	63, 101	36, 57
ストラグリング(s) :dEs [keV]	8.1, 10.2	8.1, 10.2
D r'/r 0	0.75~1.75	0.75~1.75

シミュレーションのまとめ

ガイーチャー ±10 cm 粒子数 100 個の平均

イオン化冷却により2~3000 turn 程度可能

Heat Load

- Advantages of ERIT
 - dE/dx ~ smallest at maximum beam energy
- Power loss at target
- $P=Ic \times \Delta E$ cf. 50mA x 30keV = 1.5kW

Requirements for ERIT Ring

- Beam intensity
 - 5x10e10 ppp
- Acceptance
 - trans.:1000mm.mrad, long.:dp/p +-10%
- Repetition rate
 - ~IkHz

FFAG looks the best choice.

